1
|
Zhong H, Li Y, Raza F, Xie J, Rong R, Qiu M, Su J. RBCs as a Bioinspired Drug Delivery System for Co-delivery of Irinotecan and Nanoalumina Enhances Colorectal Cancer Therapy. Mol Pharm 2025; 22:2521-2534. [PMID: 40251121 DOI: 10.1021/acs.molpharmaceut.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Colorectal cancer (CRC) is a malignant epithelial tumor with high morbidity and mortality. In CRC treatment, irinotecan (CPT-11) as a chemotherapeutic drug is widely applied. However, its half-life is short, leading to large dosages and severe side effects. Red blood cells (RBCs) are biocompatible drug carriers with high capacity, avoiding premature drug degradation and achieving slow drug release. Nanoalumina (AN) is an emerging immune adjuvant that can enhance the immune response. Here, we used RBCs as carriers and absorbed AN to construct AN-CPT-11-RBCs. CPT-11 would induce tumor cell death, releasing much tumor antigen, while AN would activate immune cells to recognize newly released antigens and induce lymphocyte proliferation, enhancing the antitumor effect simultaneously. With loading amounts of 4 mg of CPT-11 and 3 mg of AN per 109 RBCs, AN-CPT-11-RBCs had similar properties to natural RBCs. In vivo, AN-CPT-11-RBCs could circulate for 9 days and stimulate the proliferation of lymphocytes in the spleen and tumor tissue, having a higher tumor growth inhibition rate of 74.01% and a lower frequency of administration. In conclusion, AN-CPT-11-RBCs attain the co-delivery of CPT-11 and AN for the synergistic treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Zhong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yichen Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiyuan Xie
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruonan Rong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Huang C, Harris KS, Siddiqui G, Jörg M. Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains. ACS Pharmacol Transl Sci 2025; 8:978-1012. [PMID: 40242580 PMCID: PMC11997894 DOI: 10.1021/acsptsci.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Thienotriazolodiazepines, including (+)-JQ1 (4), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (4) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (4) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (4) in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.
Collapse
Affiliation(s)
- Chuhui Huang
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kate S. Harris
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| | - Ghizal Siddiqui
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Manuela Jörg
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
3
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
4
|
Yang H, Li L, Li X, Ma Y, Yang Y, Cao D. Second-line treatment of PD-1 and CTLA-4 blockade combined with liposomal irinotecan plus leucovorin and fluorouracil for advanced cholangiocarcinoma: study protocol of a single-arm, prospective phase II trial. Ther Adv Med Oncol 2024; 16:17588359241292264. [PMID: 39492841 PMCID: PMC11528739 DOI: 10.1177/17588359241292264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Cholangiocarcinoma is a kind of malignant tumor that originates in the epithelium of the biliary tract. Although there are several options for second-line treatment for patients without specific genetic mutations, the overall treatment efficacy is disappointing. Second-line treatment which is composed of liposomal irinotecan plus fluorouracil and leucovorin significantly improved the treatment efficacy for advanced biliary tract cancer and extended patient survival. This study aims to evaluate the efficacy and safety of the combination of cadonilimab with liposomal irinotecan plus fluorouracil and leucovorin for advanced biliary tract cancer. Objectives The primary objective of this study is to determine the objective response rate. The second objectives of this study are overall survival, progression-free survival, disease control rate, and adverse event incidence rate. Design The study is a single-arm, prospective phase II clinical trial. In all, 51 patients who are diagnosed with locally advanced or metastatic bile tract cancer will be enrolled. Methods and analysis Eligible participants will receive cadonilimab at a dosage of 6 mg/kg on day 1 of each 21-day cycle combined with intravenous liposomal irinotecan at a dosage of 70 mg/m2 for 90 min on day 1 plus leucovorin at a dosage of 400 mg/m2 for 30 min on day 1 and fluorouracil at a dosage of 400 mg/m2 for 46 h every 2 weeks. Discussion Previous studies have suggested that there is a synergistic effect between the two treatment modalities. However, the potential of cadonilimab in bile tract cancer has not been explored. Hence, this trial is the first to investigate its efficacy and toxicity. In addition, the trial is also willing to explore potential biomarkers in patients with locally advanced and metastatic bile tract cancer. Trial registration This study was registered on ClinicalTrials.gov with NCT06438822. Ethics This study protocol and amendments have been approved by the Ethics Committee of West China Hospital (2024(791)).
Collapse
Affiliation(s)
- Heqi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linjuan Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofen Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhang Ma
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Cao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
HUANG YONGJIAN, WANG JINZHOU, XU JIUHUA, RUAN NING. Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer. Oncol Res 2024; 32:1765-1776. [PMID: 39449815 PMCID: PMC11497182 DOI: 10.32604/or.2024.045564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods Liposomes consisting of 3β-[N-(N', N'-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that pTRAIL can trigger cancer cell apoptosis by activating the DR4/5 receptor, while R848 can stimulate the immune microenvironment. Results Experimental results demonstrated the synergistic effects of R848 and pTRAIL encapsulated by liposomes (RTL) in suppressing the proliferation of colorectal cancer cells. Moreover, further in vivo investigations revealed the strong anti-tumor efficacy of RTL in xenograft and orthotropic in situ models of colorectal cancer. Conclusions These findings collectively highlight the therapeutic potential of R848/pTRAIL-loaded liposomes in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- YONGJIAN HUANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JINZHOU WANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JIUHUA XU
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - NING RUAN
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
6
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
8
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Yuan W, Lang T, Li Y, Yin Q. Co-delivering irinotecan and imiquimod by pH-responsive micelle amplifies anti-tumor immunity against colorectal cancer. Int J Pharm 2023; 648:123583. [PMID: 37940081 DOI: 10.1016/j.ijpharm.2023.123583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Irinotecan (IRT), a classic clinical chemotherapeutic agent for treating colorectal cancer, has been found to induce immunogenic cell death (ICD) while exerting cytotoxicity in tumor cells. This effect is likely to be amplified in combination with immune modulators. Unfortunately, free drugs without targeting capacity would receive poor outcomes and strong side effects. To address these issues, in this work, an acid-sensitive micelle based on an amphiphilic poly(β-amino ester) derivative was constructed to co-deliver IRT and the immune adjuvant imiquimod (IMQ), termed PII. PII kept stable under normal physiological conditions. After internalization by tumor cells, PII dissociated in acidic lysosomes and released IRT and IMQ rapidly. In the CT26 tumor mouse model, PII increased the intra-tumoral SN38 (the active metabolite of IRT) and IMQ concentrations by up to 9.39 and 3.44 times compared with the free drug solution. The tumor inhibition rate of PII achieved 87.29%. This might profit from that IRT induced ICD, which promoted dendritic cells (DCs) maturation and intra-tumoral infiltration of CD8+ T cells. In addition, IMQ enhanced the antigen presenting ability of DCs and stimulated tumor associated macrophages to secrete tumor-killing cytokines. PII provided an effective strategy to combat colorectal cancer by synergy of chemotherapy and immunoregulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Ma GL, Lin WF. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Mil Med Res 2023; 10:20. [PMID: 37106400 PMCID: PMC10142459 DOI: 10.1186/s40779-023-00455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy for cancer has achieved great success both in clinical results and on the market. At the same time, success drives more attention from scientists to improve it. However, only a small portion of patients are responsive to this therapy, and it comes with a unique spectrum of side effects termed immune-related adverse events (irAEs). The use of nanotechnology could improve ICBs' delivery to the tumor, assist them in penetrating deeper into tumor tissues and alleviate their irAEs. Liposomal nanomedicine has been investigated and used for decades, and is well-recognized as the most successful nano-drug delivery system. The successful combination of ICB with liposomal nanomedicine could help improve the efficacy of ICB therapy. In this review, we highlighted recent studies using liposomal nanomedicine (including new emerging exosomes and their inspired nano-vesicles) in associating ICB therapy.
Collapse
Affiliation(s)
- Guang-Long Ma
- Faculty of Medicine, Centre for Cancer Immunology, University of Southampton, Southampton, SO16 6YD UK
| | - Wei-Feng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
| |
Collapse
|
11
|
Liu D, Li K, Gong L, Fu L, Yang D. Charge reversal yolk-shell liposome co-loaded JQ1 and doxorubicin with high drug loading and optimal ratio for synergistically enhanced tumor chemo-immunotherapy via blockade PD-L1 pathway. Int J Pharm 2023; 635:122728. [PMID: 36796659 DOI: 10.1016/j.ijpharm.2023.122728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Antitumor immunotherapy has become a powerful therapeutic modality to identify and kill various malignant tumors by harnessing the immune system. However, it is hampered by the immunosuppressive microenvironment and poor immunogenicity in malignant tumors. Herein, in order to achieve multi-loading of drugs with different pharmacokinetic properties and targets, a charge reversal yolk-shell liposome co-loaded with JQ1 and doxorubicin (DOX) into the poly (D,L-lactic-co-glycolic acid) (PLGA) yolk and the lumen of the liposome respectively was engineered to increase hydrophobic drug loading capacity and stability under physiological conditions and further enhance tumor chemotherapy via blockade programmed death ligand 1 (PD-L1) pathway. This nanoplatform could release less JQ1 compared to traditional liposomes to avoid drug leakage under physiological conditions due to the protection of liposomes on JQ1 loaded PLGA nanoparticles while the release of JQ1 increased in an acidic environment. In the tumor microenvironment, released DOX promoted immunogenic cell death (ICD), and JQ1 blocked the PD-L1 pathway to strengthen chemo-immunotherapy. The in vivo antitumor results demonstrated the collaborative treatment of DOX and JQ1 in B16-F10 tumor-bearing mice models with minimized systemic toxicity. Furthermore, the orchestrated yolk-shell nanoparticle system could enhance the ICD effect, caspase 3 activation, and cytotoxic T lymphocyte infiltration while inhibiting PD-L1 expression, provoking a strong antitumor effect, whereas yolk-shell liposomes encapsulating only JQ1 or DOX showed modest tumor therapeutic effects. Hence, the cooperative yolk-shell liposome strategy provides a potential candidate for enhancement of hydrophobic drug loading and stability, showing potential for clinic application and synergistic cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Linlin Gong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Luyao Fu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| |
Collapse
|
12
|
Tu Z, Wang X, Cai H, Sheng Y, Wu L, Huang K, Zhu X. The cell senescence regulator p16 is a promising cancer prognostic and immune check-point inhibitor (ICI) therapy biomarker. Aging (Albany NY) 2023; 15:2136-2157. [PMID: 36961395 PMCID: PMC10085592 DOI: 10.18632/aging.204601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes the cell senescence regulator protein p16. The expression of p16 raises in cell senescence and has a nuclear regulation in cell aging. Meanwhile, it's also reported to inhibit the aggression of several cancers. But its clinical application and role in cancer immunotherapy needs further investigation. We collected the transcriptional data of pan-cancer and normal human tissues from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. CBioPortal webtool was employed to mine the genomic alteration status of CDKN2A across cancers. Kaplan-Meier method and univariate Cox regression were performed for prognostic assessments across cancers, respectively. Gene Set Enrichment Analysis is the main method used to search the associated cancer hallmarks associated with CDKN2A. TIMER2.0 was used to analyze the immune cell infiltration relevance with CDKN2A in pan-cancer. The associations between CDKN2A and immunotherapy biomarkers or regulators were performed by spearman correlation analysis. We found CDKN2A is overexpressed in most cancers and exhibits prognosis predictive ability in various cancers. In addition, it is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations and immunoregulators. The most interesting finding is that CDKN2A can significantly predict anti-PDL1 therapy response. Finally, specific inhibitors which correlated with CDKN2A expression in different cancer types were also screened by using Connectivity Map (CMap) tool. The results revealed that CDKN2A acts as a robust cancer prognostic and immunotherapy biomarker. Its function in the regulation of cancer cell senescence might shape the tumor microenvironment and contribute to its predictive ability of immunotherapy.
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaolin Wang
- The Second Clinical Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Huan Cai
- Department of Medical Ultrasonics, Integrated Chinese and Western Medicine Hospital of Jiangxi Province, Nanchang 330006, Jiangxi, P.R. China
| | - Yilei Sheng
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
13
|
Utilizing chemotherapy-induced tumor RNA nanoparticles to improve cancer chemoimmunotherapy. Acta Biomater 2023; 158:698-707. [PMID: 36563773 DOI: 10.1016/j.actbio.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Chemotherapy has become a popular combination strategy to improve the response rate of immunotherapy since certain chemotherapeutic drugs kill tumor cells by an immunogenic cell death (ICD) pathway, which activates antitumor immune responses. Unfortunately, the synergistic effect of chemoimmunotherapy can be impaired due to the toxicities of chemotherapeutic agent-induced lymphatic depletion and immunosuppression. In this study, we present an approach to improve immunotherapy by using tumor RNA nanoparticles (RNA-NPs) where RNA is directly extracted from chemotherapy-treated cancer cells and then condensed by protamine via electrostatic interactions to form complexes. Such RNA-NPs can be effectively taken up by dendritic cells (DCs) in the draining lymph nodes after subcutaneous injection. Compared with noninduced tumor RNA nanoparticles (N-RNA-NPs), chemotherapy-induced tumor RNA nanoparticles (C-RNA-NPs) can significantly promote DC maturation and stimulate a stronger immune response against established CT-26 colon carcinoma. Besides, C-RNA-NPs can improve the efficacy of immune checkpoint blockade (ICB) therapy by facilitating the infiltration of intratumoral T cells and increasing the ratio of CD8+ T cells to regulatory T cells (Tregs). More importantly, the synergistic effect of chemoimmunotherapy is also enhanced by treatment with C-RNA-NPs. STATEMENT OF SIGNIFICANCE: Although immune checkpoint blockade therapy has been demonstrated to be effective in some advanced cancers, the low response rate has significantly limited its clinical application. To address this issue, a new strategy for improving cancer immunotherapy using chemotherapy-induced tumor RNA nanoparticles (C-RNA-NPs) is developed in this work. The proposed C-RNA-NPs could be captured by dendritic cells, which were then stimulated to the maturation status to initiate an anticancer immune response. Furthermore, the response rate to immunotherapy was significantly increased by promoting intratumoral T-cell infiltration and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells after treatment with C-RNA-NPs. Therefore, C-RNA-NPs have the potential to improve cancer immunotherapy.
Collapse
|
14
|
Alhamhoom Y, Kakinani G, Rahamathulla M, Ali M. Osmani R, Hani U, Yoonus Thajudeen K, Kiran Raj G, Gowda DV. Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: A review. Saudi Pharm J 2023; 31:279-294. [PMID: 36942270 PMCID: PMC10023551 DOI: 10.1016/j.jsps.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, along with chemotherapy, targeted delivery, radiation and surgery has become one of the most common cancer treatments. The aim of cancer immunology is to use the bodys immune system to combat tumors and develop a robust antitumor immune response. In the last few years, immune checkpoint inhibitors and chimeric antigen receptor-modified T cells have made substantial advancements in cancer immunotherapy. By boosting cell type-specific delivery and immunological responses, nanocarriers like liposomes have the ability to enhance greater immune responses. The efficacy of anti-tumor therapeutics is being significantly improved as liposomes can assist in resolving a number of issues that can arise from a variety of cancer immunotherapies. Since, liposomes can be loaded with both hydrophilic and hydrophobic drugs and protect the immunotherapeutic agents loaded inside the core, they offer significant advantages over other nano delivery systems. The use of liposomes for accurate and timely delivery of immunotherapies to particular targeted neoplasms, with little or no injury to healthy cells, maximizes immunotherapy efficacy. Liposomes are also suitable vehicles for delivering medications simultaneously with other therapies such as chemotherapy, radiation, and phototherapy. Liposomal nanoparticles will be introduced and used as an objective immunotherapy delivery system for great precision, making them a viable cancer treatment approach.With an emphasis on dendritic cells, T cells, tumor and natural killer cells, and macrophages; outline of many forms of immune-therapies in oncology and cutting-edge advances in liposomal nanovesicles for cancer immunotherapy are covered in this review.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Greeshma Kakinani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kamal Yoonus Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - G. Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Devegowda V. Gowda
- Department of Pharmaceutics, Cauvery College of Pharmacy, Mysuru 570 028, Karnataka, India
| |
Collapse
|
15
|
Zhou X, Lian H, Li H, Fan M, Xu W, Jin Y. Nanotechnology in cervical cancer immunotherapy: Therapeutic vaccines and adoptive cell therapy. Front Pharmacol 2022; 13:1065793. [PMID: 36588709 PMCID: PMC9802678 DOI: 10.3389/fphar.2022.1065793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is an emerging method for the treatment of cervical cancer and is more effective than surgery and radiotherapy, especially for recurrent cervical cancer. However, immunotherapy is limited by adverse effects in clinical practice. In recent years, nanotechnology has been widely used for tumor diagnosis, drug delivery, and targeted therapy. In the setting of cervical cancer, nanotechnology can be used to actively or passively target immunotherapeutic agents to tumor sites, thereby enhancing local drug delivery, reducing drug adverse effects, achieving immunomodulation, improving the tumor immune microenvironment, and optimizing treatment efficacy. In this review, we highlight the current status of therapeutic vaccines and adoptive cell therapy in cervical cancer immunotherapy, as well as the application of lipid carriers, polymeric nanoparticles, inorganic nanoparticles, and exosomes in this context.
Collapse
Affiliation(s)
- Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haiying Lian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Gynecology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Wei Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| |
Collapse
|
16
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
17
|
Zhang M, Chen Y, Li D, He Z, Wang H, Wu A, Fei W, Zheng C, Liu E, Huang Y. Gold Nanocage-Based Photothermal Ablation Facilitates In Situ Vaccination for Melanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38550-38561. [PMID: 35982542 DOI: 10.1021/acsami.2c10842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer immunotherapy represents a medical breakthrough, but there are still many patients unable to benefit from it because of the low response rate. The immunosuppressive tumor microenvironment (TME) is the main barrier to immunotherapy. Alleviating intratumoral immunosuppression is critical for improving the immune therapeutic efficacy. This work developed an in situ vaccination strategy by using gold nanocage (AuNC)-based photothermal effect in combination with an adjuvant and PD-L1 suppressor. In specific, this therapeutic strategy included three components: AuNCs as an inducer for tumor antigen production via photothermal ablation, CpG oligodeoxynucleotides as an adjuvant to amplify immune responses, and JQ1 as a PD-L1 suppressor to inhibit an immune checkpoint. The results showed that the in situ vaccination efficiently activated dendritic cells and primed T cells and exhibited a high therapeutic efficacy in the melanoma-bearing mice. This therapeutic strategy can increase the infiltration of cytotoxic T lymphocytes, suppress the PD-L1 expression in the tumor, and repolarize tumor-associated macrophages from pro-tumor M2 to the anti-tumor M1 phenotype, thereby remodeling the TME via regulating the innate immune and adaptive immune responses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Yingzhi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhidi He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hairui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aihua Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Medical Products Administration, Shanghai 201203, China
- School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou 318000, China
| |
Collapse
|
18
|
Zhu C, Fang Z, Peng L, Gao F, Peng W, Song F. Curcumin Suppresses the Progression of Colorectal Cancer by Improving Immunogenic Cell Death Caused by Irinotecan. Chemotherapy 2022; 67:211-222. [DOI: 10.1159/000518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/27/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Irinotecan (IRI) is a common chemotherapeutic drug for colorectal cancer; however, the mechanism underlying its immunomodulatory effect remains unclear. Curcumin (CUR), an adjuvant drug with anti-inflammatory and antitumor effects, has been studied extensively, although its synergistic antitumor effect remains unclear. <b><i>Methods:</i></b> The effects of CUR and IRI on oxidative stress and their antitumor effects were detected by flow cytometry. Endoplasmic reticulum stress-related proteins including CHOP and BiP, and immunogenic cell death (ICD) proteins including calreticulin (CALR) and high mobility group box 1 (HMGB1), were detected by Western blotting. IFN-γ and TNF-α levels in the serum of mice were detected by ELISA. <b><i>Results:</i></b> IRI in combination with CUR had synergistic antitumor effects in CT-26 colon carcinoma cells. Combination treatment with IRI and CUR was more effective than IRI or CUR alone. IRI and CUR combination treatment significantly upregulated ICD-related proteins including CALR and HMGB1 and had a greater antitumor effect than IRI or CUR single treatment in vivo. CUR may synergistically improve the antitumor effect of IRI by promoting the ICD effect. <b><i>Conclusion:</i></b> Combination therapy with IRI and CUR may be an option for first-line chemotherapy in some patients with advanced colorectal cancer.
Collapse
|
19
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Muhtar M, Tong W, Shao Z, Zhang Z, Liu J. Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy. Cell Mol Life Sci 2022; 79:427. [PMID: 35842562 PMCID: PMC11071722 DOI: 10.1007/s00018-022-04462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shidai Mu
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muradil Muhtar
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
He Y, Fang Y, Zhang M, Zhao Y, Tu B, Shi M, Muhitdinov B, Asrorov A, Xu Q, Huang Y. Remodeling “cold” tumor immune microenvironment via epigenetic-based therapy using targeted liposomes with in situ formed albumin corona. Acta Pharm Sin B 2022; 12:2057-2073. [PMID: 35847495 PMCID: PMC9279642 DOI: 10.1016/j.apsb.2021.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
There is a close connection between epigenetic regulation, cancer metabolism, and immunology. The combination of epigenetic therapy and immunotherapy provides a promising avenue for cancer management. As an epigenetic regulator of histone acetylation, panobinostat can induce histone acetylation and inhibit tumor cell proliferation, as well as regulate aerobic glycolysis and reprogram intratumoral immune cells. JQ1 is a BRD4 inhibitor that can suppress PD-L1 expression. Herein, we proposed a chemo-free, epigenetic-based combination therapy of panobinostat/JQ1 for metastatic colorectal cancer. A novel targeted binary-drug liposome was developed based on lactoferrin-mediated binding with the LRP-1 receptor. It was found that the tumor-targeted delivery was further enhanced by in situ formation of albumin corona. The lactoferrin modification and endogenous albumin adsorption contribute a dual-targeting effect on the receptors of both LRP-1 and SPARC that were overexpressed in tumor cells and immune cells (e.g., tumor-associated macrophages). The targeted liposomal therapy was effective to suppress the crosstalk between tumor metabolism and immune evasion via glycolysis inhibition and immune normalization. Consequently, lactic acid production was reduced and angiogenesis inhibited; TAM switched to an anti-tumor phenotype, and the anti-tumor function of the effector CD8+ T cells was reinforced. The strategy provides a potential method for remodeling the tumor immune microenvironment (TIME).
Collapse
|
21
|
Xiao P, Li Y, Wang D. Amplifying antitumor T cell immunity with versatile drug delivery systems for personalized cancer immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2021.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Xiang Y, Chen L, Liu C, Yi X, Li L, Huang Y. Redirecting Chemotherapeutics to the Endoplasmic Reticulum Increases Tumor Immunogenicity and Potentiates Anti-PD-L1 Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104591. [PMID: 34859582 DOI: 10.1002/smll.202104591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) in cancer cells has been considered as a pharmacological target. Still, the effects of a ER-targeted system remain less investigated, due to the fact that most chemo-drugs take actions in the nucleus. Here, it is demonstrated that ER-targeted delivery of doxorubicin (DOX), a typically nucleus-tropic-and-acting agent, attenuates its original effect on cytotoxicity while generating new functions favorable for immune activation. First, a library of DOX derivatives with variable ER-targeting abilities is synthesized. The results reveal that higher ER-targeting efficiency correlates with greater ER stress. As compared with naïve drug, ER-targeted DOX considerably alters the mode of action from nuclear DNA damage-associated cytotoxicity to ER stress-mediated calreticulin exposure. Consequently, ER-targeted DOX decreases cytotoxicity but increases the capability to induce immunogenic cell death (ICD). Therefore, a platform combining naïve and ER-targeted DOX is constructed for in vivo application. Conventional polymer-DOX conjugate inhibits tumor growth by exerting a direct killing effect, and ER-targeted polymer-DOX conjugate suppresses residual tumors by eliciting ICD-associated immunity, together resulting in considerable tumor regression. In addition, simultaneous inhibition of adaptive PD-L1 enrichment (due to negative-feedback to ICD induction) further leads to greater therapeutic outcome. Collectively, ER-targeted therapy can enhance anticancer efficacy by promoting ICD-associated immunotherapy, and potentiating chemotherapy and checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yucheng Xiang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Liqiang Chen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Xiaoli Yi
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| |
Collapse
|
23
|
Liu M, Chen X, Chen H, Wu X, Fan W, Chen J. Nanotechnology-Based Drug Delivery System for Anticancer Active Ingredients from Traditional Chinese Medicines: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2011-2032. [DOI: 10.1142/s0192415x22500860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The variable dosage forms of most traditional Chinese medicines (TCMs) could be disadvantaged by low selectivity, poor biological distribution, limited bioavailability with low efficacy, and some adverse effects. These issues limit the control of clinical pharmacodynamics of the antitumor active components. With the progress of science and technology, many new polymer materials and new technologies have emerged, such as nanotechnology, cyclodextrin inclusion, solid dispersion, microcapsule and microsphere technologies. These new technologies provide a good basis for exploring novel TCM dosage forms for overcoming the shortcomings. The increased numbers of new technologies have been used to study TCM dosage forms with remarkable achievements. In this review paper, we will provide a systematic overview of the new dosage forms of nano-formulations and co-medications in relation to nano-delivery systems in an attempt to provide useful references for practical application of active antitumor ingredients from the TCMs.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Xinmei Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Hang Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
- Shanghai Wei Er Lab, Shanghai 200137, P. R. China
| | - Wei Fan
- Seventh People’s Hospital of Shanghai, University of Traditional Chinese Medicine, Shanghai 200137, P. R. China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
- Shanghai Wei Er Lab, Shanghai 200137, P. R. China
| |
Collapse
|
24
|
Zhang Z, Zhang Q, Xie J, Zhong Z, Deng C. Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomater Sci 2021; 9:6915-6926. [PMID: 34524279 DOI: 10.1039/d1bm00724f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal (BET) proteins are attractive targets for treating various malignancies including melanoma. The inhibition of BET bromodomains, e.g. with JQ1, is found to downregulate the expression of both c-MYC oncoprotein and programmed cell death ligand 1 (PD-L1), which play a crucial role in tumor growth and the immunosuppressive tumor microenvironment, respectively. The BET bromodomain inhibitors like JQ1 though exhibiting high selectivity and affinity show usually low bioavailability and efficacy in vivo due to fast clearance and inferior uptake by tumor cells. The therapeutic effect of JQ1 might further be lowered by drug resistance. Here, enzyme-responsive micellar JQ1 (mJQ1) was fabricated from a poly(ethylene glycol)-b-poly(L-tyrosine) copolypeptide to enhance JQ1 delivery and the immunotherapy of malignant melanoma. The in vitro results showed that mJQ1 induced clearly better repression of c-MYC and PD-L1 proteins, cell cycle arrest, cell inhibition, and apoptotic activity than free JQ1 in B16F10 cancer cells. The intratumoral administration of mJQ1 at 2.5 mg of JQ1 equiv. per kg was found to show better inhibition of B16F10 tumors in C57BL/6 mice than the intraperitoneal administration of free JQ1 at 50 mg kg-1. In particular, when combined with radiotherapy, mJQ1 effectively suppressed tumor growth and brought about strong local and systemic antitumor immunity as evidenced by elevated CD8+ T cells and increased ratios of CD8+ T cells to Tregs, affording significantly improved survival of B16F10 tumor-bearing mice than their JQ1 counterparts and marked growth suppression of distant tumors. The great potency of enzyme-responsive micellar JQ1 makes it interesting for immunotherapy of various tumors.
Collapse
Affiliation(s)
- Zhenqi Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Jiguo Xie
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
25
|
Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2440. [PMID: 34066710 PMCID: PMC8125868 DOI: 10.3390/ma14092440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.
Collapse
Affiliation(s)
- Octav Ginghină
- Department of Surgery, “Sf. Ioan” Emergency Clinical Hospital, 13 Vitan Barzesti Street, 042122 Bucharest, Romania;
- Department II, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 17-21 Calea Plevnei Street, 010232 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| |
Collapse
|
26
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|