1
|
An X, Ma L, Bai Y, Chen C, Liu J, Dawuti A, Zeng K, Yang B, Han B, Abulizi A. Nuciferine Attenuates Cancer Cachexia-Induced Muscle Wasting in Mice via HSP90AA1. J Cachexia Sarcopenia Muscle 2025; 16:e13777. [PMID: 40170230 PMCID: PMC11961380 DOI: 10.1002/jcsm.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/17/2024] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Around 80% of patients with advanced cancer have cancer cachexia (CC), a serious complication for which there are currently no FDA-approved treatments. Nuciferine (NF) is the main active ingredient of lotus leaf, which has anti-inflammatory, anti-tumour and other effects. The purpose of this work was to explore the target and mechanism of NF in preventing cancer cachexia-induced muscle atrophy. METHODS The action of NF against CC-induced muscle atrophy was determined by constructing an animal model with a series of behavioural tests, H&E staining and related markers. Network pharmacology and molecular docking were used to preliminarily determine the mechanism and targets of NF against CC-induced muscle atrophy. The mechanisms of NF in treating CC-induced muscle atrophy were verified by western blotting. Molecular dynamics simulation (MD), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) were used to validate the key target of NF. RESULTS After 13 days of NF treatment, the reduction of limb grip strength and hanging time in LLC model mice increased by 29.7% and 192.2% (p ≤ 0.01; p ≤ 0.001). Gastrocnemius and quadriceps muscles weight/initial body weight (0.98 ± 0.11 and 1.20 ± 0.17) and cross-sectional area of muscle fibres (600-1600 μm2) of NF-treated mice were significantly higher than those of the model group (0.84 ± 0.10, 0.94 ± 0.09, 400-800 μm2, respectively) (p ≤ 0.01; p ≤ 0.01; p ≤ 0.001). NF treatment also decreased the MyHC (myosin heavy chain) degradation and the protein levels of muscle-specific E3 ubiquitin ligases Atrogin1 and MuRF1 in the model group (p ≤ 0.001; p ≤ 0.01; p ≤ 0.05). Network pharmacology revealed that NF majorly targeted AKT1, TNF and HSP90AA1 to regulate PI3K-Akt and inflammatory pathways. Molecular docking predicted that NF bound best to HSP90AA1. Mechanism analysis demonstrated that NF regulated NF-κB and AKT-mTOR pathways for alleviating muscle wasting in tumour bearing mice. The results of MD, DARTS and SPR further confirmed that HSP90AA1 was the direct target of NF. CONCLUSIONS Overall, we first discovered that NF retards CC-induced muscle atrophy by regulating AKT-mTOR and NF-κB signalling pathways through directly binding HSP90AA1, suggesting that NF may be an effective treatment for cancer cachexia.
Collapse
Affiliation(s)
- Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Yulan Bai
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Chaoyue Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Ji Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Kewu Zeng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| |
Collapse
|
2
|
Huang X, Li S, Wang H, Zhao L, Li X, Fan S, Hu W, Tong H, Guo G, Xu D, Zhang L, Jiang Z, Yu Q. Oestrogen Receptor Alpha in Myocyte Maintains Muscle Regeneration in Duchenne Muscular Dystrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13807. [PMID: 40258782 PMCID: PMC12011492 DOI: 10.1002/jcsm.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Oestrogen receptor alpha (ERα) plays an important role in maintaining mitochondrial function and regulating metabolism in skeletal muscle. However, its alterations and potential mechanisms in Duchenne muscular dystrophy (DMD) remain incompletely understood. In this study, we demonstrated the protective role of ERα in myocyte for skeletal muscle regeneration in mdx mice and explored the therapeutic effects of oestrogen receptor modulators on DMD. METHODS DMD patients' biopsies were obtained for histological analysis to explore the expression of ERα. The phenotype of muscle was analysed by histology and molecular biology. The therapeutical effect of different oestrogen receptor modulators was examined in mdx mice treated with fulvestrant (FVT, 20 mg/kg once a week) or oestradiol (E2, 1 mg/kg per day) for 4 weeks. The protective effect of ERα was performed on mdx mice after conditional knockout of ERα in skeletal muscle (ERαmKO mdx mice). Evidence of activation of ERα/oestrogen-related receptor alpha (ERRα)/myogenic differentiation 1 (MyoD) signalling pathway was inspected in the primary myoblasts isolated from mice, and C2C12 cells received intervention with E2/FVT/Esr1-siRNA/Esrra overexpression plasmid. RESULTS The ERα expression was increased in DMD patients' triceps (p < 0.05) and mdx mice muscles (p < 0.05). FVT reduced ERα levels in the mdx mice muscles (p < 0.01) but had no significant effect on skeletal muscle regeneration on mdx mice. Compared with mdx mice, E2 reduced the levels of creatine kinase (CK) and lactic dehydrogenase (LDH) (p < 0.001) in serum, enhanced skeletal muscle function, alleviated skeletal muscle atrophy and fibre loss and upregulated the expression of ERα in GAS (p < 0.001) and TA (p < 0.05). The myogenic factors such as myosin heavy chain (MyHC, p < 0.001), myogenin (MyoG, p < 0.05), MyoD (p < 0.05) and ERRα (p < 0.001) were increased in mdx mice GAS with E2. But E2 had no effect on ERαmKO mdx mice. The primary myoblasts and C2C12 were treated with E2 displayed an increased-on myocyte fusion index (p < 0.05), ERα MyoD and ERRα expressions (p < 0.05). The myocytes' fusion index (p < 0.05) and ERα, MyoD and ERRα expression (p < 0.05) were decreased in si-Esr1-transfected C2C12 cells and increased in OE-Esrra-transfected C2C12 cells. CONCLUSION We demonstrated that ERα in myocyte exerted a protective effect on skeletal muscle regeneration in DMD patients and mdx mice through the ERα-ERRα-MyoD pathway, which has potential implications for DMD therapy strategies.
Collapse
Affiliation(s)
- Xiaofei Huang
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Sijia Li
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Huna Wang
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Lei Zhao
- Department of Neurology Children'sHospital of Fudan UniversityShanghaiChina
| | - Xihua Li
- Department of Neurology Children'sHospital of Fudan UniversityShanghaiChina
| | - Shusheng Fan
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Wanting Hu
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Haowei Tong
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Guangyao Guo
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| | - Dengqiu Xu
- Department of Hepatobiliary Surgery Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province key Laboratory of Tumor Immune Microenvironment and ImmunotherapyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
- Center for Drug Research and DevelopmentGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of EducationChina Pharmaceutical UniversityNanjingChina
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation CenterChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
3
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
4
|
Wang Y, Du J, Hu Y, Zhang S. CXCL10 impairs synaptic plasticity and was modulated by cGAS-STING pathway after stroke in mice. J Neurophysiol 2024; 132:722-732. [PMID: 38919986 DOI: 10.1152/jn.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sensorimotor deficits following stroke remain a major cause of disability, but little is known about the specific pathological mechanisms. Exploring the pathological mechanisms and identifying potential therapeutic targets to promote functional rehabilitation after stroke are essential. CXCL10, also known as interferon-γ-inducible protein 10 (IP-10), plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke is still unclear. In this study, mice were subjected to photothrombotic (PT) stroke, and sensorimotor deficits were determined by the ladder walking tests, tape removal tests, and rotarod tests. The density of dendritic spines and synaptic plasticity was determined in Thy1-EGFP mice and evaluated by electrophysiology. We found that photothrombotic stroke induced sensorimotor deficits and upregulated the expression of CXCL10, whereas suppressing the expression of CXCL10 by adeno-associated virus (AAV) ameliorated sensorimotor deficits and increased the levels of synapse-related proteins, the density of dendritic spines, and synaptic strength. Furthermore, the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway was activated by stroke and induced CXCL10 release, and cGAS or STING antagonists downregulated the levels of CXCL10 and improved synaptic plasticity after stroke. Collectively, our results indicate that cGAS-STING pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery.NEW & NOTEWORTHY Chemokine-mediated inflammatory response plays a critical role in stroke. CXCL10 plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke recovery is still unclear. Herein, we identified a new mechanism that cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery. Our findings highlight the potential therapeutic strategy of targeting the cGAS-STING pathway to treat stroke.
Collapse
Affiliation(s)
- Yi Wang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Juan Du
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
- School of Pharmacy and Nursing, Chongqing Vocational College of Light Industry, Chongqing, People's Republic of China
| | - Youfang Hu
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Sufen Zhang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
6
|
Lev R, Bar-Am O, Saar G, Guardiola O, Minchiotti G, Peled E, Seliktar D. Development of a local controlled release system for therapeutic proteins in the treatment of skeletal muscle injuries and diseases. Cell Death Dis 2024; 15:470. [PMID: 38956034 PMCID: PMC11219926 DOI: 10.1038/s41419-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 07/04/2024]
Abstract
The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Eli Peled
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
8
|
Trundle J, Cernisova V, Boulinguiez A, Lu-Nguyen N, Malerba A, Popplewell L. Expression of the Pro-Fibrotic Marker Periostin in a Mouse Model of Duchenne Muscular Dystrophy. Biomedicines 2024; 12:216. [PMID: 38255321 PMCID: PMC10813341 DOI: 10.3390/biomedicines12010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterised by fibrotic tissue deposition in skeletal muscle. We assessed the role of periostin in fibrosis using mdx mice, an established DMD murine model, for which we conducted a thorough examination of periostin expression over a year. RNA and protein levels in diaphragm (DIA) muscles were assessed and complemented by a detailed histological analysis at 5 months of age. In dystrophic DIAs, periostin (Postn) mRNA expression significantly exceeded that seen in wildtype controls at all timepoints analysed, with the highest expression at 5 months of age (p < 0.05). We found Postn to be more consistently highly expressed at the earlier timepoints compared to established markers of fibrosis like transforming growth factor-beta 1 (Tgf-β1) and connective tissue growth factor (Ctgf). Immunohistochemistry confirmed a significantly higher periostin protein expression in 5-month-old mdx mice compared to age-matched healthy controls (p < 0.01), coinciding with a significant fibrotic area percentage (p < 0.0001). RT-qPCR also indicated an elevated expression of Tgf-β1, Col1α1 (collagen type 1 alpha 1) and Ctgf in mdx DIAs compared to wild type controls (p < 0.05) at 8- and 12-month timepoints. Accordingly, immunoblot quantification demonstrated elevated periostin (3, 5 and 8 months, p < 0.01) and Tgf-β1 (8 and 12 months, p < 0.001) proteins in the mdx muscle. These findings collectively suggest that periostin expression is a valuable marker of fibrosis in this relevant model of DMD. They also suggest periostin as a potential contributor to fibrosis development, with an early onset of expression, thereby offering the potential for timely therapeutic intervention and its use as a biomarker in muscular dystrophies.
Collapse
Affiliation(s)
- Jessica Trundle
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Viktorija Cernisova
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Alexis Boulinguiez
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
9
|
Mogharehabed F, Czubryt MP. The role of fibrosis in the pathophysiology of muscular dystrophy. Am J Physiol Cell Physiol 2023; 325:C1326-C1335. [PMID: 37781738 DOI: 10.1152/ajpcell.00196.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.
Collapse
Affiliation(s)
- Farnaz Mogharehabed
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Riddell DO, Hildyard JCW, Harron RCM, Hornby NL, Wells DJ, Piercy RJ. Serum inflammatory cytokines as disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Dis Model Mech 2022; 15:dmm049394. [PMID: 36444978 PMCID: PMC9789403 DOI: 10.1242/dmm.049394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease, caused by mutations in the dystrophin gene, characterised by cycles of muscle degeneration, inflammation and regeneration. Recently, there has been renewed interest specifically in drugs that ameliorate muscle inflammation in DMD patients. The DE50-MD dog is a model of DMD that closely mimics the human DMD phenotype. We quantified inflammatory proteins in serum from wild-type (WT) and DE50-MD dogs aged 3-18 months to identify biomarkers for future pre-clinical trials. Significantly higher concentrations of C-C motif chemokine ligand 2 (CCL2), granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2), keratinocyte chemotactic-like (KC-like, homologous to mouse CXCL1), TNFα (or TNF), and interleukins IL2, IL6, IL7, IL8 (CXCL8), IL10, IL15 and IL18 were detected in DE50-MD serum compared to WT serum. Of these, CCL2 best differentiated the two genotypes. The relative level of CCL2 mRNA was greater in the vastus lateralis muscle of DE50-MD dogs than in that of WT dogs, and CCL2 was expressed both within and at the periphery of damaged myofibres. Serum CCL2 concentration was significantly associated with acid phosphatase staining in vastus lateralis biopsy samples in DE50-MD dogs. In conclusion, the serum cytokine profile suggests that inflammation is a feature of the DE50-MD phenotype. Quantification of serum CCL2 in particular is a useful non-invasive biomarker of the DE50-MD phenotype.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Rachel C. M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Natasha L. Hornby
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| |
Collapse
|
11
|
Fan S, Huang X, Tong H, Hong H, Lai Z, Hu W, Liu X, Zhang L, Jiang Z, Yu Q. p-TAK1 acts as a switch between myoblast proliferation phase and differentiation phase in mdx mice via regulating HO-1 expression. Eur J Pharmacol 2022; 933:175277. [PMID: 36113553 DOI: 10.1016/j.ejphar.2022.175277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Skeletal muscle transforming growth factor-β-activated kinase 1 (TAK1) continuous excessive phosphorylation was observed in Duchenne muscular dystrophy (DMD) patients and mdx mice. Inhibiting TAK1 phosphorylation ameliorated fibrosis and muscular atrophy, while TAK1 knockout also impaired muscle regeneration. The definite effect and mechanism of p-TAK1 in muscle regeneration disorder is still obscure. In this study, BaCl2-induced acute muscle injury model was used to investigate the role of p-TAK1 in myoblast proliferation and differentiation phase. The results showed that TAK1 phosphorylation was significantly up-regulated in proliferation phase along with Keap1/Nrf2/HO-1 signaling pathway activation, which was down-regulated in differentiation phase yet. In C2C12 cells, inhibiting TAK1 phosphorylation markedly suppressed the expression of heme oxygenase-1 (HO-1), and both myoblast proliferation and differentiation were inhibited. As for activation, p-TAK1 promoted myoblast proliferation via up-regulating HO-1 level. However, excessive TAK1 phosphorylation (induced by 20 ng·mL-1 TGF-β1) notably up-regulated HO-1 expression, inhibiting myogenic differentiation antigen (MyOD) and myogenic differentiation. A mild p-TAK1 level (induced by 5 or 10 ng·mL-1 TGF-β1) was beneficial for myoblast differentiation. In mdx mice, robust myoblast proliferation and differentiation arrest were observed with high p-TAK1 level in skeletal muscle. HO-1 expression was significantly up-regulated. TAK1 phosphorylation inhibitor NG25 (N-[4-[(4-ethylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl]-4-methyl-3-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)benzamide) significantly inhibited HO-1 expression, relieved excessive myoblast proliferation and differentiation arrest, promoted new myofiber formation, and eventually improved muscle function. In conclusion, p-TAK1 acted as "a switch" between proliferation and differentiation phase. Mitigating p-TAK1 level transformed myoblast excessive proliferation phase into differentiation phase in mdx mouse via regulating HO-1 expression.
Collapse
Affiliation(s)
- Shusheng Fan
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaofei Huang
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Haowei Tong
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Huitao Hong
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhulan Lai
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanting Hu
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoyun Liu
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Nanjing, 210009, China.
| | - Qinwei Yu
- New Drug Screening Center/Jiangsu Center for Pharmacodynamics Research and Evaluation/State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|