1
|
Dos Santos ACC, Figueiredo-Vanzan D, Bentes J, Motta JM, Mata-Santos HA, Pyrrho ADS, Castelo-Branco MTL. Tetrylpyamethrazine alleviates hepatic fibrosis induced by experimental mansonic schistosomiasis. Inflammopharmacology 2025:10.1007/s10787-025-01759-1. [PMID: 40268854 DOI: 10.1007/s10787-025-01759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Hepatic fibrosis resulting from human mansonic schistosomiasis significantly impairs liver function and contributes substantially to morbidity associated with helminth infections. This pathological state develops following the deposition of helminth eggs within hepatic tissues, triggering a granulomatous inflammatory reaction. Schistosomiasis, a neglected tropical disease affecting approximately 240 million individuals globally, represents a major public health challenge. Although praziquantel (PZQ) is recommended by the World Health Organization (WHO) as the primary treatment for helminth infections, additional therapies are required to address the associated liver fibrosis. This study investigated the efficacy of tetramethylpyrazine (TMP), a natural compound known for its anti-inflammatory, antifibrotic, and hepatoprotective properties in various experimental models, in mitigating hepatic fibrosis induced by mansonic schistosomiasis. Our in vivo experiments demonstrated that TMP treatment significantly reduced hepatic granuloma size, as evidenced by histological analysis. Furthermore, our in vitro studies showed that TMP increased levels of the anti-inflammatory cytokine IL-10 while decreasing levels of the profibrotic cytokine IL-13 in a concentration-dependent manner. Immunofluorescence analysis also revealed that TMP effectively inhibited collagen deposition. Collectively, these findings suggest that TMP exhibits potential as an anti-inflammatory and antifibrotic agent for hepatic fibrosis resulting from Schistosoma mansoni infection.
Collapse
Affiliation(s)
- Ana Carolina Campos Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Josiane Bentes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Maria Motta
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Morgana Teixeira Lima Castelo-Branco
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, Hoyer P, Lötvall J, Thakur BK. Unravelling the Significance of Extracellular Vesicle-Associated DNA in Cancer Biology and Its Potential Clinical Applications. J Extracell Vesicles 2025; 14:e70047. [PMID: 40091452 PMCID: PMC11911540 DOI: 10.1002/jev2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cell-to-cell communication and have drawn significant attention due to their potential clinical applications. However, much remains to be understood about the biology of EV-associated DNA (EV-DNA). EV-DNA is actively released by both normal and malignant cells and consists of diverse fragments with varying structures. Because EV-DNA spans the entire genome of cells from which it originates, it continues to be attractive as a biomarker for cancer diagnosis and monitoring. Further, EV-DNA delivery can alter the function of recipient cells by interfering with cytoplasmic DNA sensor pathways. This review explores the biology and significance of EV-DNA, including its topology and fragmentomics features, modality of association with EVs, packaging mechanisms, and potential functions. It also emphasizes the specificity of vesicular DNA in identifying genetic and epigenetic changes in cancer. Additionally, it delves into the impact of EV-DNA on cellular behaviour and its potential use as a therapeutic target in cancer. The review discusses new insights into EV-DNA biology and provides perspectives and alternatives to address the challenges and concerns for future EV-DNA studies.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | | | | | | | - Barbora Tamášová
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | - Peter Hoyer
- Department of Pediatrics IIUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
3
|
Fan X, Peng Y, Li B, Wang X, Liu Y, Shen Y, Liu G, Zheng Y, Deng Q, Liu J, Yang L. Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410439. [PMID: 39804962 PMCID: PMC11884600 DOI: 10.1002/advs.202410439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway. Briefly, injured liver secreted increased amounts of EVs into circulation, which are then engulfed primarily by macrophages in skeletal muscle and subsequently induce cGAS-STING signaling and its-mediated inflammatory response in muscles. In contrast, suppression of hepatic EV secretion or STING signaling significantly alleviated cirrhosis-induced skeletal muscle inflammation and muscle atrophy in vivo. Circulating EVs from cirrhotic patients showed higher levels of mtDNA, and the levels of EV-mtDNA positively correlated with the severity of liver injury. In injured hepatocytes, mitochondrial damage promoted the release of cytosolic mtDNA and the subsequent secretion of mtDNA-enriched EVs. This study reveals that injured hepatocyte-derived EVs induce skeletal muscle inflammation via the mtDNA‒STING axis, while targeted blockade of liver EV secretion or STING signaling represents a potential therapeutic approach for preventing cirrhosis-associated skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yunke Peng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Bo Li
- Department of RadiologyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yifeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Guofeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyCenter for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Yang H, Cao J, Zhou L, Chen J, Tang J, Chen J, Yin L, Xie L, Li J, Luo J. Exploring the Cardioprotective Mechanisms of Ligusticum wallichii in Myocardial Infarction Through Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2025; 19:281-302. [PMID: 39845152 PMCID: PMC11750949 DOI: 10.2147/dddt.s481499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Background Myocardial infarction represents a coronary artery ailment with the highest incidence and fatality rates among cardiovascular conditions. However, effective pharmacological interventions remain elusive. This study seeks to elucidate the molecular mechanisms underlying the effects of Ligusticum wallichii on myocardial infarction through network pharmacology and experimental validation. Methods Initially, potential targets of Ligusticum wallichii's active ingredients and myocardial infarction-related targets were retrieved from databases. Subsequently, core targets of Ligusticum wallichii on myocardial infarction were identified via the PPI network analysis and subjected to GO and KEGG pathway enrichment analyses. Molecular docking was employed to validate the binding affinities between the core targets and the bioactive components. The findings from network pharmacology analysis were corroborated through in vitro and in vivo experiments. Results Seven active ingredients from Ligusticum wallichii were identified, corresponding to 122 targets. Molecular docking revealed robust binding affinities of Myricanone, Senkyunone, and Sitosterol to key target proteins (EGFR, STAT3, and SRC). In vitro, experiments demonstrated that pretreatment with the active components of Ligusticum wallichii protected myocardial cells from OGD exposure and modulated the expression of their key target genes. In vivo, experiments showed that the active components of Ligusticum wallichii significantly improved myocardial infarction via alleviating myocardial fibrosis and oxidative stress and did not elicit toxic effects in mice. Conclusion The collective findings suggest that Ligusticum wallichii shows promising potential for myocardial infarction treatment by regulating key target proteins (EGFR, STAT3, and SRC), which play roles in oxidative stress and myocardial fibrosis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Jun Cao
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Lijie Zhou
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Jiangchuan Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Jiaman Tang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Jiamei Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Lengyun Yin
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center For Respiratory Rehabilitation in Hunan Province, Changsha, Hunan, People’s Republic of China
| | - Jinwen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
5
|
Wang L, Qu J, Li J, Xue X, Qin L, Li Y, Dou Y, Mu X, Li X. Si-Wu-Tang improves liver fibrosis by restoring liver sinusoidal endothelial cell functionality and reducing communication with hepatic stellate cells. Chin Med 2024; 19:179. [PMID: 39741334 DOI: 10.1186/s13020-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/10/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Liver fibrosis is a complex reparative process in response to chronic liver injuries, with limited effective therapeutic options available in clinical practice. During liver fibrosis, liver sinusoidal endothelial cells (LSECs) undergo phenotypic changes and also play a role in modulating cellular communications. Si-Wu-Tang (SWT), a traditional Chinese herbal remedy, has been extensively studied for its effectiveness in treating hematological, gynecological and hepatic diseases. MATERIALS AND METHODS The component of SWT were identified by ultra-high-performance liquid chromatography (UHPLC). After establishing bile duct ligation (BDL)-induced liver fibrosis mice model and VEGFA-stimulated LSEC model, we invested the mechanism of SWT through RNA sequencing combined with molecular biology techniques. RESULTS SWT significantly improved the sinusoidal permeability and liver fibrosis induced by BDL and effectively regulated pathological processes in LSECs, such as angiogenesis, cell adhesion, basement membrane formation and defenestration. The anti-fibrosis effects of SWT were attributed to the inhibition on LSEC adhesion via COL8A1, on LSEC angiogenesis via IL-1β and the induction of LSEC defenestration by OLR1. Additionally, SWT disrupted the intercellular crosstalk between LSECs and hepatic stellate cells (HSCs) driven by IL-1β, thus alleviating liver fibrosis. CONCLUSION SWT collectively ameliorated liver fibrosis by inhibiting the COL8A1/IL-1β/OLR1 pathways associated with LSEC angiogenesis, adhesion and defenestration, as well as suppressing LSEC secretion of IL-1β to reduce HSC activation.
Collapse
Affiliation(s)
- Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yuanfeng Dou
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaohong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
6
|
Zhang P, Deng H, Lan X, Shen P, Bai Z, Huangfu C, Wang N, Xiao C, Gao Y, Sun Y, Li J, Guo J, Zhou W, Gao Y. Tetramethylpyrazine Protects Against Chronic Hypobaric Hypoxia-Induced Cardiac Dysfunction by Inhibiting CaMKII Activation in a Mouse Model Study. Int J Mol Sci 2024; 26:54. [PMID: 39795913 PMCID: PMC11720575 DOI: 10.3390/ijms26010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure. By utilizing hypobaric chambers to simulate high-altitude environments, we found that TMP improved cardiac function, alleviated cardiac hypertrophy, and reduced myocardial injury in hypobaric hypoxic mice. RNA sequencing showed that TMP also upregulated heart-contraction-related genes that were suppressed by hypobaric hypoxia exposure. Mechanistically, TMP inhibited hypobaric hypoxia-induced cardiac Ca2+/calmodulin-dependent kinase II (CaMKII) activation and exerted cardioprotective effects by inhibiting CaMKII. Our data suggest that TMP application may be a promising approach for treating high-altitude-induced cardiac dysfunction, and they highlight the crucial role of CaMKII in hypobaric hypoxia-induced cardiac pathophysiology.
Collapse
Affiliation(s)
- Pengfei Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Huifang Deng
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Xiong Lan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Pan Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Zhijie Bai
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Chaoji Huangfu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Ningning Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Chengrong Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yehui Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yue Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Jiamiao Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Jie Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Tao X, Chen C, Liu M. The Role of Extracellular Vesicles in Liver Fibrosis: Friends or Foes? Biomedicines 2024; 12:2665. [PMID: 39767572 PMCID: PMC11726879 DOI: 10.3390/biomedicines12122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Liver fibrosis represents a common pathway in the progression of various chronic liver diseases towards cirrhosis and liver failure. Extracellular vesicles (EVs) are membrane-enclosed particles secreted by diverse cell types, including exosomes, microvesicles, apoptotic vesicles, and the recently identified migrasomes. These vesicles can be taken up by recipient cells, thereby modulating their function through the transport of cargo molecules. EVs facilitate intercellular communication and play a significant role in the development of liver fibrosis. Moreover, the detection of EVs in various body fluids offers sensitive diagnostic tools for assessing liver fibrosis. Additionally, EVs may serve as therapeutic targets, potential therapeutic agents, and drug delivery vehicles. This article reviews recent advances in the field of EVs concerning liver fibrosis and related diseases, with a particular focus on the potential role of the newly discovered migrasomes in intracellular crosstalk within the liver.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Ding F, Zhou M, Ren Y, Li Y, Xiang J, Li Y, Yu J, Hong Y, Fu Z, Li H, Pan Z, Liu B. Mitochondrial Extracellular Vesicles: A Promising Avenue for Diagnosing and Treating Lung Diseases. ACS NANO 2024; 18:25372-25404. [PMID: 39225081 DOI: 10.1021/acsnano.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mitochondria, pivotal organelles governing cellular biosynthesis, energy metabolism, and signal transduction, maintain dynamic equilibrium through processes such as biogenesis, fusion, fission, and mitophagy. Growing evidence implicates mitochondrial dysfunction in a spectrum of respiratory diseases including acute lung injury/acute respiratory distress syndrome, bronchial asthma, pulmonary fibrosis, chronic obstructive pulmonary disease, and lung cancer. Consequently, identifying methods capable of ameliorating damaged mitochondrial function is crucial for the treatment of pulmonary diseases. Extracellular vesicles (EVs), nanosized membrane vesicles released by cells into the extracellular space, facilitate intercellular communication by transferring bioactive substances or signals between cells or organs. Recent studies have identified abundant mitochondrial components within specific subsets of EVs, termed mitochondrial extracellular vesicles (mitoEVs), whose contents and compositions vary with disease progression. Moreover, mitoEVs have demonstrated reparative mitochondrial functions in injured recipient cells. However, a comprehensive understanding of mitoEVs is currently lacking, limiting their clinical translation prospects. This Review explores the biogenesis, classification, functional mitochondrial cargo, and biological effects of mitoEVs, with a focus on their role in pulmonary diseases. Emphasis is placed on their potential as biological markers and innovative therapeutic strategies in pulmonary diseases, offering fresh insights for mechanistic studies and drug development in various pulmonary disorders.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinying Ren
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinying Xiang
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuehan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Ying Hong
- Infection, Immunity, Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Zhou Fu
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongbo Li
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
9
|
Guo Q, Wu Z, Wang K, Shi J, Wei M, Lu B, Huang Z, Ji L. Forsythiaside-A improved bile-duct-ligation-induced liver fibrosis in mice: The involvement of alleviating mitochondrial damage and ferroptosis in hepatocytes via activating Nrf2. Free Radic Biol Med 2024; 222:27-40. [PMID: 38815774 DOI: 10.1016/j.freeradbiomed.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Liver fibrosis is a key and reversible stage in the progression of many chronic liver diseases to cirrhosis or hepatocellular carcinoma. Forsythiaside-A (FTA), a main compound isolated from Forsythiae Fructus, has an excellent liver protective activity. This study aims to investigate the efficacy of FTA in improving cholestatic liver fibrosis. Bile-duct-ligation (BDL) was conducted to induce liver fibrosis in mice. Hepatic collagen deposition was evaluated by Masson and Sirus red staining. The bile acid spectrum in the liver and serum was analyzed by mass spectrometry. Liver oxidative stress injury and mitochondria damage were observed by using Mito-Tracker Red fluorescence staining, transmission electron microscopy, etc. The level of ferrous iron (Fe2+) and the expression of ferroptosis-associated molecules were detected. The binding between FTA and its target protein was confirmed by Co-immunoprecipitation (Co-IP), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR). Our results demonstrated that FTA alleviated BDL-induced liver fibrosis in mice. FTA did not decrease the elevated amount of bile acids in BDL-treated mice, but reduced the bile acid-induced mitochondrial damage, oxidative stress and ferroptosis in hepatocytes, and also induced nuclear factor erythroid 2-related factor-2 (Nrf2) activation. In Nrf2 knock-out mice, the FTA-provided protection against BDL-induced liver fibrosis was disappeared, and FTA's inhibition on mitochondrial damage, oxidative stress and ferroptosis were lowered. Further results displayed that FTA could directly bind to Kelch-like ECH-associated protein-1 (Keap1), thereby activating Nrf2. Moreover, the BDL-induced liver fibrosis was markedly weakened in liver-specific Keap1 knockout mice. Hence, this study suggests that FTA alleviated the BDL-induced liver fibrosis through attenuating mitochondrial damage and ferroptosis in hepatocytes by activating Nrf2 via directly binding to Keap1.
Collapse
Affiliation(s)
- Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
10
|
Zhang Y, Jia K, Li Y, Ma Z, Fan G, Luo R, Li Y, Yang Y, Li F, Liu R, Liu J, Li X. Rehmanniae Radix Praeparata aqueous extract improves hepatic ischemia/reperfusion injury by restoring intracellular iron homeostasis. Chin J Nat Med 2024; 22:769-784. [PMID: 39326972 DOI: 10.1016/s1875-5364(24)60719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 09/28/2024]
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a common pathophysiological condition occurring during or after liver resection and transplantation, leading to hepatic viability impairment and functional deterioration. Recently, ferroptosis, a newly recognized form of programmed cell death, has been implicated in IRI. Rehmanniae Radix Praeparata (RRP), extensively used in Chinese herbal medicine for its hepatoprotective, anti-inflammatory, and antioxidant properties, presents a potential therapeutic approach. However, the mechanisms by which RRP mitigates HIRI, particularly through the regulation of ferroptosis, remain unclear. In this study, we developed a HIRI mouse model and monocrotaline (MCT)- and erastin-induced in vitro hepatocyte injury models. We conducted whole-genome transcriptome analysis to elucidate the protective effects and mechanisms of RRP on HIRI. The RRP aqueous extract was characterized by the presence of acteoside, rehmannioside D, and 5-hydroxymethylfurfural. Our results demonstrate that the RRP aqueous extract ameliorated oxidative stress, reduced intracellular iron accumulation, and attenuated HIRI-induced liver damage. Additionally, RRP significantly inhibited hepatocyte death by restoring intracellular iron homeostasis both in vivo and in vitro. Mechanistically, the RRP aqueous extract reduced intrahepatocellular iron accumulation by inhibiting ZIP14-mediated iron uptake, promoting hepcidin- and ferroportin-mediated iron efflux, and ameliorating mitochondrial iron aggregation through upregulation of Cisd1 expression. Moreover, siRNA-mediated inhibition of hamp synergistically enhanced the RRP aqueous extract's inhibitory effect on ferroptosis. In conclusion, our study elucidates the mechanisms by which RRP aqueous extracts alleviate HIRI, highlighting the restoration of iron metabolic balance. These findings position RRP as a promising candidate for clinical intervention in HIRI treatment.
Collapse
Affiliation(s)
- Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Wu S, Yang T, Ma M, Fan L, Ren L, Liu G, Wang Y, Cheng B, Xia J, Hao Z. Extracellular vesicles meet mitochondria: Potential roles in regenerative medicine. Pharmacol Res 2024; 206:107307. [PMID: 39004243 DOI: 10.1016/j.phrs.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
13
|
Jia K, Ma Z, Zhang Y, Xie K, Li J, Wu J, Qu J, Li F, Li X. Picroside II promotes HSC apoptosis and inhibits the cholestatic liver fibrosis in Mdr2 -/- mice by polarizing M1 macrophages and balancing immune responses. Chin J Nat Med 2024; 22:582-598. [PMID: 39059828 DOI: 10.1016/s1875-5364(24)60674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/28/2024]
Abstract
Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
14
|
Guo N, Wang Y, Wen Z, Fan X. Promising nanotherapeutics of stem cell extracellular vesicles in liver regeneration. Regen Ther 2024; 26:1037-1047. [PMID: 39569342 PMCID: PMC11576938 DOI: 10.1016/j.reth.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) have gainedsignificant attention due totheir crucialroles invarious biological systems. This review aims to explore the functions of EVs in both in physiological and pathological states of the liver, with a specific focus on the potential mechanisms and concrete evidence of EVs in liver regeneration processes. The review begins by emphasizing the importance of EVs in maintaining liver health and their involvement in different pathological conditions, starting from the liver's own EVs. Reviewing the role of EVs in liver diseases to reveal the impact of EVs in pathological processes (e.g., hepatitis, liver fibrosis, and cirrhosis) and elucidate their signaling functions at the molecular level. Subsequently, the work concentrates on the functions of EVs in liver regeneration, revealing their key role in repair and regeneration following liver injury by carrying growth factors, nucleic acids, and other bioactive molecules. This part not only theoretically clarifies the mechanisms of EVs in liver regeneration but also experimentally demonstrates their role in promoting liver cell proliferation, inhibiting apoptosis, regulating immune responses, and fostering angiogenesis, laying the groundwork for future clinical applications. Moreover, this work provides a comprehensive analysis of the challenges faced by existing EV-based therapies in liver regeneration and offers prospects for future research directions. It highlights that despite the tremendous potential of EVs in treating liver diseases, there are still technical challenges (e.g., EV isolation and purification, dosage control, and targeted delivery). To overcome these challenges, the review suggests improvements to current technologies and the development of new methods to realize the clinical application of EVs in treating liver diseases.
Collapse
Affiliation(s)
- Na Guo
- Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410000, China
| | - Yan Wang
- Department of Basic Medicine, Cangzhou Medical College, No.39, West Jiuhe Road, Cangzhou, 061001, China
| | - Zhaofeng Wen
- Heze Medical College, No.1950, Daxue Road, Heze Shandong, 274000, China
| | - Xiaofei Fan
- Shandong Medical College, No.5460, Second Ring South Road, Jinan, Shandong, 250002, China
| |
Collapse
|
15
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
16
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
17
|
Zhang Y, Fang H, Wang T, Zhang Z, Zhu T, Xiong L, Hu H, Liu H. Lactobacillus acidophilus-Fermented Jujube Juice Ameliorates Chronic Liver Injury in Mice via Inhibiting Apoptosis and Improving the Intestinal Microecology. Mol Nutr Food Res 2024; 68:e2300334. [PMID: 38150643 DOI: 10.1002/mnfr.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Indexed: 12/29/2023]
Abstract
SCOPE Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. Jujube has displayed various biological activities. Here, the therapeutic effect of Lactobacillus acidophilus (L. acidophilus)-fermented jujube juice (FJJ) and the possible mechanism against chronic liver injury (CLI) in mice are further studied. METHODS AND RESULTS After the CCl4 -induced CLI mice are separately treated with L. acidophilus (LA), unfermented jujube juice (UFJJ), and FJJ, FJJ but not LA or UFJJ suppresses the liver index. By using H&E staining, immunofluorescence staining, RT-PCR, and western blotting, it is shown that LA, UFJJ, and FJJ intervention ameliorate hepatocyte necrosis, inhibit the mRNA levels of pro-inflammatory (NLRP3, Caspase-1, IL-1β, and TNF-α) and fibrosis-associated factors (TGF-β1, LXRα, and MMP2). Also, FJJ displays significant protection against mucosal barrier damage in CLI mice. Among the three interventions, FJJ exhibits the best therapeutic effect, followed by UFJJ and LA. Furthermore, FJJ improves dysbiosis in CLI mice. CONCLUSIONS This study suggests that FJJ exhibits a protective effect against CCl4 -induced CLI mice by inhibiting apoptosis and oxidative stress, regulating liver lipid metabolism, and improving gut microecology. Jujube juice fermentation with L. acidophilus can be a food-grade supplement in treating CLI and related liver diseases.
Collapse
Affiliation(s)
- Yu Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, College of Food and Wine, Ningxia University, Yinchuan, 750021, P. R. China
| | - Tong Wang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, College of Food and Wine, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Lei Xiong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| |
Collapse
|
18
|
Byappanahalli AM, Omoniyi V, Noren Hooten N, Smith JT, Mode NA, Ezike N, Zonderman AB, Evans MK. Extracellular vesicle mitochondrial DNA levels are associated with race and mitochondrial DNA haplogroup. iScience 2024; 27:108724. [PMID: 38226163 PMCID: PMC10788249 DOI: 10.1016/j.isci.2023.108724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) acts as a damage-associated molecular pattern molecule and may be cargo within extracellular vesicles (EVs). ccf-mtDNA and select mitochondrial DNA (mtDNA) haplogroups are associated with cardiovascular disease. We hypothesized that ccf-mtDNA and plasma EV mtDNA would be associated with hypertension, sex, self-identified race, and mtDNA haplogroup ancestry. Participants were normotensive (n = 107) and hypertensive (n = 108) African American and White adults from the Healthy Aging in Neighborhoods of Diversity across the Life Span study. ccf-mtDNA levels were higher in African American participants compared with White participants in both plasma and EVs, but ccf-mtDNA levels were not related to hypertension. EV mtDNA levels were highest in African American participants with African mtDNA haplogroup. Circulating inflammatory protein levels were altered with mtDNA haplogroup, race, and EV mtDNA. Our findings highlight that race is a social construct and that ancestry is crucial when examining health and biomarker differences between groups.
Collapse
Affiliation(s)
- Anjali M. Byappanahalli
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Victor Omoniyi
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T. Smith
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Liu SJ, Guo BD, Gao QH, Deng YJ, Yan B, Zeng Y, Zhao M, Ren K, Wang F, Guo J. Ursolic acid alleviates chronic prostatitis via regulating NLRP3 inflammasome-mediated Caspase-1/GSDMD pyroptosis pathway. Phytother Res 2024; 38:82-97. [PMID: 37807970 DOI: 10.1002/ptr.8034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1β, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.
Collapse
Affiliation(s)
- Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-da Guo
- Department of Urology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yan
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Zeng
- Department of Andrology, Beijing Chinese Medicine Hospital affiliated to Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Ren
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Li Y, Li F, Ding M, Ma Z, Li S, Qu J, Li X. Chuanxiong Rhizoma extracts prevent liver fibrosis via targeting CTCF-c-MYC-H19 pathway. CHINESE HERBAL MEDICINES 2024; 16:82-93. [PMID: 38375042 PMCID: PMC10874761 DOI: 10.1016/j.chmed.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 07/25/2023] [Indexed: 02/21/2024] Open
Abstract
Objective Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms. Methods The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot. Results Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-β), as illustrated by decreased bile duct proliferation markers. Conclusion Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.
Collapse
Affiliation(s)
- Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
21
|
Li XJY, Zhou F, Li YJ, Xue XY, Qu JR, Fan GF, Liu J, Sun R, Wu JZ, Zheng Q, Liu RP. LncRNA H19-EZH2 interaction promotes liver fibrosis via reprogramming H3K27me3 profiles. Acta Pharmacol Sin 2023; 44:2479-2491. [PMID: 37580495 PMCID: PMC10692088 DOI: 10.1038/s41401-023-01145-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Liver fibrosis is a wound-healing process characterized by excess formation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). Previous studies show that both EZH2, an epigenetic regulator that catalyzes lysine 27 trimethylation on histone 3 (H3K27me3), and long non-coding RNA H19 are highly correlated with fibrogenesis. In the current study, we investigated the underlying mechanisms. Various models of liver fibrosis including Mdr2-/-, bile duct ligation (BDL) and CCl4 mice were adapted. We found that EZH2 was markedly upregulated and correlated with H19 and fibrotic markers expression in these models. Administration of EZH2 inhibitor 3-DZNeP caused significant protective effects in these models. Furthermore, treatment with 3-DZNeP or GSK126 significantly inhibited primary HSC activation and proliferation in TGF-β-treated HSCs and H19-overexpreesing LX2 cells in vivo. Using RNA-pull down assay combined with RNA immunoprecipitation, we demonstrated that H19 could directly bind to EZH2. Integrated analysis of RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) further revealed that H19 regulated the reprogramming of EZH2-mediated H3K27me3 profiles, which epigenetically promoted several pathways favoring HSCs activation and proliferation, including epithelial-mesenchymal transition and Wnt/β-catenin signaling. In conclusion, highly expressed H19 in chronic liver diseases promotes fibrogenesis by reprogramming EZH2-mediated epigenetic regulation of HSCs activation. Targeting the H19-EZH2 interaction may serve as a novel therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ya-Jing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Yong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gui-Fang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Ji-nan, 250033, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Zheng Y, Ji S, Li X, Wen L. Qijia rougan formula ameliorates ECM deposition in hepatic fibrosis by regulating the JAK1/STAT6-microRNA-23a feedback loop in macrophage M2 polarization. Biomed Pharmacother 2023; 168:115794. [PMID: 37922651 DOI: 10.1016/j.biopha.2023.115794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatic fibrosis is the critical pathological stage in the progression of chronic liver disease to cirrhosis and hepatocellular carcinoma (HCC). However, no approved anti-hepatic fibrosis drugs are available currently. Qijia Rougan Formula (QRF) is a traditional Chinese medicine (TCM) with significant clinical efficacy on hepatic fibrosis. It was derived from Sanjiasan, a famous decoction documented in the Book of Treatise on the Pestilence in the Ming Dynasty of China. However, the underlying regulatory mechanisms remain elusive. This study further confirmed the therapeutic effects of QRF on hepatic fibrosis and dissected its underlying molecular mechanisms from the perspective of macrophage M2 polarization, one of the critical events in hepatic fibrosis. Experimentally, QRF significantly improved extracellular matrix (ECM) deposition and fibrosis in the liver of model rats. QRF diminished the proportion of M2 macrophages, decreased the levels of TGF-β, PDGFB and IL-10, and regulated the expression of p-JAK1, p-STAT6, JAK1 and microRNA-23a both in vitro and in vivo. Collectively, it was confirmed that QRF effectively improves liver function and hepatocyte damage, and reduces ECM deposition. QRF ameliorates hepatic fibrosis by regulating JAK1/STAT6-microRNA-23a negative feedback loop to inhibit macrophage M2 polarization and thus reduce ECM deposition. Our study illustrates the potential of QRF for hepatic fibrosis therapy, suggesting that QRF is a promising anti-hepatic fibrosis drug candidate.
Collapse
Affiliation(s)
- Yanfeng Zheng
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaoxiu Ji
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xia Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wen
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Zhou F, Li X, Jia K, Li F, Xue X, Liu J, Qu J, Liu R. Inhibiting autophagy to boost antitumor immunity with tetramethylpyrazine-loaded and PD-L1-targeting liposomal nanoparticles. Eur J Pharm Sci 2023; 190:106581. [PMID: 37696460 DOI: 10.1016/j.ejps.2023.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Cancer immunotherapy has been recognized as a revolutionary breakthrough and has yielded impressive results. However, a major challenge facing immunotherapy is its limited efficacy, which may be largely due to the inadequate infiltration of immune cells into the tumor microenvironment (TME). Autophagy inhibition has been identified to enhance the recruitment of immune cells into the tumor by upregulating the expression and secretion of chemokines. Here, we verified a novel autophagy inhibitor tetramethylpyrazine (TMP) from natural products using a mCherry-GFP-LC3 probe-based autophagy flux reporter system. We then devised a liposomal system capable of co-delivering DOX and TMP using the thin-film dispersion method and modified the liposome with PD-L1 binding peptide JY4 (DOX-TMP-JY4LIPO). We found that DOX-TMP-JY4LIPO exhibited potent antitumor efficacy in vitro. In addition, DOX-TMP-JY4LIPO could effectively inhibit the autophagic flux to enhance the recruitment of immune cells into the tumor by upregulating CCL5 and CXCL10. The liposome exhibited favorable biocompatibility and safety while facilitating the accumulation of therapeutic drugs in tumors. DOX-TMP-JY4LIPO significantly inhibited tumor growth in LLC xenograft mice, accompanied by increased granzymes- and perforin-mediated cytotoxic immune responses. Our findings demonstrate that the TMP-loaded and PD-L1-targeting liposomal nanoparticles can significantly boost antitumor immunity by inhibiting autophagy, suggesting a novel natural product-based nanomedicine for immunotherapy.
Collapse
Affiliation(s)
- Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
24
|
Jia K, Zhang Y, Luo R, Liu R, Li Y, Wu J, Xie K, Liu J, Li S, Zhou F, Li X. Acteoside ameliorates hepatic ischemia-reperfusion injury via reversing the senescent fate of liver sinusoidal endothelial cells and restoring compromised sinusoidal networks. Int J Biol Sci 2023; 19:4967-4988. [PMID: 37781526 PMCID: PMC10539705 DOI: 10.7150/ijbs.87332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI), a common two-phase intersocietal reaction in liver surgery, typically leading to sustained liver dysfunction. During this process, liver sinusoidal endothelial cells (LSECs) are vulnerable to damage and exert senescence-associated secretory phenotype (SASP). However, how these SASP-LSECs secreted damage-associated molecular patterns (DAMPs) to impact the whole HIRI microenvironment and whether it can be reversed by therapeutics remains unknown. Here, we found that either HIRI surgery or hypoxia and reoxygenation (HR) stimulation forced LSECs into SASP and expressed HMGB1-dominated DAMPs, which were dramatically improved by acteoside (ACT). Additionally, hypoxic hepatocytes released excessive HMGB1 to LSECs and synergistically aggravated their SASP state. Mechanistically, HMGB1 bound with TLR3/TLR4 on LSECs, promoted the nuclear translocation of IRF1 and subsequent transcription of cxcl1 and Hmgb1, leading to the chemotaxis of neutrophils and accelerating immune damage in a vicious circle. Notably, ACT or HMGB1 siRNA effectively disrupted HMGB1-TLR3/4 interaction, leading to IRF1 inhibition and repairing LSEC functions, which was largely reversed by HMGB1 stimulation and IRF1-overexpressed liposomes with LSECs-targeted hyaluronic acid-derivative conjugated in mice. Collectively, ACT reversed the senescent fate of LSECs and restored sinusoidal networks by targeting HMGB1-TLR3/4-IRF1 signaling, thus providing protection against HIRI and offering the potential for new therapeutics development.
Collapse
Affiliation(s)
- Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
25
|
Li YJ, Wu RY, Liu RP, Wu KY, Ding MN, Sun R, Gu YQ, Zhou F, Wu JZ, Zheng Q, Duan SN, Li RR, Zhang YH, Li FH, Li X. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta Pharmacol Sin 2023; 44:1826-1840. [PMID: 37095199 PMCID: PMC10462708 DOI: 10.1038/s41401-023-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.
Collapse
Affiliation(s)
- Yi-Jie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui-Yu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Kai-Yi Wu
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Ming-Ning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yi-Qing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Rong Li
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang-Hong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
26
|
Chang CY, Wu CC, Pan PH, Wang YY, Lin SY, Liao SL, Chen WY, Kuan YH, Chen CJ. Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation Reoxygenation. Exp Neurol 2023; 367:114468. [PMID: 37307890 DOI: 10.1016/j.expneurol.2023.114468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Traditional herbal medicine Ligusticum wallichii Franchat (Chuan Xiong) is frequently prescribed and highly recommended to patients with stroke. Rodent studies have demonstrated the neuroprotective effects of its active component tetramethylpyrazine against post-stroke brain injury and highlighted its role in antioxidant, anti-inflammation, and anti-apoptosis activity. Using permanent cerebral ischemia in rats and oxygen/glucose deprivation and reoxygenation (OGDR) in rat primary neuron/glia cultures, this study sheds light on the role of mitochondria as crucial targets for tetramethylpyrazine neuroprotection. Tetramethylpyrazine protected against injury and alleviated oxidative stress, interleukin-1β release, and caspase 3 activation both in vivo and in vitro. Reduction of mitochondrial biogenesis- and integrity-related proliferator-activated receptor-gamma coactivator-1 alpha, mitochondrial transcription factor A (TFAM), translocase of outer mitochondrial membrane 20, mitochondrial DNA, and citrate synthase activity, as well as activation of mitochondrial dynamics disruption-related Lon protease, dynamin-related protein 1 (Drp1) phosphorylation, stimulator of interferon genes, TANK-binding kinase 1 phosphorylation, protein kinase RNA-like endoplasmic reticulum kinase phosphorylation, eukaryotic initiation factor 2α phosphorylation, and activating transcription factor 4 were revealed in permanent cerebral ischemia in rats and OGDR in neuron/glia cultures. TMP alleviated those biochemical changes. Our findings suggest that preservation or restoration of mitochondrial dynamics and functional integrity and alleviation of mitochondria-oriented pro-oxidant, pro-inflammatory, and pro-apoptotic cascades are alternative neuroprotective mechanisms of tetramethylpyrazine. Additionally, mitochondrial TFAM and Drp1 as well as endoplasmic reticulum stress could be targeted by TMP to induce neuroprotection. Data of this study provide experimental base to support clinical utility and value of Chuan Xiong towards stroke treatment and highlight an alternative neuroprotective target of tetramethylpyrazine.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Financial Engineering, Providence University, Taichung City 433, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
27
|
Li Y, Ma Z, Ding M, Jia K, Xu B, Zhou F, Luo R, Xue X, Wu R, Gao F, Li X. Chuanxiong Rhizoma extracts prevent cholestatic liver injury by targeting H3K9ac-mediated and cholangiocyte-derived secretory protein PAI-1 and FN. Chin J Nat Med 2023; 21:694-709. [PMID: 37777319 DOI: 10.1016/s1875-5364(23)60416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 10/02/2023]
Abstract
Chuanxiong Rhizoma (CX, the dried rhizome of Ligusticum wallichii Franch.), a well-known traditional Chinese medicine, is clinically used for treating cardiovascular, cerebrovascular and hepatobiliary diseases. Cholestatic liver damage is one of the chronic liver diseases with limited effective therapeutic strategies. Currently, little is known about the mechanism links between CX-induced anti-cholestatic action and intercellular communication between cholangiocytes and hepatic stellate cells (HSCs). The study aimed to evaluate the hepatoprotective activity of different CX extracts including the aqueous, alkaloid, phenolic acid and phthalide extracts of CX (CXAE, CXAL, CXPA and CXPHL) and investigate the intercellular communication-related mechanisms by which the most effective extracts work on cholestatic liver injury. The active compounds of different CX extracts were identified by UPLC-MS/MS. A cholestatic liver injury mouse model induced by bile duct ligation (BDL), and transforming growth factor-β (TGF-β)-treated human intrahepatic biliary epithelial cholangiocytes (HIBECs) and HSC cell line (LX-2 cells) were used for in vivo and in vitro studies. Histological and other biological techniques were also applied. The results indicated that CXAE, CXAL and CXPHL significantly reduced ductular reaction (DR) and improved liver fibrosis in the BDL mice. Meanwhile, both CXAE and CXPHL suppressed DR in injured HIBECs and reduced collagen contraction force and the expression of fibrosis biomarkers in LX-2 cells treated with TGF-β. CXPHL suppressed the transcription and transfer of plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) from the 'DR-like' cholangiocytes to activated HSCs. Mechanistically, the inhibition of PAI-1 and FN by CXPHL was attributed to the untight combination of the acetyltransferase KAT2A and SMAD3, followdd by the suppression of histone 3 lysine 9 acetylation (H3K9ac)-mediated transcription in cholangiocytes. In conclusion, CXPHL exerts stronger anti-cholestatic activity in vivo and in vitro than other CX extracts, and its protective effect on the intracellular communication between cholangiocytes and HSCs is achieved by reducing KAT2A/H3K9ac-mediated transcription and release of PAI-1 and FN.
Collapse
Affiliation(s)
- Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
28
|
Chaiyarit S, Thongboonkerd V. Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 2023; 21:294. [PMID: 37131163 PMCID: PMC10152607 DOI: 10.1186/s12967-023-04133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
29
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Liao X, Ruan X, Wu X, Deng Z, Qin S, Jiang H. Identification of Timm13 protein translocase of the mitochondrial inner membrane as a potential mediator of liver fibrosis based on bioinformatics and experimental verification. J Transl Med 2023; 21:188. [PMID: 36899394 PMCID: PMC9999505 DOI: 10.1186/s12967-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To explore the association between translocase of the inner mitochondrial membrane 13 (Timm13) and liver fibrosis. METHODS Gene expression profiles of GSE167033 were collected from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between liver disease and normal samples were analyzed using GEO2R. Gene Ontology and Enrichment function were performed, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the hub genes of the PPI network were calculated by MCODE plug-in in Cytoscape. We validated the transcriptional and post-transcriptional expression levels of the top correlated genes using fibrotic animal and cell models. A cell transfection experiment was conducted to silence Timm13 and detect the expression of fibrosis genes and apoptosis genes. RESULTS 21,722 genes were analyzed and 178 DEGs were identified by GEO2R analysis. The top 200 DEGs were selected and analyzed in STRING for PPI network analysis. Timm13 was one of the hub genes via the PPI network. We found that the mRNA levels of Timm13 in fibrotic liver tissue decreased (P < 0.05), and the mRNA and protein levels of Timm13 also decreased when hepatocytes were stimulated with transforming growth factor-β1. Silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes. CONCLUSIONS The results showed that Timm13 is closely related to liver fibrosis and silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes, which will provide novel ideas and targets for the clinical diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianbin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zhejun Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
31
|
Li Y, Wu J, Liu R, Zhang Y, Li X. Extracellular vesicles: catching the light of intercellular communication in fibrotic liver diseases. Theranostics 2022; 12:6955-6971. [PMID: 36276639 PMCID: PMC9576620 DOI: 10.7150/thno.77256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
The increasing prevalence of fibrotic liver diseases resulting from different etiologies has become a major global problem for public health. Fibrotic liver diseases represent a redundant accumulation of extracellular matrix, dysregulation of immune homeostasis and angiogenesis, which eventually contribute to the progression of cirrhosis and liver malignancies. The concerted actions among liver cells including hepatocytes, hepatic stellate cells, kupffer cells, liver sinusoidal endothelial cells and other immune cells are essential for the outcome of liver fibrosis. Recently, a growing body of literature has highlighted that extracellular vesicles (EVs) are critical mediators of intercellular communication among different liver cells either in local or distant microenvironments, coordinating a variety of systemic pathological and physiological processes. Despite the increasing interests in this field, there are still relatively few studies to classify the contents and functions of EVs in intercellular transmission during hepatic fibrogenesis. This review aims to summarize the latest findings with regards to the cargo loading, release, and uptake of EVs in different liver cells and clarify the significant roles of EVs played in fibrotic liver diseases.
Collapse
Affiliation(s)
- Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- ✉ Corresponding author: Xiaojiaoyang Li, Ph.D., School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China. E-mail:
| |
Collapse
|