1
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
2
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
3
|
Salinas-Luypaert C, Sáez-Cortez F, Quintanilla ME, Herrera-Marschitz M, Rivera-Meza M. Gene knockdown of HCN2 ion channels in the ventral tegmental area reduces ethanol consumption in alcohol preferring rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:165-175. [PMID: 35377277 DOI: 10.1080/00952990.2022.2033759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Background: Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) ionic channels are known to play a key role in the control of neuron excitability and have been proposed as a molecular target of ethanol. Previous studies in rats have shown that gene-induced overexpression of the HCN2 channel in the ventral tegmental area (VTA) increases the rewarding effects of ethanol and its intake by the animals.Objective: The aim of this work was to study the effects of VTA HCN2 gene knockdown in the voluntary ethanol consumption of alcohol-preferring UChB rats.Methods: Two lentiviral vectors were generated; LV-siRNA-HCN2, coding for a siRNA that elicited >95% reduction of HCN2 protein levels in vitro, and a control vector coding for a scrambled siRNA sequence. Female UChB naïve rats (n = 14) were microinjected into the VTA with LV-siRNA-HCN2 or the scrambled control vector (n = 11). Four days after, animals were given a daily free access to 10% ethanol and water for 10 days.Results: Rats treated with the LV-siRNA-HCN2 vector showed a ~ 70% reduction (p < .001) in their ethanol preference and ethanol intake compared to control animals. No changes were observed in the total fluid intake of both groups. HCN2 levels in the VTA were measured by Western blot showing a reduction of 40% (p < .05) in the rats injected with LV-siRNA-HCN2, compared to control animals.Conclusion: These results show that knockdown of HCN2 ionic channels in the VTA of UChB rats markedly reduces their voluntary ethanol intake, supporting the idea that HCN2 channels may constitute a therapeutic target for alcohol use disorders.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences Santiago, Chile
| | - Felipe Sáez-Cortez
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
4
|
Depuydt AS, Peigneur S, Tytgat J. Review: HCN Channels in the Heart. Curr Cardiol Rev 2022; 18:e040222200836. [PMID: 35125083 PMCID: PMC9893134 DOI: 10.2174/1573403x18666220204142436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pacemaker cells are the basis of rhythm in the heart. Cardiovascular diseases, and in particular, arrhythmias are a leading cause of hospital admissions and have been implicated as a cause of sudden death. The prevalence of people with arrhythmias will increase in the next years due to an increase in the ageing population and risk factors. The current therapies are limited, have a lot of side effects, and thus, are not ideal. Pacemaker channels, also called hyperpolarizationactivated cyclic nucleotide-gated (HCN) channels, are the molecular correlate of the hyperpolarization- activated current, called Ih (from hyperpolarization) or If (from funny), that contribute crucially to the pacemaker activity in cardiac nodal cells and impulse generation and transmission in neurons. HCN channels have emerged as interesting targets for the development of drugs, in particular, to lower the heart rate. Nonetheless, their pharmacology is still rather poorly explored in comparison to many other voltage-gated ion channels or ligand-gated ion channels. Ivabradine is the first and currently the only clinically approved compound that specifically targets HCN channels. The therapeutic indication of ivabradine is the symptomatic treatment of chronic stable angina pectoris in patients with coronary artery disease with a normal sinus rhythm. Several other pharmacological agents have been shown to exert an effect on heart rate, although this effect is not always desired. This review is focused on the pacemaking process taking place in the heart and summarizes the current knowledge on HCN channels.
Collapse
Affiliation(s)
- Anne-Sophie Depuydt
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| |
Collapse
|
5
|
Liang Y, Xu Z, Wu X, Pang J, Zhou P, Cao Y. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels with natural flavonoid quercetin. Biochem Biophys Res Commun 2020; 533:952-957. [PMID: 33008592 DOI: 10.1016/j.bbrc.2020.09.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
Abstract
Quercetin is a natural flavonoid which has been reported to be analgesic in different animal models of pain. However, the mechanism underlying the pain-relieving effects is still unclear. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in controlling pacemaker activity in cardiac and nervous systems, making the channel a new target for therapeutic exploration. In this study, we explored a series of flavonoids for their modulation on HCN channels. Among all tested flavonoids, quercetin was the most potent inhibitor for HCN channels with an IC50 value of 27.32 ± 1.19 μM for HCN2. Furthermore, quercetin prominently left shifted the voltage-dependent activation curves of HCN channels and decelerated deactivation process. The results presented herein firstly characterize quercetin as a novel and potent inhibitor for HCN channels, which represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Liu F, Wuni GY, Bahuva R, Shafiq MA, Gattas BS, Ibetoh CN, Stratulat E, Gordon DK. Pacemaking Activity in the Peripheral Nervous System: Physiology and Roles of Hyperpolarization Activated and Cyclic Nucleotide-Gated Channels in Neuropathic Pain. Cureus 2020; 12:e11111. [PMID: 33240707 PMCID: PMC7682534 DOI: 10.7759/cureus.11111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most famous pacemaking activity found in the human body is in the cardiac system. However, pacemaking is also widely present in the nervous system. The ion channels responsible for the pacemaking activity are called hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. HCN channels are activated during hyperpolarization and create an inward current named Ih containing mixed sodium and potassium ions. The molecular mechanism of these unique features remains mysterious. In the peripheral nervous system (PNS), pacemaking is unique because it is only present in pathologic states when nerve damage occurs and leads to neuropathic pain. For this reason, pacemaking in neuropathic pain is also known as ectopic discharge. In our literature review, the HCN channel physiology is one of the research interests. We will present studies exploring the molecular mechanisms involved in HCN gating and ion permeability. The second research question is, what makes the pacemaking activity unique in the PNS? Thus, our paper will include studies that discuss the role of HCN channels in neuropathic pain. Given the fundamental role of HCN channels in regulating neuronal cells' discharge activity, the modulation of their function for therapeutic purposes could be useful in various pathological conditions. Here we review the present knowledge of the efficacy of HCN blocker treating neuropathic pain in humans.
Collapse
Affiliation(s)
- Fan Liu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - George Y Wuni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ronak Bahuva
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, University at Buffalo, Buffalo, USA
| | - Muhammad Ahsan Shafiq
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Rawalpindi Medical University, Islamabad, PAK
| | - Boula S Gattas
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Crystal N Ibetoh
- Cardiology, Metropolitan Cardiovascular Consultants, Beltsville, USA.,Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Eugeniu Stratulat
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, Scarborough General Hospital, Scarborough, TTO.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472:931-951. [PMID: 32424620 DOI: 10.1007/s00424-020-02384-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. In the voltage range of activation, HCN channels carry an inward current mediated by Na+ and K+, termed If in the heart and Ih in neurons. Altered function of HCN channels, mainly HCN4, is associated with sinus node dysfunction and other arrhythmias such as atrial fibrillation, ventricular tachycardia, and atrioventricular block. In recent years, several data have also shown that dysfunctional HCN channels, in particular HCN1, but also HCN2 and HCN4, can play a pathogenic role in epilepsy; these include experimental data from animal models, and data collected over genetic mutations of the channels identified and characterized in epileptic patients. In the central nervous system, alteration of the Ih current could predispose to the development of neurodegenerative diseases such as Parkinson's disease; since HCN channels are widely expressed in the peripheral nervous system, their dysfunctional behavior could also be associated with the pathogenesis of neuropathic pain. Given the fundamental role played by the HCN channels in the regulation of the discharge activity of cardiac and neuronal cells, the modulation of their function for therapeutic purposes is under study since it could be useful in various pathological conditions. Here we review the present knowledge of the HCN-related channelopathies in cardiac and neurological diseases, including clinical, genetic, therapeutic, and physiopathological aspects.
Collapse
Affiliation(s)
- Ilaria Rivolta
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Anna Binda
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo C DiFrancesco
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, ASST San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|