1
|
Zhang Q, Xu Y, Luo H, Su H, Zhong J, Pan L, Liu Y, Yang C, Yin Y, Tan B. Treadmill Training-Induced Remyelination Rescues Cognitive Impairment After Acute Hypoxia. Neurochem Res 2025; 50:109. [PMID: 40025348 DOI: 10.1007/s11064-025-04359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/24/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Acute and chronic exposure to high altitude causes multiple negative neurological consequences. Further research has shown the efficacy of targeted drugs after acute hypoxia. However, the effects and mechanisms of physical therapy like exercise, on after exposed-induced myelin repair and functional improvements have remained unclear. Here, we explored the efficacy of treadmill training at different intensities on recovery in a rat model of acute hypobaric hypoxia (HH) injury. A 4-week treadmill training scheme was used at 30%, 50%, and 70% of maximum speed. The evolution of oligodendrocyte morphometry was observed by immunofluorescence, and the expressions of myelin-related proteins were detected by western blotting. Transmission electron microscopy (TEM) is used to study fine myelin structure. In addition, the open field test (OFT), elevated plus maze (EPM) and Morris water maze (MWM) were used for the observation of cognitive function recovery. Our study revealed varying degrees of demyelination changes in the cortex and hippocampus following acute hypoxia exposure. Additionally, high-intensity treadmill training enhances oligodendrocyte (OL) maturation, improves myelin-related proteins, and increases myelin sheath thickness, thus facilitating myelin repair, rescuing cognitive function and mood disorders, and preserving normal nerve conduction. Finally, the upregulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and key enzymes of cholesterol synthesis (HMGCR/FDPS) induced by high-intensity treadmill training was detected. Our results demonstrate that high-intensity treadmill training as a physical therapy via PGC1α and cholesterol synthesis enhances myelin repair and functional restoration, which should provide new insight for the rehabilitation of remyelination by exercise.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Hong Su
- Guangzhou Women and Children'S Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, 400000, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, 400000, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China.
| |
Collapse
|
2
|
Luo Y, Meng D, Tang H, Wu P, Zhang Y. Exercise alleviates CUS-induced depressive-like behaviors by modulating paracellular and transcellular permeability of the blood-brain barrier in the prefrontal cortex. Behav Brain Res 2025; 476:115286. [PMID: 39389268 DOI: 10.1016/j.bbr.2024.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Increased blood-brain barrier (BBB) permeability is implicated in the pathophysiology of major depressive disorder (MDD). While aerobic exercise has shown promise in mitigating MDD symptoms by potentially preserving BBB integrity, the detailed mechanisms remain unclear. This study explores these mechanisms to assess aerobic exercise's therapeutic potential for MDD. METHODS Male C57BL/6 J mice were used in this study to investigate the effects of aerobic exercise on CUS-induced BBB permeability and depressive-like behaviors. Chronic unpredictable stress (CUS)-induced MDD mouse models were divided into three groups: Control, CUS, and CUS+Exercise. We monitored body weight, blood S100β levels, and cytokines via ELISA. Claudin-5 and Caveolin-1 (CAV-1) expressions in the medial prefrontal cortex were evaluated using Western blotting and immunofluorescence. BBB permeability was assessed using biocytin-TMR and Alb-Alexa 594 tracers. Transmission electron microscopy was used to observe ultrastructural changes in the BBB directly. Depression-related behaviors were tested through several behavioral assays. RESULTS CUS significantly increased CAV-1 expression and Alb-Alexa 594 leakage, suggesting enhanced transcellular BBB permeability. Despite unchanged Claudin-5 levels, its tight junction ultrastructure was altered, leading to increased biocytin-TMR leakage. Aerobic exercise ameliorated these disruptions, reduced inflammatory cytokines, and improved behavioral outcomes in CUS mice. CONCLUSION Disruptions in both paracellular and transcellular BBB pathways are pivotal in depression development. Aerobic exercise offers potential therapeutic benefits for MDD linked with BBB dysfunction by mitigating stress-induced structural and functional changes.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Male
- Mice, Inbred C57BL
- Prefrontal Cortex/metabolism
- Mice
- Physical Conditioning, Animal/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/therapy
- Stress, Psychological/physiopathology
- Caveolin 1/metabolism
- Disease Models, Animal
- Claudin-5/metabolism
- Depressive Disorder, Major/therapy
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Depression/therapy
- Depression/metabolism
- Behavior, Animal/physiology
- Permeability
- Exercise Therapy/methods
Collapse
Affiliation(s)
- Ye Luo
- College of fine arts, China West Normal University, Nanchong, China
| | - Dewang Meng
- College of Physical Education, China West Normal University, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Panwen Wu
- College of Physical Education, China West Normal University, Nanchong, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Pan SY, Gu YR, Zhao G, Wang Y, Qin ZH, Tang QY, Qin YY, Li Luo. NADPH mimics the antidepressant effects of exercise in a chronic unpredictable stress rat model. Biochem Biophys Res Commun 2024; 731:150360. [PMID: 39018970 DOI: 10.1016/j.bbrc.2024.150360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.
Collapse
Affiliation(s)
- Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yan-Rong Gu
- Changshu Xupu High School, Suzhou, 215513, China
| | - Gang Zhao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yao Wang
- Department of Rehabilitation Medicine, Nan'ao People's Hospital of Dapeng New District, Shenzhen, 518121, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou, 215123, China.
| | - Qiu-Yue Tang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Yuan-Yuan Qin
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
4
|
Liu L, Tang J, Liang X, Li Y, Zhu P, Zhou M, Qin L, Deng Y, Li J, Wang Y, Jiang L, Huang D, Zhou Y, Wang S, Xiao Q, Luo Y, Tang Y. Running exercise alleviates hippocampal neuroinflammation and shifts the balance of microglial M1/M2 polarization through adiponectin/AdipoR1 pathway activation in mice exposed to chronic unpredictable stress. Mol Psychiatry 2024; 29:2031-2042. [PMID: 38361125 DOI: 10.1038/s41380-024-02464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Running exercise has been shown to alleviate depressive symptoms. However, the mechanism underlying the antidepressant effects of running exercise is not fully understood. The imbalance of M1/M2 microglia phenotype/polarization and concomitant dysregulation of neuroinflammation play crucial roles in the pathogenesis of depression. Running exercise increases circulating levels of adiponectin which is known to cross the blood‒brain barrier and suppress inflammatory responses. AdipoR1 is an adiponectin receptor that is involved in regulating microglial phenotypes and activation states. However, whether running exercise regulates hippocampal microglial phenotypes and neuroinflammation through adiponectin/AdipoR1 to exert its antidepressant effects remains unclear. In the current study, 4 weeks of running exercise significantly alleviated the depressive-like behaviors of chronic unpredictable stress (CUS)-exposed mice. Moreover, running exercise decreased the microglial numbers and altered microglial morphology in three subregions of the hippocampus to restore the M1/M2 balance; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in CUS-exposed mice. These effects may involve elevation of peripheral tissue (adipose tissue and muscle) and plasma adiponectin levels, and hippocampal AdipoR1 levels as well as activation of the AMPK-NF-κB/STAT3 signaling pathway by running exercise. When an adeno-associated virus was used to knock down hippocampal AdipoR1, mice showed depressive-like behaviors and alterations in microglia and inflammatory factor expression in the hippocampus that were similar to those observed in CUS-exposed mice. Together, these results suggest that running exercise maintains the M1/M2 balance and inhibits neuroinflammation in the hippocampus of CUS-exposed mice. These effects might occur via adiponectin/AdipoR1-mediated activation of the AMPK-NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Liang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yue Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yiying Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dujuan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Xiao
- Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Luo Y, Zhu P, Liang X, Li J, Dou X, Liu L, Qin L, Zhou M, Deng Y, Jiang L, Wang S, Yang W, Tang J, Tang Y. Running exercise improves astrocyte loss, morphological complexity and astrocyte-contacted synapses in the hippocampus of CUS-induced depression model mice. Pharmacol Biochem Behav 2024; 239:173750. [PMID: 38494007 DOI: 10.1016/j.pbb.2024.173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Mei Zhou
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenyu Yang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Luo S, Wu F, Fang Q, Hu Y, Zhang H, Yuan S, Yang C, Shi Y, Luo Y. Antidepressant effect of teriflunomide via oligodendrocyte protection in a mouse model. Heliyon 2024; 10:e29481. [PMID: 38655332 PMCID: PMC11036017 DOI: 10.1016/j.heliyon.2024.e29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.
Collapse
Affiliation(s)
- Shuting Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Feilong Wu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Qian Fang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yue Hu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Huihui Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Chang Yang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yan Shi
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Xu J, Zhu C, Jin P, Sun W, Yu E. Agomelatine prevented depression in the chronic restraint stress model through enhanced catalase activity and halted oxidative stress. PLoS One 2024; 19:e0289248. [PMID: 38335199 PMCID: PMC10857580 DOI: 10.1371/journal.pone.0289248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/13/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Agomelatine (AGO) is an antidepressant with unique pharmacological effects; however, its underlying mechanisms remain unknown. In this study, we examined agomelatine's effects on catalase activity, oxidative stress, and inflammation. METHODS Chronic restraint stress (CRS) model mice were established over 4 weeks, and AGO 50 mg/kg was administered to different groups alongside a deferasirox (DFX) 10 mg/kg gavage treatment. Behavioral tests were performed to assess the effect of AGO on the remission of depression-like behaviors. Meanwhile, the expression of CAT, the oxidative stress signaling pathway and inflammatory protein markers were assessed using ELISA, qRT-PCR, Western blot, and immunohistochemistry. RESULTS Four weeks of AGO treatment significantly improved depression-like behavior in mice through the activation of catalase in the hippocampus and serum of the model mice, increased superoxide dismutase expression, reduced malondialdehyde expression, and reduced oxidative stress damage. Deferasirox was found to offset this therapeutic effect partially. In addition, the inflammatory pathway (including nuclear factor-κB and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha) was not significantly altered. CONCLUSIONS AGO can exert antidepressant effects by altering oxidative stress by modulating catalase activity.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Kangning Hospital attached to Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Piaopiao Jin
- Department of Psychiatry, Yiwu Central Hospital, Jin Hua, Zhejiang, China
| | - Wangdi Sun
- Department of Psychiatry, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Enyan Yu
- Department of Clinical Psychology, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Biskupiak Z, Ha VV, Rohaj A, Bulaj G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J Clin Med 2024; 13:403. [PMID: 38256537 PMCID: PMC10816409 DOI: 10.3390/jcm13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and Drug Administration and draft guidelines on "prescription drug use-related software" illustrate opportunities to create drug + digital combination therapies, ultimately leading towards drug-device combination products (DTx has a status of medical devices). Digital interventions (mobile, web-based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for people living with Alzheimer's disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy, depression, and anxiety. In the respective animal disease models, preclinical studies on environmental enrichment and other non-pharmacological modalities (physical activity, social interactions, learning, and music) as surrogates for DTx "active ingredients" also show improved outcomes. In this narrative review, we discuss how drug + digital combination therapies can impact translational research, drug discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives to create drug-device combination products are illustrated by Humira® (adalimumab) facing a "patent-cliff" competition with cheaper and more effective biosimilars seamlessly integrated with DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will benefit from accelerating integration of digital interventions with pharmacotherapies.
Collapse
Affiliation(s)
- Zack Biskupiak
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Vinh Ha
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Aarushi Rohaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- The Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Zuo Y, Hou Y, Wang Y, Yuan L, Cheng L, Zhang T. Circadian misalignment impairs oligodendrocyte myelination via Bmal1 overexpression leading to anxiety and depression-like behaviors. J Pineal Res 2024; 76:e12935. [PMID: 38241675 DOI: 10.1111/jpi.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Circadian misalignment (CM) caused by shift work can increase the risk of mood impairment. However, the pathological mechanisms underlying these deficits remain unclear. In the present study, we used long-term variable photoperiod (L-VP) in wild-type mice to better simulate real-life shift patterns and study its effects on the prefrontal cortex (PFC) and hippocampus, which are closely related to mood function. The results showed that exposure to L-VP altered the activity/rest rhythms of mice, by eliciting phase delay and decreased amplitude of the rhythms. Mice with CM developed anxiety and depression-like manifestations and the number of mature oligodendrocytes (OL) was reduced in the medial prefrontal cortex and hippocampal CA1 regions. Mood impairment and OL reduction worsened with increased exposure time to L-VP, while normal photoperiod restoration had no effect. Mechanistically, we identified upregulation of Bmal1 in the PFC and hippocampal regions of CM mice at night, when genes related to mature OL and myelination should be highly expressed. CM mice exhibited significant inhibition of the protein kinase B (AKT)/mTOR signaling pathway, which is directly associated to OL differentiation and maturation. Furthermore, we demonstrated in the OL precursor cell line Oli-Neu that overexpression of Bmal1 inhibits AKT/mTOR pathway and reduces the expression of genes OL differentiation. In conclusion, BMAL1 might play a critical role in CM, providing strong research evidence for BMAL1 as a potential target for CM therapy.
Collapse
Affiliation(s)
- Yao Zuo
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yuanyuan Hou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunlei Wang
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
| | - Linran Yuan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Lingna Cheng
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Tong Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Qin L, Liang X, Qi Y, Luo Y, Xiao Q, Huang D, Zhou C, Jiang L, Zhou M, Zhou Y, Tang J, Tang Y. MPFC PV + interneurons are involved in the antidepressant effects of running exercise but not fluoxetine therapy. Neuropharmacology 2023:109669. [PMID: 37473999 DOI: 10.1016/j.neuropharm.2023.109669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Depression is a complex psychiatric disorder. Previous studies have shown that running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy. GABAergic interneurons, including the PV+ interneuron subtype, in the medial prefrontal cortex (MPFC) are involved in pathological changes of depression. It was unknown whether running exercise and fluoxetine therapy reverse depression-like behavior via GABAergic interneurons or the PV+ interneurons subtype in MPFC. To address this issue, we subjected mice with chronic unpredictable stress (CUS) to a 4-week running exercise or fluoxetine therapy. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that running exercise enriched GABAergic synaptic pathways in the MPFC of CUS-exposed mice. However, the number of PV+ interneurons but not the total number of GABAergic interneurons in the MPFC of mice exposed to CUS reversed by running exercise, not fluoxetine therapy. Running exercise increased the relative gene expression levels of the PV gene in the MPFC of CUS-exposed mice without altering other subtypes of GABAergic interneurons. Moreover, running exercise and fluoxetine therapy both significantly improved the length, area and volume of dendrites and the spine morphology of PV+ interneurons in the MPFC of mice exposed to CUS. However, running exercise but not fluoxetine therapy improved the dendritic complexity level of PV+ interneurons in the MPFC of mice exposed to CUS. In summary, the number and dendritic complexity level of PV+ interneurons may be important therapeutic targets for the mechanism by which running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy.
Collapse
Affiliation(s)
- Lu Qin
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingqiang Qi
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dujuan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunni Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mei Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
11
|
Ramírez-Rodríguez GB, Meneses San-Juan D, Rico-Becerra AI, González-Olvera JJ, Reyes-Galindo V. Repetitive transcranial magnetic stimulation and fluoxetine reverse depressive-like behavior but with differential effects on Olig2-positive cells in chronically stressed mice. Neuropharmacology 2023; 236:109567. [PMID: 37209812 DOI: 10.1016/j.neuropharm.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| | - David Meneses San-Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Allan Irasek Rico-Becerra
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico; Licenciatura en Neurociencias, Facultad de Medicina. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101. Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Verónica Reyes-Galindo
- Instituto de Ecología. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria. Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| |
Collapse
|
12
|
Physical exercise mediates a cortical FMRP-mTOR pathway to improve resilience against chronic stress in adolescent mice. Transl Psychiatry 2023; 13:16. [PMID: 36658152 PMCID: PMC9852236 DOI: 10.1038/s41398-023-02311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Aerobic exercise effectively relieves anxiety disorders via modulating neurogenesis and neural activity. The molecular mechanism of exercise-mediated anxiolysis, however, remains incomplete. On a chronic restrain stress (CRS) model in adolescent mice, we showed that 14-day treadmill exercise profoundly maintained normal neural activity and axonal myelination in the medial prefrontal cortex (mPFC), in association with the prevention of anxiety-like behaviors. Further interrogation of molecular mechanisms revealed the activation of the mechanistic target of the rapamycin (mTOR) pathway within mPFC under exercise training. At the upstream of mTOR, exercise-mediated brain RNA methylation inhibited the expression of Fragile X mental retardation protein (FMRP) to activate the mTOR pathway. In summary, treadmill exercise modulates an FMRP-mTOR pathway to maintain cortical neural activity and axonal myelination, contributing to improved stress resilience. These results extended our understanding of the molecular substrate of exercise-mediated anxiolytic effect during adolescent period.
Collapse
|
13
|
Zhu P, Tang J, Liang X, Luo Y, Wang J, Li Y, Xiao K, Li J, Deng Y, Jiang L, Xiao Q, Qi Y, Xie Y, Yang H, Zhu L, Tang Y, Huang C. Activation of liver X receptors protects oligodendrocytes in CA3 of stress-induced mice. Front Pharmacol 2022; 13:936045. [PMID: 35959443 PMCID: PMC9358133 DOI: 10.3389/fphar.2022.936045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a complex disorder that is associated with various structural abnormalities. Oligodendrocyte (OL) dysfunction is associated with the pathogenesis of depression and the promotion of hippocampal oligodendrocyte maturation and myelination could be a novel therapeutic strategy for ameliorating depressive behaviors. Recent studies have shown that activation of liver X receptors (LXRs) by GW3965 improves depressive phenotypes, but the effects of GW3965 on OL function and myelination in the hippocampus of depression remain relatively unclear. To address this issue, we investigated the effects of GW3965 on mature OL in the hippocampus and on the myelin sheaths of mice subjected to chronic unpredictable stress (CUS). Behavioral tests were performed to assess depressive behaviors. Then, the number of mature OLs (CC1+) in each hippocampal subregion was precisely quantified with immunohistochemical and stereological methods, and the density of newborn mature OLs (BrdU+/Olig2+/CC1+ cells) in each hippocampal subregion was quantified with immunofluorescence. In addition, myelin basic protein (MBP) staining intensity in the cornu ammonis 3 (CA3) region was assessed by using immunofluorescence. We found that both the number of CC1+ OLs and the density of BrdU+/Olig2+/CC1+ cells were obviously decreased in each hippocampal subregion of mice subjected to CUS, and 4 weeks of GW3965 treatment reversed these effects only in the CA3 region. Furthermore, the decreased MBP expression in the CA3 region of mice subjected to CUS was ameliorated by GW3965 treatment. Collectively, these results suggested that improvement of OL maturation and enhancement of myelination may be structural mechanisms underlying the antidepressant effects of LXR agonists.
Collapse
Affiliation(s)
- Peilin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yue Li
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kai Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yuhui Deng
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Lab Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing, China
| | - Yingqiang Qi
- Department of Electron Microscope, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yuhan Xie
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Yang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen Q, Zhang K, Wang M, Gao R, Wang Q, Xiao M, Chen C. A translational mouse model for investigation of the mechanism of preterm diffuse white matter injury. Transl Pediatr 2022; 11:1074-1084. [PMID: 35957997 PMCID: PMC9360811 DOI: 10.21037/tp-22-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The increasing incidence of preterm birth has led to a global problem of adverse neurodevelopmental outcomes in preterm neonates as a result of brain injury. There is still a lack of models mimicking diffuse white matter injury (WMI) in preterm neonates that can be applied to transgenic mice. METHODS The right common carotid artery of the neonatal mouse was ligated on postnatal day 3 (P3) C57BL/6 mice and followed by 80, 90, or 100 min of hypoxia using a mixture of 10%±0.2% oxygen-nitrogen. The most suitable model was chosen by characterizing the effects of this hypoxic-ischemic insult on development of myelin, glial cell conditions, and neurological outcomes by hematoxylin-eosin (HE) staining performed at postnatal day 17 (P17), western blot measuring myelin basic protein (MBP) at postnatal day 10 (P10) and P17, immunofluorescence staining of MBP-neurofilament protein heavy chain (NFH), oligodendrocyte transcription factor-2 (Olig2)-adenomatous polyposis coli clone (CC1), glial fibrillary acidic protein (GFAP) and ionic calcium linker protein (Iba-1) at P17, electron microscopy observing myelin microstructure at postnatal day 52 (P52) and behavioral testing at postnatal day 45-50 (P45-P50). RESULTS The 90-min group showed neuroanatomical changes in the ipsilateral side of the brain, the 80-min group showed minor changes, and the 100-min group showed severe injury. Mice in the 90-min group subsequently showed marked activation of astrocytes, augmentation of microglia, a notable decrease in expression of MBP with a normal level of NFH, long-term cognitive dysfunction, and impairment of the myelin ultrastructure in adulthood. CONCLUSIONS In conclusion, a mouse model of preterm diffuse WMI rather than cystic periventricular leukomalacia was successfully achieved by ligating one of the common carotid arteries on P3 followed by 90 min of hypoxia in a mixture of 10%±0.2% oxygen-nitrogen. The attempt provides an adequate translational animal model for elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Qiufan Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Ke Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Minjie Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Ruiwei Gao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Qian Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
15
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
16
|
Sharafi A, Pakkhesal S, Fakhari A, Khajehnasiri N, Ahmadalipour A. Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
Affiliation(s)
- AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|