1
|
Jiang Y, Shi L, Qu Y, Ou M, Du Z, Zhou Z, Zhou H, Zhu H. Multi-omics analysis reveals mechanisms of FMT in Enhancing antidepressant effects of SSRIs. Brain Behav Immun 2025; 126:176-188. [PMID: 39978693 DOI: 10.1016/j.bbi.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE This study explores the behavioral and molecular biological impacts of Fecal Microbiota Transplantation (FMT) on depressive mice unresponsive to treatment with Selective Serotonin Reuptake Inhibitors (SSRIs). METHODS Healthy male C57BL/6 mice were used to establish a depression model through chronic restraint stress, treated with fluoxetine, and categorized into Response and Non-response groups. An FMT treatment was added to the Non-response group. Behavioral tests were conducted to assess symptoms of depression. The gut microbiome, plasma metabolites, and hippocampal tissue gene expression and function changes were analyzed using 16S rRNA gene sequencing, LC-MS, and RNA sequencing. RESULTS FMT significantly improved the depressive symptoms in SSRIs-resistant mice. There was a partial restoration in the diversity and structure of the gut microbiota in the FMT group. Compared to the Non-response group, significant changes were noted in the metabolomic profiles of the FMT group, identifying various differential metabolites. Functional annotations indicated that these metabolites are involved in multiple metabolic pathways. In the Non-response group, certain gene expression levels were significantly restored. GO and KEGG enrichment analyses revealed that these differential genes mainly involve cytokine activity, receptor signaling regulation, and NOD-like receptor signaling pathways. Joint analysis suggested that FMT may exert its effects through an increase in the abundance of g__Paraprevotella, leading to decreased baicalin content and increased Tal2 expression. CONCLUSION FMT has potential in improving depressive symptoms unresponsive to SSRIs treatment. Its mechanism may be related to the modulation of the gut microbiota and its metabolites, subsequently affecting gene expression.
Collapse
Affiliation(s)
- Ying Jiang
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lingyi Shi
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Yucai Qu
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Mengmeng Ou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiqiang Du
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenhe Zhou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Hongliang Zhou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China; Department of Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| | - Haohao Zhu
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Bhattacharyya S, MahmoudianDehkordi S, Sniatynski MJ, Belenky M, Marur VR, Rush AJ, Craighead WE, Mayberg HS, Dunlop BW, Kristal BS, Kaddurah-Daouk R. Metabolomics signatures of serotonin reuptake inhibitor (escitalopram), serotonin norepinephrine reuptake inhibitor (duloxetine) and cognitive-behavioral therapy on key neurotransmitter pathways in major depressive disorder. J Affect Disord 2025; 375:397-405. [PMID: 39818336 DOI: 10.1016/j.jad.2025.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways. Changes in metabolite concentrations related to each treatment arm were identified and compared to define metabolic signatures of exposure. In addition, association between metabolites and depressive symptom severity (assessed with the 17-item Hamilton Rating Scale for Depression [HRSD17]) and anxiety symptom severity (assessed with the 14-item Hamilton Rating Scale for Anxiety [HRSA14]) were evaluated, both at baseline and after 12 weeks of treatment. Significant reductions in serum serotonin level and increases in tryptophan-derived indoles that are gut bacterially derived were observed with escitalopram and duloxetine arms but not in CBT arm. These include indole-3-propionic acid (I3PA), indole-3-lactic acid (I3LA) and Indoxyl sulfate (IS), a uremic toxin. Purine-related metabolites were decreased across all arms. Different metabolites correlated with improved symptoms in the different treatment arms revealing potentially different mechanisms between response to antidepressant medications and to CBT.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Matthew J Sniatynski
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Belenky
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Vasant R Marur
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-National University of Singapore, Singapore, Singapore
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Helen S Mayberg
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Jang YJ, Kim DK, Lim SW, Hong E. Impact of CYP2C19 Phenotype on Escitalopram Response in Geriatrics: Based on Physiologically-Based Pharmacokinetic Modeling and Clinical Observation. Clin Pharmacol Ther 2025; 117:826-835. [PMID: 39717930 DOI: 10.1002/cpt.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Escitalopram is commonly prescribed for depressive and anxiety disorders in elderly patients, who often show variable drug responses and face higher risks of side effects due to age-related changes in organ function. The CYP2C19 polymorphism may further affect escitalopram pharmacokinetics in elderly patients, complicating dose optimization for this group. Previous pharmacogenetic studies examining the impact of CYP2C19 phenotype on escitalopram treatment outcomes have primarily focused on younger adults, leaving a gap in understanding its effects on the elderly. The aim of this investigation is to determine the impact of CYP2C19 phenotypes on escitalopram exposure in geriatrics using a physiologically-based pharmacokinetic (PBPK) model with geriatric-specific parameters and our clinical sample of 88 elderly patients with major depressive disorder. Based on PBPK simulations, the exposure of escitalopram in CYP2C19 poor metabolizers (PMs) was 2.1-fold higher compared with CYP2C19 extensive metabolizers (EMs). In line with PBPK results, the dose-normalized trough concentration in our clinical sample varied according to CYP2C19 phenotype (P = 0.0132), with PMs having a 1.6-fold higher concentration than EMs. Based on simulated and observed results, it is suggested that an escitalopram dose of 10 mg/day maybe appropriate for PMs, while a maximum dose of 20 mg/day could be used for EMs and IMs who do not achieve therapeutic responses at 10 mg/day. These findings suggest that CYP2C19 genotyping in elderly patients could be beneficial for tailoring dosing regimens in clinical practice, potentially improving treatment outcomes and reducing the risk of adverse drug reactions associated with escitalopram in this vulnerable group.
Collapse
Affiliation(s)
- Yoo Jin Jang
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Eunjin Hong
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, South Korea
- Gradute School of Clinical Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Mahmoudian Dehkordi S, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. Transl Psychiatry 2025; 15:65. [PMID: 39988721 PMCID: PMC11847943 DOI: 10.1038/s41398-025-03274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß = 0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß = -0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß = 0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore, Singapore
| | - Brenda W H J Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Horizumi Y, Tanada R, Kurosawa Y, Takatsuka M, Tsuchida T, Goto S. Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis. ACS Chem Neurosci 2025; 16:462-478. [PMID: 39818700 PMCID: PMC11809279 DOI: 10.1021/acschemneuro.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.
Collapse
Affiliation(s)
- Yusuke Horizumi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reo Tanada
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuya Kurosawa
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Miwa Takatsuka
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tsuchida
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
6
|
Liu S, Chen J, Guan L, Xu L, Cai H, Wang J, Zhu DM, Zhu J, Yu Y. The brain, rapid eye movement sleep, and major depressive disorder: A multimodal neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111151. [PMID: 39326695 DOI: 10.1016/j.pnpbp.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Evidence has established the prominent involvement of rapid eye movement (REM) sleep disturbance in major depressive disorder (MDD). However, the neural correlates of REM sleep in MDD and their clinical significance are less clear. METHODS Cross-sectional and longitudinal polysomnography and resting-state functional MRI data were collected from 131 MDD patients and 71 healthy controls to measure REM sleep and voxel-mirrored homotopic connectivity (VMHC). Correlation and mediation analyses were performed to examine the associations between REM sleep, VMHC, and clinical variables. Moreover, we conducted spatial correlations between the neural correlates of REM sleep and a multimodal collection of reference brain maps to facilitate genetic, structural and functional annotations. RESULTS MDD patients exhibited REM sleep abnormalities manifesting as higher REM sleep latency and lower REM sleep duration, which were correlated with decreased VMHC of the precentral gyrus and inferior parietal lobe and mediated their associations with more severe anxiety symptoms. Longitudinal data showed that VMHC increase of the inferior parietal lobe was related to improvement of depression symptoms in MDD patients. Spatial correlation analyses revealed that the neural correlates of REM sleep in MDD were linked to gene categories primarily involving cellular metabolic process, signal pathway, and ion channel activity as well as linked to cortical microstructure, metabolism, electrophysiology, and cannabinoid receptor. CONCLUSION These findings may add important context to the growing literature on the complex interplay between sleep and MDD, and more broadly may inform future treatment for depression via regulating sleep.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Lianzi Guan
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Li Xu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Dao-Min Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| |
Collapse
|
7
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R. Medication use is associated with distinct microbial features in anxiety and depression. Mol Psychiatry 2025:10.1038/s41380-024-02857-2. [PMID: 39794490 DOI: 10.1038/s41380-024-02857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Schroeter CA, Gorlova A, Sicker M, Umriukhin A, Burova A, Shulgin B, Morozov S, Costa-Nunes JP, Strekalova T. Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility. Biomolecules 2025; 15:67. [PMID: 39858460 PMCID: PMC11764023 DOI: 10.3390/biom15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.
Collapse
Affiliation(s)
- Careen A. Schroeter
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Anna Gorlova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Aleksei Umriukhin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
| | - Alisa Burova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Boris Shulgin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, Kyzylorda 120014, Kazakhstan
| | - Sergey Morozov
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Joao P. Costa-Nunes
- Faculdade de Medicina, Universidade de Lisboa, Campo Grande, 1649-028 Lisboa, Portugal;
| | - Tatyana Strekalova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
9
|
Godzien J, Kalaska B, Rudzki L, Barbas-Bernardos C, Swieton J, Lopez-Gonzalvez A, Ostrowska L, Szulc A, Waszkiewicz N, Ciborowski M, García A, Kretowski A, Barbas C, Pawlak D. Probiotic Lactobacillus plantarum 299v supplementation in patients with major depression in a double-blind, randomized, placebo-controlled trial: A metabolomics study. J Affect Disord 2025; 368:180-190. [PMID: 39271063 DOI: 10.1016/j.jad.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Understanding the multifactorial nature of major depressive disorder (MDD) is crucial for tailoring treatments. However, the complex interplay of various factors underlying the development and progression of MDD poses significant challenges. Our previous study demonstrated improvements in cognitive functions in MDD patients undergoing treatment with selective serotonin reuptake inhibitors (SSRIs) supplemented with Lactobacillus plantarum 299v (LP299v). METHODS To elucidate the biochemical mechanisms underlying cognitive functions improvements, we explored underlying metabolic changes. We employed multi-platform metabolomics, including LC-QTOF-MS and CE-TOF-MS profiling, alongside chiral LC-QqQ-MS analysis for amino acids. RESULTS Supplementation of SSRI treatment with LP299v intensified the reduction of long-chain acylcarnitines, potentially indicating improved mitochondrial function. LP299v supplementation reduced N-acyl taurines more than four times compared to the placebo, suggesting a substantial impact on restoring biochemical balance. The LP299v-supplemented group showed increased levels of oxidized glycerophosphocholine (oxPC). Additionally, LP299v supplementation led to higher levels of sphingomyelins, L-histidine, D-valine, and p-cresol. LIMITATIONS This exploratory study suggests potential metabolic pathways influenced by LP299v supplementation. However, the need for further research hinders the ability to draw definitive conclusions. CONCLUSIONS Observed metabolic changes were linked to mitochondrial dysfunction, inflammation, oxidative stress, and gut microbiota disruption. Despite the subtle nature of this alterations, our research successfully detected these differences and connected them to the metabolic disruptions associated with MDD. Our findings emphasise the intricate relationship between metabolism, gut microbiota, and mental health prompting further research into the mechanisms of action of probiotics in MDD treatment.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| | - Leszek Rudzki
- Psychiatry-UK, 3b Fore Street, Camelford PL32 9PG, UK
| | - Cecilia Barbas-Bernardos
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Gonzalvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Lucyna Ostrowska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Michal Ciborowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Adam Kretowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Ingoglia F, Tanfous M, Ellezam B, Anderson KJ, Pasquali M, Botto LD. MADD-like pattern of acylcarnitines associated with sertraline use. Mol Genet Metab Rep 2024; 41:101142. [PMID: 39318848 PMCID: PMC11421287 DOI: 10.1016/j.ymgmr.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a primary mitochondrial dysfunction affecting mitochondrial fatty acid and protein metabolism, caused by biallelic pathogenic variants in ETFA, ETFB, or ETFDH genes. The heterogeneous phenotypes associated with MADD have been classified into three groups: neonatal onset with congenital anomalies (type 1), neonatal onset without congenital anomalies (type 2), and attenuated and/or later onset (type 3). Here, we present two cases with biochemical profiles mimicking late-onset MADD but negative genetic testing, associated with the use of sertraline, a commonly used antidepressant. Case 1 is a 22 yo woman diagnosed with depression and profound fatigue who was referred to the metabolic clinic because of carnitine deficiency and a plasma acylcarnitine profile with a MADD-like pattern. Case 2 is a 61 yo woman with a history of chronic fatigue who was admitted to the emergency department with difficulty swallowing, metabolic acidosis, and mild rhabdomyolysis. Plasma acylcarnitine profile showed a MADD-like pattern. The muscle biopsy revealed lipid droplet accumulation and proliferation of mitochondria with abnormal osmiophilic inclusions, and a biochemical assay of the respiratory chain showed a deficit in complex II activity. In both cases, urine organic acid profile was normal, and genetic tests did not detect variants in the genes involved in MADD. Sertraline was on their list of medications and considering its association with inhibition of mitochondrial function and rhabdomyolysis, the team recommended the discontinuation under medical supervision. In Case 1 after discontinuation, the plasma acylcarnitine test normalized, only to return abnormal when the patient resumed sertraline. In Case 2, after sertraline was discontinued rhabdomyolysis resolved, and the muscle biopsy and biochemical assay of the respiratory chain normalized. Although sertraline is considered a safe drug, these two cases suggest that the use of sertraline may be associated with a potentially reversible form of mitochondrial dysfunction mimicking MADD. Further studies are needed to confirm and estimate the risk of MADD-like presentations with the use of sertraline, as well as identifying additional contributing factors, including genetic factors. Metabolic physicians should consider sertraline use in the differential diagnosis of MADD, particularly when genetic testing is negative.
Collapse
Affiliation(s)
- Filippo Ingoglia
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Mohsen Tanfous
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
| | - Benjamin Ellezam
- Department of Pathology, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - Katherine J. Anderson
- Department of Pediatrics, Division of Clinical Genetics, University of Vermont, Burlington, VT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
- Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
11
|
Tkachev A, Stekolshchikova E, Golubova A, Serkina A, Morozova A, Zorkina Y, Riabinina D, Golubeva E, Ochneva A, Savenkova V, Petrova D, Andreyuk D, Goncharova A, Alekseenko I, Kostyuk G, Khaitovich P. Screening for depression in the general population through lipid biomarkers. EBioMedicine 2024; 110:105455. [PMID: 39571307 PMCID: PMC11617895 DOI: 10.1016/j.ebiom.2024.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Anxiety and depression significantly contribute to the overall burden of mental disorders, with depression being one of the leading causes of disability. Despite this, no biochemical test has been implemented for the diagnosis of these mental disorders, while recent studies have highlighted lipids as potential biomarkers. METHODS Using a streamlined high-throughput lipidome analysis method, direct-infusion mass spectrometry, we evaluated blood plasma lipid levels in 604 individuals from a general urban population and analysed their association with self-reported anxiety and depression symptoms. We also assessed lipidome profiles in 32 patients with clinical depression, matched to 21 healthy controls. FINDINGS We found a significant correlation between lipid abundances and the severity of self-reported depression symptoms. Moreover, lipid alterations detected in high scoring volunteers mirrored the lipidome profiles identified in patients with clinical depression included in our study. Based on these findings, we developed a lipid-based predictive model distinguishing individuals reporting severe depressive symptoms from non-depressed subjects with high accuracy. INTERPRETATION This study demonstrates the possibility of generalizing lipid alterations from a clinical cohort to the general population and underscores the potential of lipid-based biomarkers in assessing depressive states. FUNDING This study was sponsored by the Moscow Center for Innovative Technologies in Healthcare, №2707-2, №2102-11.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anastasia Golubova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Serkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Morozova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Yana Zorkina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Daria Riabinina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Elizaveta Golubeva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Aleksandra Ochneva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Valeria Savenkova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Denis Andreyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Economy Faculty, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, Moscow, 123473, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow Region, 142290, Russia
| | - Georgiy Kostyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia.
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia.
| |
Collapse
|
12
|
Hedberg-Oldfors C, Lindgren U, Visuttijai K, Shen Y, Ilinca A, Nordström S, Lindberg C, Oldfors A. Lipid storage myopathy associated with sertraline treatment is an acquired mitochondrial disorder with respiratory chain deficiency. Acta Neuropathol 2024; 148:73. [PMID: 39586906 PMCID: PMC11588938 DOI: 10.1007/s00401-024-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Lipid storage myopathies are considered inborn errors of metabolism affecting the fatty acid metabolism and leading to accumulation of lipid droplets in the cytoplasm of muscle fibers. Specific diagnosis is based on investigation of organic aids in urine, acylcarnitines in blood and genetic testing. An acquired lipid storage myopathy in patients treated with the antidepressant drug sertraline, a serotonin reuptake inhibitor, has recently emerged as a new tentative differential diagnosis. We analyzed the muscle biopsy tissue in a group of 11 adult patients with muscle weakness and lipid storage myopathy which developed at a time when they were on sertraline treatment. This group comprise most patients with lipid storage myopathies in western Sweden during the recent nine-year period. By enzyme histochemistry, electron microscopy, quantitative proteomics, immunofluorescence of the respiratory chain subunits, western blot and genetic analyses we demonstrate that muscle tissue in this group of patients exhibit a characteristic morphological and proteomic profile. The patients also showed an acylcarnitine profile in blood suggestive of multiple acyl-coenzyme A dehydrogenase deficiency, but no genetic explanation was found by whole genome or exome sequencing. By proteomic analysis the muscle tissue revealed a profound loss of Complex I subunits from the respiratory chain and to some extent also deficiency of Complex II and IV. Most other components of the respiratory chain as well as the fatty acid oxidation and citric acid cycle were upregulated in accordance with the massive mitochondrial proliferation. The respiratory chain deficiency was verified by immunofluorescence analysis, western blot analysis and enzyme histochemistry. The typical ultrastructural changes of the mitochondria included pleomorphism, dark matrix and frequent round osmiophilic inclusions. Our results show that lipid storage myopathy associated with sertraline treatment is a mitochondrial disorder with respiratory chain deficiency and is an important differential diagnosis with characteristic features.
Collapse
Affiliation(s)
| | - Ulrika Lindgren
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Yan Shen
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andreea Ilinca
- Department of Neurology, Division of Neurology, Skåne University Hospital, Lund, Sweden
- Department for Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Nordström
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Chen T, Jin M, Chen L, Cai XX, Huang Y, Shen K, Li Y, Chen X, Chen L. Rapid detection of depression by volatile organic compounds from exhalation. J Breath Res 2024; 18:046013. [PMID: 39317233 DOI: 10.1088/1752-7163/ad7eef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Depression is a pervasive and often undetected mental health condition, which poses significant challenges for early diagnosis due to its silent and subtle nature. To evaluate exhaled volatile organic compounds (VOCs) as non-invasive biomarkers for the detection of depression using a virtual surface acoustic wave sensors array (VSAW-SA). A total of 245 participants were recruited from the Hangzhou Community Health Service Center, including 38 individuals diagnosed with depression and 207 control subjects. Breath samples were collected from all participants and subjected to analysis using VSAW-SA. Univariate and multivariate analyses were employed to assess the relationship between VOCs and depression. The findings revealed that the responses of virtual sensor ID 14, 44, 59, and 176, which corresponded respectively to ethanol, trichloroethylene or isoleucine, octanoic acid or lysine, and an unidentified compound, were sensitive to depression. Taking into account potential confounders, these sensor responses were utilized to calculate a depression detection indicator. It has a sensitivity of 81.6% and a specificity of 81.6%, with an area under the curve of 0.870 (95% CI = 0.816-0.923). Conclusions: exhaled VOCs as non-invasive biomarkers of depression could be detected by a VSAW-SA. Large-scale cohort studies should be conducted to confirm the potential ability of the VSAW-SA to diagnose depression.
Collapse
Affiliation(s)
- Tao Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
- Jianqiao Community Health Service Center, Shangcheng District, Hangzhou 310021, People's Republic of China
| | - Mengqi Jin
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Liqing Chen
- Jianqiao Community Health Service Center, Shangcheng District, Hangzhou 310021, People's Republic of China
| | - Xi Xuan Cai
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Yilin Huang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Keqing Shen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Yi Li
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Hangzhou Zillion M&C Technology Co., Ltd, Hangzhou 310051, People's Republic of China
| | - Xing Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Liying Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| |
Collapse
|
14
|
Meier C, Burns K, Manolikos C, Hodge S, Bell DA. Multiple acyl-Coa dehydrogenase deficiency: an underdiagnosed disorder in adults. Intern Med J 2024; 54:1567-1571. [PMID: 39132981 DOI: 10.1111/imj.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024]
Abstract
Inherited metabolic diseases, as a first presentation in adults, are an under-recognised condition associated with significant morbidity and mortality. Diagnosis is challenging because of non-specific clinical and biochemical findings, resemblance to common conditions such as neuropsychiatric disorders and the misconception that these disorders predominantly affect paediatric populations. We describe a series of patients with multiple acyl-CoA dehydrogenase deficiency (MADD)/MADD-like disorders to highlight these diagnostic challenges.
Collapse
Affiliation(s)
- Ciselle Meier
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Kharis Burns
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Manolikos
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Samantha Hodge
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Damon A Bell
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Biochemistry, Fiona Stanley and Royal Perth Hospital Network, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Milaneschi Y, Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop B, Rush A, Penninx B, Kaddurah-Daouk R. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. RESEARCH SQUARE 2024:rs.3.rs-4638158. [PMID: 39149483 PMCID: PMC11326352 DOI: 10.21203/rs.3.rs-4638158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß=0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
| | | | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
17
|
Palacios N, Bhupathiraju SN, Kelly RS, Lee JS, Ordovas JM, Tucker KL. Acylcarnitines are associated with lower depressive symptomatology in a mainland puerto rican cohort. Metabolomics 2024; 20:85. [PMID: 39066829 DOI: 10.1007/s11306-024-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Recent studies have implicated acetyl-L-carnitine as well as other acylcarnitines in depression. To our knowledge, no untargeted metabolomics studies have been conducted among US mainland Puerto Ricans. OBJECTIVES We conducted untargeted metabolomic profiling on plasma from 736 participants of the Boston Puerto Rican Health Study. METHODS Using Weighted Gene Co-expression Network Analysis, we identified metabolite modules associated with depressive symptomatology, assessed via the Center for Epidemiologic Studies Depression scale. We identified metabolites contributing to these modules and assessed the relationship between these metabolites and depressive symptomatology. RESULTS 621 annotated metabolites clustered into eight metabolite modules, of which one, the acylcarnitine module, was significantly inversely associated with depressive symptomatology (β = - 27.7 (95% CI (- 54.5-0.8); p = 0.043). Several metabolite hub features in the acylcarnitine module were significantly associated with depressive symptomatology, after correction for multiple comparisons. CONCLUSIONS In this untargeted plasma metabolomics study among mainland Puerto Rican older adults, acylcarnitines, as a metabolite module were inversely associated with depressive symptomatology.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder Street, Suite 540-K, Lowell, MA, 01854, USA.
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA.
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jong Soo Lee
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
- Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, USA
| | - Jose M Ordovas
- Jean Mayer USDA Human Research Center On Aging, Tufts University, Boston, MA, USA
| | - Katherine L Tucker
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
18
|
Holck A, Movahed P, Westrin Å, Wolkowitz OM, Lindqvist D, Asp M. Peripheral serotonin levels as a predictor of antidepressant treatment response: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111031. [PMID: 38762162 DOI: 10.1016/j.pnpbp.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
There are currently no reliable biomarkers to predict clinical response to pharmacological treatments of depressive disorders. Peripheral blood 5-hydroxytryptamine (5-HT; serotonin) has been suggested as a biomarker of antidepressant treatment response, but there has not been an attempt to systematically summarize and evaluate the scientific evidence of this hypothesis. In this systematic review we searched MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Controlled Trials. Twenty-six relevant studies investigating peripheral 5-HT as an antidepressant biomarker were identified. In all, we did not find robust support for an association between baseline 5-HT and treatment response. Several larger studies with lower risk of bias, however, showed that higher baseline 5-HT was associated with a greater antidepressant response to SSRIs, prompting future studies to investigate this hypothesis. Our results also confirm previous reports that SSRI treatment is associated with a decrease in peripheral 5-HT levels; however, we were not able to confirm that larger decreases of 5-HT are associated with better treatment outcome as results were inconclusive.
Collapse
Affiliation(s)
- Amanda Holck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Psychiatric Clinic Lund, Lund, Sweden.
| | - Pouya Movahed
- Psychiatric Clinic Lund, Lund, Sweden; Psychiatric Neuromodulation Unit, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Åsa Westrin
- Unit for Clinical Suicide Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; The Region Skåne Committee on Psychiatry, Habilitation and Technical Aids, Sweden
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Office for Psychiatry, Habilitation and Technical Aids, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Marie Asp
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Psychiatric Clinic Lund, Lund, Sweden
| |
Collapse
|
19
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
20
|
Bhattacharyya S, MahmoudianDehkordi S, Sniatynski MJ, Belenky M, Marur VR, Rush AJ, Craighead WE, Mayberg HS, Dunlop BW, Kristal BS, Kaddurah-Daouk R. Metabolomics Signatures of serotonin reuptake inhibitor (Escitalopram), serotonin norepinephrine reuptake inhibitor (Duloxetine) and Cognitive Behavior Therapy on Key Neurotransmitter Pathways in Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.02.24304677. [PMID: 38633777 PMCID: PMC11023644 DOI: 10.1101/2024.04.02.24304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive Behavior Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways. Changes in metabolite concentrations related to each treatment arm were identified and compared to define metabolic signatures of exposure. In addition, association between metabolites and depressive symptom severity (assessed with the 17-item Hamilton Rating Scale for Depression [HRSD17]) and anxiety symptom severity (assessed with the 14-item Hamilton Rating Scale for Anxiety [HRSA14]) were evaluated, both at baseline and after 12 weeks of treatment. Significant reductions in serum serotonin level and increases in tryptophan-derived indoles that are gut bacterially derived were observed with escitalopram and duloxetine arms but not in CBT arm. These include indole-3-propionic acid (I3PA), indole-3-lactic acid (I3LA) and Indoxyl sulfate (IS), a uremic toxin. Purine-related metabolites were decreased across all arms. Different metabolites correlated with improved symptoms in the different treatment arms revealing potentially different mechanisms between response to antidepressant medications and to CBT.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | | | - Matthew J Sniatynski
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA and Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Belenky
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA and Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Vasant R Marur
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA and Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Duke-National University of Singapore, Singapore, Singapore
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Helen S Mayberg
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Ave, LM322B, Boston, MA 02115, USA and Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
- Duke Institute of Brain Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Wei J, Zhang Z, Yang X, Zhao L, Wang M, Dou Y, Yan Y, Ni R, Gong M, Dong Z, Ma X. Abnormal functional connectivity within the prefrontal cortex is associated with multiple plasma lipid species in major depressive disorder. J Affect Disord 2024; 350:713-720. [PMID: 38199424 DOI: 10.1016/j.jad.2023.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Abnormalities in functional connectivity (FC) in major depressive disorder (MDD) have been widely reported. Analysis of the relationship between FC and plasma lipid profiles would be meaningful in the exploration of pathophysiological mechanisms and helpful for the identification of biomarkers for MDD. METHODS Patients with MDD (n = 49) and healthy controls (HC, n = 87) were recruited. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected for FC construction. The plasma lipid profiles were acquired using ultra-performance liquid chromatography (UPLC) and mass spectrometry (MS) analysis and clustered as co-expression modules. The differential FC and lipid modules between HCs and patients with MDD were identified, and then the association between FC and lipid co-expression modules was analyzed using correlation analysis. The modules associated molecular function was explored using metabolite set enrichment analysis (MSEA). RESULTS MDD-associated FC and lipid co-expression modules were identified. One module was associated with FC values between the right orbital part of the middle frontal gyrus and the opercular part of the left inferior frontal gyrus, which was enriched in lipid sets of diacylglycerols and fatty alcohols; another module was associated with FC values between the right middle frontal gyrus and the right anterior cingulate and paracingulate gyri, which was enriched in lipid sets of glycerophosphocholines and glycerophosphoethanolamines. CONCLUSION Our results indicated that abnormal FC in the prefrontal cortex is associated with multiple plasma lipid species, which may provide novel clues for exploring the pathophysiology of MDD.
Collapse
Affiliation(s)
- Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Zijian Zhang
- The Fourth People's Hospital of Chengdu, Chengdu, China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yushun Yan
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Osazuwa-Peters OL, Deveaux A, Muehlbauer MJ, Ilkayeva O, Bain JR, Keku T, Berchuck A, Huang B, Ward K, Gates Kuliszewski M, Akinyemiju T. Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study. Cancers (Basel) 2024; 16:1259. [PMID: 38610937 PMCID: PMC11011195 DOI: 10.3390/cancers16071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The vaginal microbiome differs by race and contributes to inflammation by directly producing or consuming metabolites or by indirectly inducing host immune response, but its potential contributions to ovarian cancer (OC) disparities remain unclear. In this exploratory cross-sectional study, we examine whether vaginal fluid metabolites differ by race among patients with OC, if they are associated with systemic inflammation, and if such associations differ by race. Study participants were recruited from the Ovarian Cancer Epidemiology, Healthcare Access, and Disparities Study between March 2021 and September 2022. Our study included 36 study participants with ovarian cancer who provided biospecimens; 20 randomly selected White patients and all 16 eligible Black patients, aged 50-70 years. Acylcarnitines (n = 45 species), sphingomyelins (n = 34), and ceramides (n = 21) were assayed on cervicovaginal fluid, while four cytokines (IL-1β, IL-10, TNF-α, and IL-6) were assayed on saliva. Seven metabolites showed >2-fold differences, two showed significant differences using the Wilcoxon rank-sum test (p < 0.05; False Discovery Rate > 0.05), and 30 metabolites had coefficients > ±0.1 in a Penalized Discriminant Analysis that achieved two distinct clusters by race. Arachidonoylcarnitine, the carnitine adduct of arachidonic acid, appeared to be consistently different by race. Thirty-eight vaginal fluid metabolites were significantly correlated with systemic inflammation biomarkers, irrespective of race. These findings suggest that vaginal fluid metabolites may differ by race, are linked with systemic inflammation, and hint at a potential role for mitochondrial dysfunction and sphingolipid metabolism in OC disparities. Larger studies are needed to verify these findings and further establish specific biological mechanisms that may link the vaginal microbiome with OC racial disparities.
Collapse
Affiliation(s)
- Oyomoare L. Osazuwa-Peters
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27701, USA; (A.D.); (T.A.)
| | - April Deveaux
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27701, USA; (A.D.); (T.A.)
| | - Michael J. Muehlbauer
- Duke University School of Medicine, Duke Molecular Physiology Institute, Durham, NC 27701, USA; (M.J.M.); (O.I.); (J.R.B.)
| | - Olga Ilkayeva
- Duke University School of Medicine, Duke Molecular Physiology Institute, Durham, NC 27701, USA; (M.J.M.); (O.I.); (J.R.B.)
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - James R. Bain
- Duke University School of Medicine, Duke Molecular Physiology Institute, Durham, NC 27701, USA; (M.J.M.); (O.I.); (J.R.B.)
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Temitope Keku
- Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Andrew Berchuck
- Duke Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Bin Huang
- Kentucky Cancer Registry, University of Kentucky, Lexington, KY 40506, USA;
| | - Kevin Ward
- Georgia Cancer Registry, Emory University, Atlanta, GA 30322, USA;
| | | | - Tomi Akinyemiju
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27701, USA; (A.D.); (T.A.)
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
23
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R. Medication Use is Associated with Distinct Microbial Features in Anxiety and Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585820. [PMID: 38562901 PMCID: PMC10983923 DOI: 10.1101/2024.03.19.585820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
24
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302813. [PMID: 38405847 PMCID: PMC10889013 DOI: 10.1101/2024.02.14.24302813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Studies linking AC levels to depression are few and provide mixed findings. We examined the association of circulating ACs levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. Methods The sample from the Netherlands Study of Depression and Anxiety included participants with current (n=1035) or remitted (n=739) MDD and healthy controls (n=800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. Results As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d=0.2, p≤1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE=0.02, p=1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE=0.02, p=1.85e-2) and higher C3 (ß=0.08, SE=0.02, p=3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4195 observations). Conclusions Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore
| | - Brenda W. H. J. Penninx
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
26
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
27
|
Zou H, Zhang B, Liang H, Li C, Chen J, Wu Y. Defence mechanisms of Pinctada fucata martensii to Vibrio parahaemolyticus infection: Insights from proteomics and metabolomics. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109204. [PMID: 37931889 DOI: 10.1016/j.fsi.2023.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Survival of pearl oysters is not only challenged by coastal pollution, but also pathogen infection that may eventually incur substantial economic losses in the pearl farming industry. Yet, whether pearl oysters can defend themselves against pathogen infection through molecular mechanisms remains largely unexplored. By using iTRAQ proteomic and metabolomic analyses, we analysed the proteins and metabolites in the serum of pearl oysters (Pinctada fucata martensii) when stimulated by pathogenic bacteria (Vibrio parahaemolyticus). Proteomic results found that a total of 2,242 proteins were identified in the experimental (i.e., Vibrio-stimulated) and control groups, where 166 of them were differentially expressed (120 upregulated and 46 downregulated in the experimental group). Regarding the immune response enrichment results, the pathway of signal transduction was significantly enriched, such as cytoskeleton and calcium signalling pathways. Proteins, including cathepsin L, heat shock protein 20, myosin and astacin-like protein, also contributed to the immune response of oysters. Pathogen stimulation also altered the metabolite profile of oysters, where 49 metabolites associated with metabolism of energy, fatty acids and amino acids were found. Integrated analysis suggests that the oysters could respond to pathogen infection by coordinating multiple cellular processes. Thus, the proteins and metabolites identified herein not only represent valuable genetic resources for developing molecular biomarkers and genetic breeding research, but also open new avenues for studies on the molecular defence mechanisms of pearl oysters to pathogen infection.
Collapse
Affiliation(s)
- Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Chaojie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jie Chen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yifan Wu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
28
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
29
|
van der Spek A, Stewart ID, Kühnel B, Pietzner M, Alshehri T, Gauß F, Hysi PG, MahmoudianDehkordi S, Heinken A, Luik AI, Ladwig KH, Kastenmüller G, Menni C, Hertel J, Ikram MA, de Mutsert R, Suhre K, Gieger C, Strauch K, Völzke H, Meitinger T, Mangino M, Flaquer A, Waldenberger M, Peters A, Thiele I, Kaddurah-Daouk R, Dunlop BW, Rosendaal FR, Wareham NJ, Spector TD, Kunze S, Grabe HJ, Mook-Kanamori DO, Langenberg C, van Duijn CM, Amin N. Circulating metabolites modulated by diet are associated with depression. Mol Psychiatry 2023; 28:3874-3887. [PMID: 37495887 PMCID: PMC10730409 DOI: 10.1038/s41380-023-02180-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- SkylineDx B.V., Rotterdam, The Netherlands
| | | | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Tahani Alshehri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Friederike Gauß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, Kings College London, London, UK
| | | | - Almut Heinken
- School of Medicine, University of Galway, University Road, Galway, Ireland
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, France
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karl-Heinz Ladwig
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764, Neuherberg, Germany
| | - Cristina Menni
- Department of Twins Research and Genetic Epidemiology, Kings College London, London, UK
| | - Johannes Hertel
- School of Medicine, University of Galway, University Road, Galway, Ireland
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, PO, 24144, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Henry Völzke
- Institute of Community Medicine, University Medicine Greifswald, Walter-Rathenau Str. 48, 17475, Greifswald, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Massimo Mangino
- Department of Twins Research and Genetic Epidemiology, Kings College London, London, UK
| | - Antonia Flaquer
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Ludwig-Maximilians-Universität München, IBE-Chair of Epidemiology, Munich, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, University Road, Galway, Ireland
- Division of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome, Ireland, Ireland
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, US
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, Kings College London, London, UK
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, OX3 7LF, Oxford, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
- Nuffield Department of Population Health, University of Oxford, OX3 7LF, Oxford, UK.
| |
Collapse
|
30
|
Miao G, Fiehn O, Malloy KM, Zhang Y, Lee ET, Howard BV, Zhao J. Longitudinal lipidomic signatures of all-cause and CVD mortality in American Indians: findings from the Strong Heart Study. GeroScience 2023; 45:2669-2687. [PMID: 37055600 PMCID: PMC10651623 DOI: 10.1007/s11357-023-00793-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Dyslipidemia is an independent and modifiable risk factor for aging and age-related disorders. Routine lipid panel cannot capture all individual lipid species in blood (i.e., blood lipidome). To date, a comprehensive assessment of the blood lipidome associated with mortality is lacking in large-scale community-dwelling individuals, especially in a longitudinal setting. Using liquid chromatograph-mass spectrometry, we repeatedly measured individual lipid species in 3,821 plasma samples collected at two visits (~ 5.5 years apart) from 1,930 unique American Indians in the Strong Heart Family Study. We first identified baseline lipids associated with risks for all-cause mortality and CVD mortality (mean follow-up period: 17.8 years) in American Indians, followed by replication of top hits in European Caucasians in the Malmö Diet and Cancer-Cardiovascular Cohort (n = 3,943, mean follow-up period: 23.7 years). The model adjusted age, sex, BMI, smoking, hypertension, diabetes, and LDL-c at baseline. We then examined the associations between changes in lipid species and risk of mortality. Multiple testing was controlled by false discovery rate (FDR). We found that baseline levels and longitudinal changes of multiple lipid species, e.g., cholesterol esters, glycerophospholipids, sphingomyelins, and triacylglycerols, were significantly associated with risks of all-cause or CVD mortality. Many lipids identified in American Indians could be replicated in European Caucasians. Network analysis identified differential lipid networks associated with risk of mortality. Our findings provide novel insight into the role of dyslipidemia in disease mortality and offer potential biomarkers for early prediction and risk reduction in American Indians and other ethnic groups.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, CA, USA
| | - Kimberly M Malloy
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Liu T, Wang L, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J, Tang M. Erythrocyte Membrane Fatty Acid Composition as a Potential Biomarker for Depression. Int J Neuropsychopharmacol 2023; 26:385-395. [PMID: 37217258 PMCID: PMC10289140 DOI: 10.1093/ijnp/pyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Major depressive disorders is a chronic and severe psychiatric disorder with poor prognosis and quality of life. Abnormal erythrocyte fatty acid (FA) composition in depressed patients were found in our previous study, but the relationship between erythrocyte membrane FA levels and different severity of depressive and anxiety symptoms remains to be explored. METHODS This cross-sectional study included 139 patients with first-diagnosed, drug-naïve depression and 55 healthy controls whose erythrocyte FA composition was analyzed. Patients with depression were divided into severe depression and mild to moderate depression or depression with severe anxiety and mild to moderate anxiety. Then the differences of FA levels among different groups were analyzed. Finally, the receiver operating characteristic curve analysis was applied to identify potential biomarkers in distinguishing the severity of depressive symptoms. RESULTS Levels of erythrocyte membrane FAs were elevated among patients with severe depression compared with healthy controls or patients with mild to moderate depression of almost all kinds. While C18:1n9t (elaidic acid), C20:3n6 (eicosatrienoic acid), C20:4n6 (arachidonic acid), C22:5n3 (docosapentaenoic acid), total fatty acids (FAs), and total monounsaturated FAs were elevated in patients with severe anxiety compared with patients with mild to moderate anxiety. Furthermore, the level of arachidonic acid, C22:4n6 (docosatetraenoic acid), elaidic acid, and the combination of all 3 were associated with the severity of depressive symptoms. CONCLUSIONS The results suggested that erythrocyte membrane FA levels have the potential to be the biological indicator of clinical characteristics for depression, such as depressive symptoms and anxiety. In the future, more research is needed to explore the causal association between FA metabolism and depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Miao G, Deen J, Struzeski JB, Chen M, Zhang Y, Cole SA, Fretts AM, Lee ET, Howard BV, Fiehn O, Zhao J. Plasma lipidomic profile of depressive symptoms: a longitudinal study in a large sample of community-dwelling American Indians in the strong heart study. Mol Psychiatry 2023; 28:2480-2489. [PMID: 36653676 PMCID: PMC10753994 DOI: 10.1038/s41380-023-01948-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Dyslipidemia has been associated with depression, but individual lipid species associated with depression remain largely unknown. The temporal relationship between lipid metabolism and the development of depression also remains to be determined. We studied 3721 fasting plasma samples from 1978 American Indians attending two exams (2001-2003, 2006-2009, mean ~5.5 years apart) in the Strong Heart Family Study. Plasma lipids were repeatedly measured by untargeted liquid chromatography-mass spectrometry (LC-MS). Depressive symptoms were assessed using the 20-item Center for Epidemiologic Studies for Depression (CES-D). Participants at risk for depression were defined as total CES-D score ≥16. Generalized estimating equation (GEE) was used to examine the associations of lipid species with incident or prevalent depression, adjusting for covariates. The associations between changes in lipids and changes in depressive symptoms were additionally adjusted for baseline lipids. We found that lower levels of sphingomyelins and glycerophospholipids and higher level of lysophospholipids were significantly associated with incident and/or prevalent depression. Changes in sphingomyelins, glycerophospholipids, acylcarnitines, fatty acids and triacylglycerols were associated with changes in depressive symptoms and other psychosomatic traits. We also identified differential lipid networks associated with risk of depression. The observed alterations in lipid metabolism may affect depression through increasing the activities of acid sphingomyelinase and phospholipase A2, disturbing neurotransmitters and membrane signaling, enhancing inflammation, oxidative stress, and lipid peroxidation, and/or affecting energy storage in lipid droplets or membrane formation. These findings illuminate the mechanisms through which dyslipidemia may contribute to depression and provide initial evidence for targeting lipid metabolism in developing preventive and therapeutic interventions for depression.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Jason Deen
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Joseph B Struzeski
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, California, CA, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Che X, Roy A, Bresnahan M, Mjaaland S, Reichborn-Kjennerud T, Magnus P, Stoltenberg C, Shang Y, Zhang K, Susser E, Fiehn O, Lipkin WI. Metabolomic analysis of maternal mid-gestation plasma and cord blood in autism spectrum disorders. Mol Psychiatry 2023; 28:2355-2369. [PMID: 37037873 DOI: 10.1038/s41380-023-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
The discovery of prenatal and neonatal molecular biomarkers has the potential to yield insights into autism spectrum disorder (ASD) and facilitate early diagnosis. We characterized metabolomic profiles in ASD using plasma samples collected in the Norwegian Autism Birth Cohort from mothers at weeks 17-21 gestation (maternal mid-gestation, MMG, n = 408) and from children on the day of birth (cord blood, CB, n = 418). We analyzed associations using sex-stratified adjusted logistic regression models with Bayesian analyses. Chemical enrichment analyses (ChemRICH) were performed to determine altered chemical clusters. We also employed machine learning algorithms to assess the utility of metabolomics as ASD biomarkers. We identified ASD associations with a variety of chemical compounds including arachidonic acid, glutamate, and glutamine, and metabolite clusters including hydroxy eicospentaenoic acids, phosphatidylcholines, and ceramides in MMG and CB plasma that are consistent with inflammation, disruption of membrane integrity, and impaired neurotransmission and neurotoxicity. Girls with ASD have disruption of ether/non-ether phospholipid balance in the MMG plasma that is similar to that found in other neurodevelopmental disorders. ASD boys in the CB analyses had the highest number of dysregulated chemical clusters. Machine learning classifiers distinguished ASD cases from controls with area under the receiver operating characteristic (AUROC) values ranging from 0.710 to 0.853. Predictive performance was better in CB analyses than in MMG. These findings may provide new insights into the sex-specific differences in ASD and have implications for discovery of biomarkers that may enable early detection and intervention.
Collapse
Affiliation(s)
- Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ayan Roy
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michaeline Bresnahan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Ted Reichborn-Kjennerud
- Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Camilla Stoltenberg
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health, University of Bergen, Bergen, Norway
| | - Yimeng Shang
- Department of Public Health Sciences, College of Medicine, Penn State University, State College, PA, 16801, USA
| | - Keming Zhang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Oliver Fiehn
- UC Davis Genome Center-Metabolomics, University of California, Davis, CA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Bussmann H, Bremer S, Häberlein H, Boonen G, Drewe J, Butterweck V, Franken S. Impact of St. John's wort extract Ze 117 on stress induced changes in the lipidome of PBMC. Mol Med 2023; 29:50. [PMID: 37029349 PMCID: PMC10082490 DOI: 10.1186/s10020-023-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Membrane lipids have an important function in the brain as they not only provide a physical barrier segregating the inner and outer cellular environments, but are also involved in cell signaling. It has been shown that the lipid composition effects membrane fluidity which affects lateral mobility and activity of membrane-bound receptors. METHODS Since changes in cellular membrane properties are considered to play an important role in the development of depression, the effect of St. John's wort extract Ze 117 on plasma membrane fluidity in peripheral blood mononuclear cells (PBMC) was investigated using fluorescence anisotropy measurements. Changes in fatty acid residues in phospholipids after treatment of cortisol-stressed [1 μM] PBMCs with Ze 117 [10-50 µg/ml] were analyzed by mass spectrometry. RESULTS Cortisol increased membrane fluidity significantly by 3%, co-treatment with Ze 117 [50 µg/ml] counteracted this by 4.6%. The increased membrane rigidity by Ze 117 in cortisol-stressed [1 μM] PBMC can be explained by a reduced average number of double bonds and shortened chain length of fatty acid residues in phospholipids, as shown by lipidomics experiments. CONCLUSION The increase in membrane rigidity after Ze 117 treatment and therefore the ability to normalize membrane structure points to a new mechanism of antidepressant action of the extract.
Collapse
Affiliation(s)
- Hendrik Bussmann
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Swen Bremer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Georg Boonen
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Jürgen Drewe
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
35
|
Ait Tayeb AEK, Colle R, El-Asmar K, Chappell K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Plasma acetyl-l-carnitine and l-carnitine in major depressive episodes: a case-control study before and after treatment. Psychol Med 2023; 53:2307-2316. [PMID: 35115069 DOI: 10.1017/s003329172100413x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment. METHODS l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome. RESULTS As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12-0.24; p < 0.00001], and l-carnitine levels (coefficient: -0.58; 95% CI -0.75 to -0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: -0.41; 95% CI -0.47 to -0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03-1.27; p = 0.015). CONCLUSIONS Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - Cécile Acquaviva-Bourdain
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM, Faculté de Pharmacie, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| |
Collapse
|
36
|
Huang B, Wu Y, Li C, Tang Q, Zhang Y. Molecular basis and mechanism of action of Albizia julibrissin in depression treatment and clinical application of its formulae. CHINESE HERBAL MEDICINES 2023; 15:201-213. [PMID: 37265761 PMCID: PMC10230641 DOI: 10.1016/j.chmed.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 03/17/2023] Open
Abstract
Albizzia julibrissin is empirically used as an antidepressant in clinical practice. Preclinical studies have indicated that its total extracts or bioactive constituents exerted antidepressant-like responses in animal models, providing the molecular basis to reveal its underlying mechanism of action. While attempts have been made to understand the antidepressant effect of A. julibrissin, many fundamental questions regarding its mechanism of action remain to be addressed at the molecular and systems levels. In this review, we conclusively discussed the mechanism of action of A. julibrissin and A. julibrissin formulae by reviewing recent preclinical and clinical studies conducted by using depressive animal models and depressive patients. Several representative bioactive constituents and formulae were highlighted as examples, and their mechanisms of action were discussed. In addition, some representative A. julibrissin formulae that have been shown to be compatible with conventional antidepressants in clinical practice were also reviewed. Furthermore, we discussed the future research directions to reveal the underlying mechanism of A. julibrissin at the molecular and systems levels in depression treatment. The integrated study using both the molecular and systematic approaches is required not only for improving our understanding of its molecular basis and mechanisms of action, but also for providing a way to discover novel agents or approaches for the effective and systematic treatment of depression.
Collapse
Affiliation(s)
- Bishan Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yingyao Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuanwei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
37
|
Favole A, Testori C, Bergagna S, Gennero MS, Ingravalle F, Costa B, Barresi S, Curti P, Barberis F, Ganio S, Orusa R, Vallino Costassa E, Berrone E, Vernè M, Scaglia M, Palmitessa C, Gallo M, Tessarolo C, Pederiva S, Ferrari A, Lorenzi V, Fusi F, Brunelli L, Pastorelli R, Cagnotti G, Casalone C, Caramelli M, Corona C. Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle. Animals (Basel) 2023; 13:ani13071167. [PMID: 37048423 PMCID: PMC10093196 DOI: 10.3390/ani13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Complete animal welfare evaluation in intensive farming is challenging. With this study, we investigate new biomarkers for animal physical and mental health by comparing plasma expression of biochemical indicators in dairy cows reared in three different systems: (A) semi-intensive free-stall, (B) non-intensive tie-stall, and (C) intensive free-stall. Additionally, protein levels of mature brain-derived neurotrophic factor (mBDNF) and its precursor form (proBDNF) and indoleamine 2,3-dioxygenase (IDO1) specific activity were evaluated in brain samples collected from 12 cattle culled between 73 and 138 months of age. Alterations in plasma lipid composition and in the kynurenine pathway of tryptophan metabolism were observed in the tie-stall-reared animals. The total plasma BDNF concentration was higher in tie-stall group compared to the two free-housing groups. Brain analysis of the tie-stall animals revealed a different mBDNF/proBDNF ratio, with a higher level of proBDNF (p < 0.001). Our data are similar to previous studies on animal models of depression, which reported that inhibition of the conversion of proBDNF in its mature form and/or elevated peripheral kynurenine pathway activation may underlie cerebral biochemical changes and induce depressive-like state behavior in animals.
Collapse
|
38
|
Association between cholesterol and response to escitalopram and nortriptyline in patients with major depression: Study combining clinical and register-based information. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Wang F, Guo L, Zhang T, Cui Z, Wang J, Zhang C, Xue F, Zhou C, Li B, Tan Q, Peng Z. Alterations in Plasma Lipidomic Profiles in Adult Patients with Schizophrenia and Major Depressive Disorder. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1509. [PMID: 36363466 PMCID: PMC9697358 DOI: 10.3390/medicina58111509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Background and Objectives: Lipidomics is a pivotal tool for investigating the pathogenesis of mental disorders. However, studies qualitatively and quantitatively analyzing peripheral lipids in adult patients with schizophrenia (SCZ) and major depressive disorder (MDD) are limited. Moreover, there are no studies comparing the lipid profiles in these patient populations. Materials and Method: Lipidomic data for plasma samples from sex- and age-matched patients with SCZ or MDD and healthy controls (HC) were obtained and analyzed by liquid chromatography-mass spectrometry (LC-MS). Results: We observed changes in lipid composition in patients with MDD and SCZ, with more significant alterations in those with SCZ. In addition, a potential diagnostic panel comprising 103 lipid species and another diagnostic panel comprising 111 lipid species could distinguish SCZ from HC (AUC = 0.953) or SCZ from MDD (AUC = 0.920) were identified, respectively. Conclusions: This study provides an increased understanding of dysfunctional lipid composition in the plasma of adult patients with SCZ or MDD, which may lay the foundation for identifying novel clinical diagnostic methods for these disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Lin Guo
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Ting Zhang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Zhiquan Cui
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Jinke Wang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Chi Zhang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China
| | - Qingrong Tan
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Zhengwu Peng
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| |
Collapse
|
40
|
Integrative Analysis of the Nasal Microbiota and Serum Metabolites in Bovines with Respiratory Disease by 16S rRNA Sequencing and Gas Chromatography/Mass Selective Detector-Based Metabolomics. Int J Mol Sci 2022; 23:ijms231912028. [PMID: 36233330 PMCID: PMC9569885 DOI: 10.3390/ijms231912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) continues to pose a serious threat to the cattle industry, resulting in substantial economic losses. As a multifactorial disease, pathogen infection and respiratory microbial imbalance are important causative factors in the occurrence and development of BRD. Integrative analyses of 16S rRNA sequencing and metabolomics allow comprehensive identification of the changes in microbiota and metabolism associated with BRD, making it possible to determine which pathogens are responsible for the disease and to develop new therapeutic strategies. In our study, 16S rRNA sequencing and metagenomic analysis were used to describe and compare the composition and diversity of nasal microbes in healthy cattle and cattle with BRD from different farms in Yinchuan, Ningxia, China. We found a significant difference in nasal microbial diversity between diseased and healthy bovines; notably, the relative abundance of Mycoplasma bovis and Pasteurella increased. This indicated that the composition of the microbial community had changed in diseased bovines compared with healthy ones. The data also strongly suggested that the reduced relative abundance of probiotics, including Pasteurellales and Lactobacillales, in diseased samples contributes to the susceptibility to bovine respiratory disease. Furthermore, serum metabolomic analysis showed altered concentrations of metabolites in BRD and that a significant decrease in lactic acid and sarcosine may impair the ability of bovines to generate energy and an immune response to pathogenic bacteria. Based on the correlation analysis between microbial diversity and the metabolome, lactic acid (2TMS) was positively correlated with Gammaproteobacteria and Bacilli and negatively correlated with Mollicutes. In summary, microbial communities and serum metabolites in BRD were characterized by integrative analysis. This study provides a reference for monitoring biomarkers of BRD, which will be critical for the prevention and treatment of BRD in the future.
Collapse
|
41
|
Grant CW, Wilton AR, Kaddurah-Daouk R, Skime M, Biernacka J, Mayes T, Carmody T, Wang L, Lazaridis K, Weinshilboum R, Bobo WV, Trivedi MH, Croarkin PE, Athreya AP. Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder. Front Pharmacol 2022; 13:984383. [PMID: 36263124 PMCID: PMC9573988 DOI: 10.3389/fphar.2022.984383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 'Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)' and 103 'Combining Medications to Enhance Depression Outcomes (CO-MED)' patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Angelina R. Wilton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taryn Mayes
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Konstantinos Lazaridis
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | - Madhukar H. Trivedi
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
42
|
Udagawa J, Hino K. Plasmalogen in the brain: Effects on cognitive functions and behaviors attributable to its properties. Brain Res Bull 2022; 188:197-202. [PMID: 35970332 DOI: 10.1016/j.brainresbull.2022.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Ether phospholipid compositions are altered in the plasma or brain of patients with brain disorders, such as Alzheimer and Parkinson's disease, including those with psychiatric disorders like schizophrenia and bipolar disorders. Notably, plasmenyl ethanolamine has a unique chemical structure, i.e., a vinyl-ether bond at the sn-1 position, which mainly links with polyunsaturated fatty acids (PUFAs) at the sn-2 position. Those characteristic moieties give plasmalogen molecules unique biophysical and chemical properties that modulate membrane trafficking, lipid rafts, intramolecular PUFA moieties, and oxidative states. Previous reports suggested that a deficiency in plasmenyl ethanolamine leads to disturbances of the myelin structure, synaptic neurotransmission and intracellular signaling, apoptosis of neurons, and neuroinflammation, accompanied by cognitive disturbances and aberrant behaviors like hyperactivity in mice. Therefore, this review summarizes the relationship between the biological functions of plasmalogen. We also proposed biophysical properties that alter brain phospholipid compositions related to aberrant behaviors and cognitive dysfunction. Finally, a brief review of possible remedial plasmalogen replacement therapies for neurological, psychiatric, and developmental disorders attributable to disturbed plasmalogen compositions in the organs and cells was conducted.
Collapse
Affiliation(s)
- Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
43
|
Bobo WV, Van Ommeren B, Athreya AP. Machine learning, pharmacogenomics, and clinical psychiatry: predicting antidepressant response in patients with major depressive disorder. Expert Rev Clin Pharmacol 2022; 15:927-944. [DOI: 10.1080/17512433.2022.2112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- William V. Bobo
- Department of Psychiatry & Psychology, Mayo Clinic Florida, Jacksonville, FL, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN & Jacksonville, FL, USA
| | | | - Arjun P. Athreya
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Singh B, MahmoudianDehkordi S, Voort JLV, Han X, Port JD, Frye MA, Kaddurah-Daouk R. Metabolomic signatures of intravenous racemic ketamine associated remission in treatment-resistant depression: A pilot hypothesis generating study. Psychiatry Res 2022; 314:114655. [PMID: 35738038 DOI: 10.1016/j.psychres.2022.114655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
In this pilot study (N = 9), we highlight new insights gained on ketamine's mechanism of action where we have mapped biochemical processes that are affected within 40 min of intravenous ketamine exposure. Targeting acylcarnitines, we demonstrated rapid utilization of short-chain acylcarnitines within 40 min of ketamine treatment followed by restoration within 24 h; this change in short chain acylcarnitine with rapid-acting antidepressant treatment is consistent with previous work identifying similar change but at 8-weeks with slower-acting SSRI treatment. Using a non-targeted metabolomics platform, we defined broader effects of ketamine on lipid metabolism and identified changes in triglyceride that correlate with ketamine response. This study provides novel insights into ketamine's action and highlighting a possible role for mitochondrial function and energy metabolism in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States.
| | | | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States; Department of Medicine, Duke University, Durham, NC, United States; Duke Institute of Brain Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
45
|
Zhang T, Guo L, Li R, Wang F, Yang WM, Yang JB, Cui ZQ, Zhou CH, Chen YH, Yu H, Peng ZW, Tan QR. Alterations of Plasma Lipids in Adult Women With Major Depressive Disorder and Bipolar Depression. Front Psychiatry 2022; 13:927817. [PMID: 35923457 PMCID: PMC9339614 DOI: 10.3389/fpsyt.2022.927817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lipidomics has been established as a potential tool for the investigation of mental diseases. However, the composition analysis and the comparison of the peripheral lipids regarding adult women with major depressive depression (MDD) or bipolar depression (BPD) has been poorly addressed. In the present study, age-matched female individuals with MDD (n = 28), BPD (n = 22) and healthy controls (HC, n = 25) were enrolled. Clinical symptoms were assessed and the plasma samples were analyzed by comprehensive lipid profiling based on liquid chromatography-mass spectrometry (LC/MS). We found that the composition of lipids was remarkably changed in the patients with MDD and BPD when compared to HC or compared to each other. Moreover, we identified diagnostic potential biomarkers comprising 20 lipids that can distinguish MDD from HC (area under the curve, AUC = 0.897) and 8 lipids that can distinguish BPD from HC (AUC = 0.784), as well as 13 lipids were identified to distinguish MDD from BPD with moderate reliability (AUC = 0.860). This study provides further understanding of abnormal lipid metabolism in adult women with MDD and BPD and may develop lipid classifiers able to effectively discriminate MDD from BPD and HC.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Lin Guo
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Rui Li
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Fei Wang
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Wen-mao Yang
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Jia-bin Yang
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Zhi-quan Cui
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| | - Cui-hong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yi-huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zheng-wu Peng
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qing-rong Tan
- Department of Psychiatry, Chang’an Hospital, Xi’an, China
| |
Collapse
|
46
|
Milaneschi Y, Arnold M, Kastenmüller G, Dehkordi SM, Krishnan RR, Dunlop BW, Rush AJ, Penninx BWJH, Kaddurah-Daouk R. Genomics-based identification of a potential causal role for acylcarnitine metabolism in depression. J Affect Disord 2022; 307:254-263. [PMID: 35381295 DOI: 10.1016/j.jad.2022.03.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered metabolism of acylcarnitines - transporting fatty acids to mitochondria - may link cellular energy dysfunction to depression. We examined the potential causal role of acylcarnitine metabolism in depression by leveraging genomics and Mendelian randomization. METHODS Summary statistics were obtained from large GWAS: the Fenland Study (N = 9363), and the Psychiatric Genomics Consortium (246,363 depression cases and 561,190 controls). Two-sample Mendelian randomization analyses tested the potential causal link of 15 endogenous acylcarnitines with depression. RESULTS In univariable analyses, genetically-predicted lower levels of short-chain acylcarnitines C2 (odds ratio [OR] 0.97, 95% confidence intervals [CIs] 0.95-1.00) and C3 (OR 0.97, 95%CIs 0.96-0.99) and higher levels of medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.01-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06) were associated with increased depression risk. No reverse potential causal role of depression genetic liability on acylcarnitines levels was found. Multivariable analyses showed that the association with depression was driven by the medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.02-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06), suggesting a potential causal role in the risk of depression. Causal estimates for C8 (OR = 1.05, 95%CIs = 1.02-1.07) and C10 (OR = 1.05, 95%CIs = 1.02-1.08) were confirmed in follow-up analyses using genetic instruments derived from a GWAS meta-analysis including up to 16,841 samples. DISCUSSION Accumulation of medium-chain acylcarnitines is a signature of inborn errors of fatty acid metabolism and age-related metabolic conditions. Our findings point to a link between altered mitochondrial energy production and depression pathogenesis. Acylcarnitine metabolism represents a promising access point for the development of novel therapeutic approaches for depression.
Collapse
Affiliation(s)
- Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands.
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Ranga R Krishnan
- Department of Psychiatry, Rush Medical College, Chicago, IL, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-National University of Singapore, Singapore; Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | | |
Collapse
|
47
|
Moaddel R, Zanos P, Farmer CA, Kadriu B, Morris PJ, Lovett J, Acevedo-Diaz EE, Cavanaugh GW, Yuan P, Yavi M, Thomas CJ, Park LT, Ferrucci L, Gould TD, Zarate CA. Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Transl Psychiatry 2022; 12:179. [PMID: 35501309 PMCID: PMC9061764 DOI: 10.1038/s41398-022-01941-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Subanesthetic-dose racemic (R,S)-ketamine (ketamine) produces rapid, robust, and sustained antidepressant effects in major depressive disorder (MDD) and bipolar disorder (BD) and has also been shown to effectively treat neuropathic pain, complex regional pain syndrome, and post-traumatic stress disorder (PTSD). However, to date, its mechanism of action remains unclear. Preclinical studies found that (2 R,6 R;2 S,6 S)-hydroxynorketamine (HNK), a major circulating metabolite of ketamine, elicits antidepressant effects similar to those of ketamine. To help determine how (2 R,6 R)-HNK contributes to ketamine's mechanism of action, an exploratory, targeted, metabolomic analysis was carried out on plasma and CSF of nine healthy volunteers receiving a 40-minute ketamine infusion (0.5 mg/kg). A parallel targeted metabolomic analysis in plasma, hippocampus, and hypothalamus was carried out in mice receiving either 10 mg/kg of ketamine, 10 mg/kg of (2 R,6 R)-HNK, or saline. Ketamine and (2 R,6 R)-HNK both affected multiple pathways associated with inflammatory conditions. In addition, several changes were unique to either the healthy human volunteers and/or the mouse arm of the study, indicating that different pathways may be differentially involved in ketamine's effects in mice and humans. Mechanisms of action found to consistently underlie the effects of ketamine and/or (2 R,6 R)-HNK across both the human metabolome in plasma and CSF and the mouse arm of the study included LAT1, IDO1, NAD+, the nitric oxide (NO) signaling pathway, and sphingolipid rheostat.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA.
| | - Panos Zanos
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Cristan A Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Elia E Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace W Cavanaugh
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Brydges CR, Bhattacharyya S, Dehkordi SM, Milaneschi Y, Penninx B, Jansen R, Kristal BS, Han X, Arnold M, Kastenmüller G, Bekhbat M, Mayberg HS, Craighead WE, Rush AJ, Fiehn O, Dunlop BW, Kaddurah-Daouk R. Metabolomic and inflammatory signatures of symptom dimensions in major depression. Brain Behav Immun 2022; 102:42-52. [PMID: 35131442 PMCID: PMC9241382 DOI: 10.1016/j.bbi.2022.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly heterogenous disease, both in terms of clinical profiles and pathobiological alterations. Recently, immunometabolic dysregulations were shown to be correlated with atypical, energy-related symptoms but less so with the Melancholic or Anxious distress symptom dimensions of depression in The Netherlands Study of Depression and Anxiety (NESDA) study. In this study, we aimed to replicate these immunometabolic associations and to characterize the metabolomic correlates of each of the three MDD dimensions. METHODS Using three clinical rating scales, Melancholic, and Anxious distress, and Immunometabolic (IMD) dimensions were characterized in 158 patients who participated in the Predictors of Remission to Individual and Combined Treatments (PReDICT) study and from whom plasma and serum samples were available. The NESDA-defined inflammatory index, a composite measure of interleukin-6 and C-reactive protein, was measured from pre-treatment plasma samples and a metabolomic profile was defined using serum samples analyzed on three metabolomics platforms targeting fatty acids and complex lipids, amino acids, acylcarnitines, and gut microbiome-derived metabolites among other metabolites of central metabolism. RESULTS The IMD clinical dimension and the inflammatory index were positively correlated (r = 0.19, p = 0.019) after controlling for age, sex, and body mass index, whereas the Melancholic and Anxious distress dimensions were not, replicating the previous NESDA findings. The three symptom dimensions had distinct metabolomic signatures using both univariate and set enrichment statistics. IMD severity correlated mainly with gut-derived metabolites and a few acylcarnitines and long chain saturated free fatty acids. Melancholia severity was significantly correlated with several phosphatidylcholines, primarily the ether-linked variety, lysophosphatidylcholines, as well as several amino acids. Anxious distress severity correlated with several medium and long chain free fatty acids, both saturated and polyunsaturated ones, sphingomyelins, as well as several amino acids and bile acids. CONCLUSION The IMD dimension of depression appears reliably associated with markers of inflammation. Metabolomics provides powerful tools to inform about depression heterogeneity and molecular mechanisms related to clinical dimensions in MDD, which include a link to gut microbiome and lipids implicated in membrane structure and function.
Collapse
Affiliation(s)
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, AR, USA
| | | | - Yuri Milaneschi
- Amsterdam UMC / GGZ inGeest Research & Innovation, Amsterdam, Netherlands
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Department of Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Psychiatry, Health Sciences Center, Texas Tech University, Permian Basin, TX, USA; Duke-National University of Singapore, Singapore
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
49
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
50
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|