1
|
Li F, Cai C, Wang F, Zhang N, Zhao Q, Chen Y, Cui X, Wang S, Zhang W, Liu D, Cai Y, Jin J. 20(S)-ginsenoside Rg3 suppresses gastric cancer cell proliferation by inhibiting E2F-DP dimerization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156740. [PMID: 40252583 DOI: 10.1016/j.phymed.2025.156740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Gastric cancer (GC) is a common and aggressive malignancy, with treatment options often limited by drug resistance and the adverse effects of targeted therapies and immunotherapy. Ginsenoside Rg3, a bioactive compound derived from ginseng, has shown promise in inhibiting the growth of various tumor types, including GC. However, the molecular mechanisms underlying its therapeutic effects against GC remain insufficiently understood. OBJECTIVE This study aimed to elucidate the molecular mechanisms underlying the anti-cancer effects of ginsenoside Rg3 against GC. METHODS To explore the molecular mechanisms underlying Rg3's anti-GC effects, RNA sequencing (RNA-Seq) was conducted to identify potential Rg3-regulated targets. The interaction between Rg3 and E2F was analyzed using several approaches, including the cellular thermal shift assay (CETSA), Rg3-PEGA pull-down, Rg3 pull-down protein mass spectrometry, and 3D molecular docking. Additionally, quantitative reverse transcription PCR (qRT-PCR), co-transfection followed by immunoprecipitation, Western blotting, flow cytometry, Annexin V-FITC staining, Hoechst staining, and luciferase reporter assays were employed to elucidate the molecular effects of Rg3. The inhibitory effect of Rg3 on GC proliferation was assessed through colony formation assays in vitro and tumor xenograft experiments in C57BL/6 mice in vivo. RESULTS Rg3-mediated gene expression profiling in GC cells revealed several transcription factors, including E2F, and biological processes potentially influenced by Rg3. Consistent with these findings, Rg3 suppressed E2F expression and impeded GC cell proliferation by inducing G1/S cell cycle arrest, reducing cell growth both in vitro and in vivo, enhancing apoptosis, and inhibiting CDC6 transactivation. CETSA and Rg3 pull-down assays confirmed an interaction between Rg3 and E2F. Additionally, 3D molecular docking analysis demonstrated that Rg3 binds with high affinity to E2F at the heterodimeric domain via hydrogen bonding, potentially disrupting E2F-DP heterodimer formation and subsequently inhibiting cell cycle gene expression. In agreement with this, Rg3-treated GC cells exhibited reduced expression of cyclin D1, CDK4, cyclin A, CDK1, and CDK2. Moreover, Rg3 activated the tumor suppressors p53 and p21, further inhibiting RB phosphorylation by suppressing cyclin/CDK activity, thereby blocking transcription of G1/S transition-related genes. CONCLUSION This study provides the first evidence that Rg3 directly binds to E2F proteins, disrupting E2F-DP heterodimer formation and inhibiting the transcription of E2F-DP-regulated target genes. Furthermore, Rg3 activates the p53-p21 pathway while suppressing the cyclin/CDK-RB signaling pathway, effectively inhibiting cancer cell proliferation. These findings highlight a potential therapeutic strategy for developing small molecules structurally similar to Rg3 to target tumors with high E2F expression.
Collapse
Affiliation(s)
- Fuqiang Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China; School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Na Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Qingzhi Zhao
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Yuyang Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Xueli Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Siyang Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Wenjie Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| |
Collapse
|
2
|
Zhang X, Chang X, Chai R, Zhang X, Li J, Guo Z, Qiu Z, Song Y, Shi S, Hu Y, Du B. Xin-Fu-Kang oral liquid mitigates chronic heart failure through NR4A1-Dependent regulation of endoplasmic reticulum-mitochondrial crosstalk in Cardiomyocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156467. [PMID: 40036990 DOI: 10.1016/j.phymed.2025.156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminus of a variety of cardiovascular diseases. Xin-Fu-Kang oral liquid (XFK), a natural herbal compound, has been used in CHF treatment for decades. However, further investigation is required to elucidate the fundamental mechanisms. STUDY DESIGN AND METHODS Transverse aortic constriction (TAC) was performed in mouse models. The pharmacological efficacy of XFK was confirmed by assessing cardiac function and the observation of pathological alterations in myocardial tissue. Following this, single-cell sequencing (scRNA-seq) was implemented. With the identification of XFK metabolites in rat serum via UPLC-QE MS, molecular docking was utilized to conduct preliminary validation of putative therapeutic targets. Subsequently, the phenylephrine-induced model of cardiac pressure overload was established for conducting additional verification and rescue experiments by silencing NR4A1 in vitro. RESULTS XFK intervention significantly ameliorated cardiac function in the TAC-induced CHF model. Based on scRNA-seq, cardiomyocytes exhibited the most notable alterations following XFK intervention, with NR4A1 identified as a significantly differentially expressed gene after both TAC induction and XFK intervention. In vitro experiments demonstrated that XFK enhanced mitochondrial function, mitigated oxidative stress, and restored mitophagy in a NR4A1-dependent manner, consequently decreasing apoptosis in PE-induced H9C2. Furthermore, the upstream mechanism was associated with capacity of XFK to mitigate endoplasmic reticulum stress and regulate crosstalk between the two organelles. CONCLUSION XFK counteracts cardiac chronic pressure overload through regulating NR4A1-mediated functional interaction between endoplasmic reticulum and mitochondria in cardiomyocytes, further preserves mitochondria function and prevents apoptosis. This finding indicates a novel pharmacological therapy for CHF.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Zhiling Qiu
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguo Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Gao K, Xu D, Mu F, Zhao M, Zhang W, Tao X, Guo C, Wang J. Systems Pharmacology to Explore the Potential Mechanism of Ginseng Against Heart Failure. Rejuvenation Res 2025; 28:54-66. [PMID: 39504983 DOI: 10.1089/rej.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The aim of this study is to elucidate the pharmacological mechanism underlying the effects of Ginseng Radix et Rhizoma (ginseng) in heart failure (HF), providing a theoretical foundation for its clinical application. The potential mechanism of ginseng in the context of HF was investigated using systems pharmacology that combined network pharmacology, Gene Expression Omnibus (GEO) analysis, molecular docking, and experimental verification. Network pharmacology was employed to identify drug-disease targets. Core gene targets were subsequently subjected to enrichment analysis by integrating network pharmacology with GEO. Molecular docking was utilized to predict the binding affinities between identified targets and ginseng compounds. Furthermore, the therapeutic efficacy of ginseng was validated in an isoproterenol (ISO)-induced rat model of HF. The modulation of key signaling pathways by ginseng was confirmed through Western blot analysis. A total of 154 potential targets of ginseng in the treatment of HF were identified through network pharmacology analysis. The analysis of GSE71613 revealed that the PI3K-Akt pathway, reactive oxygen species, oxidative phosphorylation, MAPK signaling, and Ras signaling pathways are predominantly associated with patients with HF. By integrating the findings from network pharmacology and GEO analysis, ginsenoside Rg1 and ginsenoside Rb3 were identified as the potential components in ginseng, while FN1 and PRKAA2 were recognized as key targets involved in the PI3K-AKT and AMPK pathways, respectively. Molecular docking analysis revealed a strong affinity between the potential components and the identified core targets. In vivo experiments indicated that the extract of ginseng (EPG) significantly ameliorated ISO-induced cardiac dysfunction by improving cardiac parameters such as cardiac left ventricular internal systolic diameter, left ventricular end-diastolic volume, left ventricular end systolic volume, and left ventricular ejection fraction, while also reducing malondialdehyde production. In addition, EPG was found to enhance superoxide dismutase activity and ATP levels, while concurrently reducing the levels of interleukin (IL)-1β, IL-6, and TNF-α. The extract also reduced myocardial oxygen consumption, inflammatory cell infiltration, and the number of damaged myocardial fibers. Moreover, EPG was observed to upregulate the expression of p-PI3K, p-AKT, p-AMPK, and Bcl-2, while downregulating the expression of p-NFκB, TGF-β, and Bax. The therapeutic effects of ginseng on HF are primarily mediated through the PI3K-Akt and AMPK pathways. Ginsenoside Rg1 and ginsenoside Rb3 have been identified as potential therapeutic agents for HF.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Liu J, Li W, Jiao R, Liu Z, Zhang T, Chai D, Meng L, Yang Z, Liu Y, Wu H, Gu X, Li X, Yang C. Miglustat ameliorates isoproterenol-induced cardiac fibrosis via targeting UGCG. Mol Med 2025; 31:55. [PMID: 39934657 PMCID: PMC11812238 DOI: 10.1186/s10020-025-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Cardiac fibrosis is significant global health problem, which is associated with numerous cardiovascular diseases, and ultimately leads to the progression to heart failure. β-adrenergic receptor (β-AR) overactivation play a role in the development of cardiac fibrosis. Miglustat (Mig) has shown anti-fibrosis effects in multiple fibrotic diseases. However, it is unclear whether and how Mig can ameliorate cardiac fibrosis induced by β-AR overactivation. METHODS In vivo, mice were injected with isoproterenol (ISO) to induce cardiac fibrosis and treated with Mig. In vitro, primary cardiac fibroblasts were stimulated by ISO and treated with Mig. Levels of cardiac fibrosis, cardiac dysfunction, activation of cardiac fibroblasts were evaluated by real-time polymerase chain reaction, western blots, sirius red staining, immunohistochemistry staining and echocardiography. Through GEO data and knockdown UDP-glucose ceramide glycosyltransferase (UGCG) in primary cardiac fibroblasts, whether Mig alleviates cardiac fibrosis by targeting UGCG was explored. RESULTS The results indicated that Mig alleviated ISO-induced cardiac dysfunction. Consistently, Mig also suppressed ISO-induced cardiac fibrosis. Moreover, Mig attenuated ISO-induced cardiac fibroblasts (CFs) activation. To identify the protective mechanism of Mig on cardiac fibrosis, several classical β-AR downstream signaling pathways, including ERK, STAT3, Akt and GSK3β, were further analyzed. As expected, ISO activated the ERK, STAT3, Akt and GSK3β in both CFs and mouse hearts, but this effect was reversed pretreated with Mig. Besides, Mig ameliorates ISO-induced cardiac fibrosis by targeting UDP-glucose ceramide glycosyltransferase (UGCG) in CFs. CONCLUSIONS Mig ameliorates β-AR overactivation-induced cardiac fibrosis by inhibiting ERK, STAT3, Akt and GSK3β signaling and UGCG may be a potential target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Hongliang Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
5
|
Kijpaisalratana N, Ament Z, Patki A, Bhave VM, Jones AC, Garcia Guarniz AL, Couch CA, Cushman M, Long DL, Irvin MR, Kimberly WT. Acetylglutamine Differentially Associated with First-Time Versus Recurrent Stroke. Transl Stroke Res 2024; 15:941-949. [PMID: 37531033 PMCID: PMC10834852 DOI: 10.1007/s12975-023-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Approximately one-quarter of strokes occur in individuals with prior stroke. Despite the advancement in secondary stroke prevention, the long-term risk of recurrent stroke has remained unchanged. The objective of this study was to identify metabolite risk markers that are associated with recurrent stroke. We performed targeted metabolomic profiling of 162 metabolites by liquid chromatography-tandem mass spectrometry in baseline plasma in a stroke case-cohort study nested within the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, an observational cohort study of 30,239 individuals aged 45 and older enrolled in 2003-2007. Weighted Cox proportional hazard models were used to identify metabolites that had a differential effect on first-time versus recurrent stroke using an interaction term between metabolite and prior stroke at baseline (yes or no). The study included 1391 incident stroke cases identified during 7.1 ± 4.5 years of follow-up and 1050 participants in the random cohort sample. Among 162 metabolites, 13 candidates had a metabolite-by-prior stroke interaction at a p-value <0.05, with one metabolite, acetylglutamine, surpassing the Bonferroni adjusted p-value threshold (p for interaction = 5.78 × 10-5). In an adjusted model that included traditional stroke risk factors, acetylglutamine was associated with recurrent stroke (HR = 2.27 per SD increment, 95% CI = 1.60-3.20, p = 3.52 × 10-6) but not with first-time stroke (HR = 0.96 per SD increment, 95% CI = 0.87-1.06, p = 0.44). Acetylglutamine was associated with recurrent stroke but not first-time stroke, independent of traditional stroke risk factors. Future studies are warranted to elucidate the pathogenesis of acetylglutamine and recurrent stroke risk.
Collapse
Affiliation(s)
- Naruchorn Kijpaisalratana
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amit Patki
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alana C Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Catharine A Couch
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Zhong G, Chen J, Li Y, Han Y, Wang M, Nie Q, Xu M, Zhu Q, Chang X, Wang L. Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway. BMC Complement Med Ther 2024; 24:247. [PMID: 38926825 PMCID: PMC11209975 DOI: 10.1186/s12906-024-04492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ginsenoside Rg3 is a component of ginseng that protects against myocardial ischemia/reperfusion (MI/R) injury. Ferroptosis is a new form of cell death characterized by oxidative damage to phospholipids. The purpose of this study was to examine the role and of ginsenoside Rg3 in MI/R and the mechanism. METHODS A mouse model of left anterior descending (LAD) ligation-induced myocardial ischemia/reperfusion (MI/R) injury and oxygen-glucose deprivation/reperfusion (OGD/R) were used as in vitro and in vivo models, respectively. Echocardiographic analysis, 2,3,5-triphenyltetrazolium chloride (TTC) staining and hematoxylin-eosin (H&E) staining were used to assess the cardioprotective effects of ginsenoside Rg3. Western blotting, biochemical analysis, small interfering RNA analysis and molecular docking were performed to examine the underlying mechanism. RESULTS Ginsenoside Rg3 improved cardiac function and infarct size in mice with MI/R injury. Moreover, ginsenoside Rg3 increased the expression of the ferroptosis-related protein GPX4 and inhibited iron deposition in mice with MI/R injury. Ginsenoside Rg3 also activated the Nrf2 signaling pathway. Ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the Nrf2 signaling pathway. Notably, ginsenoside Rg3 regulated the keap1/Nrf2 signaling pathway to attenuate OGD/R-induced ferroptosis in H9C2 cells. Taken together, ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway. CONCLUSIONS Our findings demonstrated that ginsenoside Rg3 ameliorate MI/R-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- GuoFu Zhong
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Junteng Chen
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Yangtao Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Yue Han
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Maosheng Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Qinqi Nie
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Mujuan Xu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Qinghua Zhu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Xiao Chang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China.
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.
| | - Ling Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China.
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Buneeva OA, Fedchenko VI, Kaloshina SA, Zavyalova MG, Zgoda VG, Medvedev AE. Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. BIOMEDITSINSKAIA KHIMIIA 2024; 70:145-155. [PMID: 38940203 DOI: 10.18097/pbmc20247003145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms. Certain experimental evidence exists in the literature that the RP220 peptide (a 20-mer peptide corresponding to the amino acid sequence RNLS 220-239) reproduces a number of non-catalytic effects of this protein, acting on receptor proteins of the plasma membrane. The possibility of interaction of this peptide with intracellular proteins has not been studied. Taking into consideration the known role of RNLS as a possible antihypertensive factor, the aim of this study was to perform proteomic profiling of the kidneys of normotensive and hypertensive rats using RP220 as an affinity ligand. Proteomic (semi-quantitative) identification revealed changes in the relative content of about 200 individual proteins in the kidneys of hypertensive rats bound to the affinity sorbent as compared to the kidneys of normotensive animals. Increased binding of SHR renal proteins to RP220 over the normotensive control was found for proteins involved in the development of cardiovascular pathology. Decreased binding of the kidney proteins from hypertensive animals to RP220 was noted for components of the ubiquitin-proteasome system, ribosomes, and cytoskeleton.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Shi L, Luo J, Wei X, Xu X, Tu L. The protective role of ginsenoside Rg3 in heart diseases and mental disorders. Front Pharmacol 2024; 15:1327033. [PMID: 38469409 PMCID: PMC10926849 DOI: 10.3389/fphar.2024.1327033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Ginsenoside Rg3, a compound derived from Panax ginseng C. A. Mey., is increasingly recognized for its wide range of pharmacological effects. Under the worldwide healthcare challenges posed by heart diseases, Rg3 stands out as a key subject in modern research on Chinese herbal medicine, offering a novel approach to therapy. Mental illnesses are significant contributors to global disease mortality, and there is a well-established correlation between cardiac and psychiatric conditions. This connection is primarily due to dysfunctions in the sympathetic-adrenomedullary system (SAM), the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, and brain-derived neurotrophic factor impairment. This review provides an in-depth analysis of Rg3's therapeutic benefits and its pharmacological actions in treating cardiac and mental health disorders respectively. Highlighting its potential for the management of these conditions, Rg3 emerges as a promising, multifunctional therapeutic agent.
Collapse
Affiliation(s)
- Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xizhen Xu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
10
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
12
|
Xu H, Miao H, Chen G, Zhang G, Hua Y, Wu Y, Xu T, Han X, Hu C, Pang M, Tan L, Liu B, Zhou Y. 20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways. J Ginseng Res 2023; 47:743-754. [PMID: 38107395 PMCID: PMC10721484 DOI: 10.1016/j.jgr.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 12/19/2023] Open
Abstract
Background Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-β1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78 × 10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 down-regulated the TGF-β1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.
Collapse
Affiliation(s)
- Honglin Xu
- Department of Geratology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Haifeng Miao
- Department of Geratology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Tong Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Mingjie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Leyi Tan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingchun Zhou
- Department of Geratology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ren Y, Wu Y, He W, Tian Y, Zhao X. SMOC2 plays a role in heart failure via regulating TGF-β1/Smad3 pathway-mediated autophagy. Open Med (Wars) 2023; 18:20230752. [PMID: 37465345 PMCID: PMC10350896 DOI: 10.1515/med-2023-0752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-β1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-β agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-β1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-β1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-β1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yun Wu
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Wenshuai He
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yingjie Tian
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Xingsheng Zhao
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| |
Collapse
|
14
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
15
|
Xu Z, Lu D, Yuan J, Wang L, Wang J, Lei Z, Liu S, Wu J, Wang J, Huang L. Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R-Ankrd1-P53 Signaling Pathway. Int J Mol Sci 2022; 23:13161. [PMID: 36361958 PMCID: PMC9657855 DOI: 10.3390/ijms232113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial fibrosis following acute myocardial infarction (AMI) seriously affects the prognosis and survival rate of patients. This study explores the role and regulation mechanism of storax, a commonly used traditional Chinese medicine for treatment of cardiovascular diseases, on myocardial fibrosis and cardiac function. The AMI rat model was established by subcutaneous injection of Isoproterenol hydrochloride (ISO). Storax (0.1, 0.2, 0.4 g/kg) was administered by gavage once/d for 7 days. Electrocardiogram, echocardiography, hemodynamic and cardiac enzyme in AMI rats were measured. HE, Masson, immunofluorescence and TUNEL staining were used to observe the degree of pathological damage, fibrosis and cardiomyocyte apoptosis in myocardial tissue, respectively. Expression of AT1R, CARP and their downstream related apoptotic proteins were detected by WB. The results demonstrated that storax could significantly improve cardiac electrophysiology and function, decrease serum cardiac enzyme activity, reduce type I and III collagen contents to improve fibrosis and alleviate myocardial pathological damage and cardiomyocyte apoptosis. It also found that storax can significantly down-regulate expression of AT1R, Ankrd1, P53, P-p53 (ser 15), Bax and cleaved Caspase-3 and up-regulate expression of Mdm2 and Bcl-2. Taken together, these findings indicated that storax effectively protected cardiomyocytes against myocardial fibrosis and cardiac dysfunction by inhibiting the AT1R-Ankrd1-P53 signaling pathway.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Si Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
16
|
Hu J, Liu T, Fu F, Cui Z, Lai Q, Zhang Y, Yu B, Liu F, Kou J, Li F. Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy. Lab Invest 2022; 20:447. [PMID: 36192726 PMCID: PMC9531426 DOI: 10.1186/s12967-022-03642-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022]
Abstract
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03642-x.
Collapse
Affiliation(s)
- Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fei Fu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|