1
|
Konuma T, Hamatani-Asakura M, Nagai E, Adachi E, Kato S, Isobe M, Monna-Oiwa M, Takahashi S, Yotsuyanagi H, Nannya Y. Cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T- and B-lymphocytes in adult allogeneic hematopoietic cell transplant recipients. Int J Hematol 2024; 120:229-240. [PMID: 38842630 PMCID: PMC11284193 DOI: 10.1007/s12185-024-03802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
We conducted a cross-sectional study to evaluate cellular and humoral immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection and examine how lymphocyte subpopulations in peripheral blood correlate with cellular and humoral immunogenicity in adult allogeneic hematopoietic cell transplantation (HCT) recipients. The median period from SARS-CoV-2 vaccination or infection to sample collection was 110.5 days (range, 6-345 days). The median SARS-CoV-2 spike-specific antibody level was 1761 binding antibody units (BAU)/ml (range, 0 to > 11,360 BAU/ml). Enzyme-linked immunosorbent spot (ELISpot) assay of T cells stimulated with SARS-CoV-2 spike antigens showed that interferon-gamma (IFN-γ)-, interleukin-2 (IL-2)-, and IFN-γ + IL-2-producing T cells were present in 68.9%, 62.0%, and 56.8% of patients, respectively. The antibody level was significantly correlated with frequency of IL-2-producing T cells (P = 0.001) and IFN-γ + IL-2-producing T cells (P = 0.006) but not IFN-γ-producing T cells (P = 0.970). Absolute counts of CD8+ and CD4+ central memory T cells were higher in both IL-2- and IFN-γ + IL-2-producing cellular responders compared with non-responders. These data suggest that cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T cells and B cells in adult allogeneic HCT recipients.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Ben Khlil AA, Zamali I, Belloumi D, Gdoura M, Kharroubi G, Marzouki S, Dachraoui R, Ben Yaiche I, Bchiri S, Hamdi W, Gharbi M, Ben Hmid A, Samoud S, Galai Y, Torjmane L, Ladeb S, Bettaieb J, Triki H, Ben Abdeljelil N, Ben Othman T, Ben Ahmed M. Immunogenicity and Tolerance of BNT162b2 mRNA Vaccine in Allogeneic Hematopoietic Stem Cell Transplant Patients. Vaccines (Basel) 2024; 12:174. [PMID: 38400157 PMCID: PMC10892348 DOI: 10.3390/vaccines12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. METHODS A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). RESULTS Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. CONCLUSIONS Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients.
Collapse
Affiliation(s)
- Ahmed Amine Ben Khlil
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
| | - Imen Zamali
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Dorra Belloumi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Mariem Gdoura
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Ghassen Kharroubi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Rym Dachraoui
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Insaf Ben Yaiche
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Soumaya Bchiri
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Walid Hamdi
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
| | - Manel Gharbi
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Ahlem Ben Hmid
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Samar Samoud
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Yousr Galai
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Lamia Torjmane
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Saloua Ladeb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Jihene Bettaieb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Henda Triki
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Nour Ben Abdeljelil
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Tarek Ben Othman
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Melika Ben Ahmed
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| |
Collapse
|
3
|
Fylaktou A, Stai S, Kasimatis E, Xochelli A, Nikolaidou V, Papadopoulou A, Myserlis G, Lioulios G, Asouchidou D, Giannaki M, Yannaki E, Tsoulfas G, Papagianni A, Stangou M. Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines (Basel) 2023; 11:1670. [PMID: 38006002 PMCID: PMC10674678 DOI: 10.3390/vaccines11111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) tend to mount weaker immune responses to vaccinations, including vaccines against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Humoral immunity was assessed using anti-receptor binding domain (RBD) and neutralizing antibodies (NAb) serum levels measured by ELISA, and cellular immunity was assessed using T-, B-, NK, natural killer-like T (NKT)-cell subpopulations, and monocytes measured by flow cytometry, and also specific T-cell immunity, at predefined time points after BNT162b2 vaccination, in 57 adult RTRs. RESULTS Administration of three booster doses was necessary to achieve anti-RBD and NAb protective levels in almost all patients (92.98%). Ab production, at several time points, was positively correlated with the corresponding renal function and inversely correlated with hemodialysis vintage (HDV) and treatment with mycophenolic acid (MPA). A gradual rise in several cell subpopulations, including total lymphocytes (p = 0.026), memory B cells (p = 0.028), activated CD4 (p = 0.005), and CD8 cells (p = 0.001), was observed even after the third vaccination dose, while a significant reduction in CD3+PD1+ (p = 0.002), NKT (p = 0.011), and activated NKT cells (p = 0.034) was noted during the same time interval. Moreover, SARS-CoV-2-specific T-cells were present in 41% of the patients who were unable to develop Nabs, and their positivity rates four months after the second dose were in inverse correlation with monocytes (p = 0.045) and NKT cells (p = 0.01). CONCLUSIONS SARS-CoV-2-specific T-cell responses preceded the humoral ones, while two booster doses were needed for this group of immunocompromised patients to mount a protective immune response.
Collapse
Affiliation(s)
- Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Stamatia Stai
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Grigorios Myserlis
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Georgios Lioulios
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despoina Asouchidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Georgios Tsoulfas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Meejun T, Srisurapanont K, Manothummetha K, Thongkam A, Mejun N, Chuleerarux N, Sanguankeo A, Phongkhun K, Leksuwankun S, Thanakitcharu J, Lerttiendamrong B, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Hirankarn N, Nematollahi S, Permpalung N, Moonla C, Kates OS. Attenuated immunogenicity of SARS-CoV-2 vaccines and risk factors in stem cell transplant recipients: a meta-analysis. Blood Adv 2023; 7:5624-5636. [PMID: 37389818 PMCID: PMC10514108 DOI: 10.1182/bloodadvances.2023010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
Immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is diminished in hematopoietic stem cell transplant (HSCT) recipients. To summarize current evidence and identify risk factors for attenuated responses, 5 electronic databases were searched since database inceptions through 12 January 2023 for studies reporting humoral and/or cellular immunogenicity of SARS-CoV-2 vaccination in the HSCT population. Using descriptive statistics and random-effects models, extracted numbers of responders and pooled odds ratios (pORs) with 95% confidence intervals (CIs) for risk factors of negative immune responses were analyzed (PROSPERO: CRD42021277109). From 61 studies with 5906 HSCT recipients, after 1, 2, and 3 doses of messenger RNA (mRNA) SARS-CoV-2 vaccines, the mean antispike antibody seropositivity rates (95% CI) were 38% (19-62), 81% (77-84), and 80% (75-84); neutralizing antibody seropositivity rates were 52% (40-64), 71% (54-83), and 78% (61-89); and cellular immune response rates were 52% (39-64), 66% (51-79), and 72% (52-86). After 2 vaccine doses, risk factors (pOR; 95% CI) associated with antispike seronegativity were male recipients (0.63; 0.49-0.83), recent rituximab exposure (0.09; 0.03-0.21), haploidentical allografts (0.46; 0.22-0.95), <24 months from HSCT (0.25; 0.07-0.89), lymphopenia (0.18; 0.13-0.24), hypogammaglobulinemia (0.23; 0.10-0.55), concomitant chemotherapy (0.48; 0.29-0.78) and immunosuppression (0.18; 0.13-0.25). Complete remission of underlying hematologic malignancy (2.55; 1.05-6.17) and myeloablative conditioning (1.72; 1.30-2.28) compared with reduced-intensity conditioning were associated with antispike seropositivity. Ongoing immunosuppression (0.31; 0.10-0.99) was associated with poor cellular immunogenicity. In conclusion, attenuated humoral and cellular immune responses to mRNA SARS-CoV-2 vaccination are associated with several risk factors among HSCT recipients. Optimizing individualized vaccination and developing alternative COVID-19 prevention strategies are warranted.
Collapse
Affiliation(s)
- Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuthchaya Mejun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasidis Phongkhun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | - Nattapong Langsiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Federico L, Tvedt THA, Gainullin M, Osen JR, Chaban V, Lund KP, Tietze L, Tran TT, Lund-Johansen F, Kared H, Lind A, Vaage JT, Stratford R, Tennøe S, Malone B, Clancy T, Myhre AEL, Gedde-Dahl T, Munthe LA. Robust spike-specific CD4 + and CD8 + T cell responses in SARS-CoV-2 vaccinated hematopoietic cell transplantation recipients: a prospective, cohort study. Front Immunol 2023; 14:1210899. [PMID: 37503339 PMCID: PMC10369799 DOI: 10.3389/fimmu.2023.1210899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Poor overall survival of hematopoietic stem cell transplantation (HSCT) recipients who developed COVID-19 underlies the importance of SARS-CoV-2 vaccination. Previous studies of vaccine efficacy have reported weak humoral responses but conflicting results on T cell immunity. Here, we have examined the relationship between humoral and T cell response in 48 HSCT recipients who received two doses of Moderna's mRNA-1273 or Pfizer/BioNTech's BNT162b2 vaccines. Nearly all HSCT patients had robust T cell immunity regardless of protective humoral responses, with 18/48 (37%, IQR 8.679-5601 BAU/mL) displaying protective IgG anti-receptor binding domain (RBD) levels (>2000 BAU/mL). Flow cytometry analysis of activation induced markers (AIMs) revealed that 90% and 74% of HSCT patients showed reactivity towards immunodominant spike peptides in CD8+ and CD4+ T cells, respectively. The response rate increased to 90% for CD4+ T cells as well when we challenged the cells with a complete set of overlapping peptides spanning the entire spike protein. T cell response was detectable as early as 3 months after transplant, but only CD4+ T cell reactivity correlated with IgG anti-RBD level and time after transplantation. Boosting increased seroconversion rate, while only one patient developed COVID-19 requiring hospitalization. Our data suggest that HSCT recipients with poor serological responses were protected from severe COVID-19 by vaccine-induced T cell responses.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Murat Gainullin
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Røkke Osen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katrine Persgård Lund
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - John Torgils Vaage
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | - Anders Eivind Leren Myhre
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ludvig André Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
La Rosa C, Chiuppesi F, Park Y, Zhou Q, Yang D, Gendzekhadze K, Ly M, Li J, Kaltcheva T, Ortega Francisco S, Gutierrez MA, Ali H, Otoukesh S, Amanam I, Salhotra A, Pullarkat VA, Aldoss I, Rosenzweig M, Aribi AM, Stein AS, Marcucci G, Dadwal SS, Nakamura R, Forman SJ, Al Malki MM, Diamond DJ. Functional SARS-CoV-2-specific T cells of donor origin in allogeneic stem cell transplant recipients of a T-cell-replete infusion: A prospective observational study. Front Immunol 2023; 14:1114131. [PMID: 36936918 PMCID: PMC10020189 DOI: 10.3389/fimmu.2023.1114131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration clinicaltrials.gov, identifier NCT04666025.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Flavia Chiuppesi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Yoonsuh Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Dongyun Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ketevan Gendzekhadze
- Histocompatibility Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Minh Ly
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Jing Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Sandra Ortega Francisco
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Miguel-Angel Gutierrez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Vinod A. Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Michael Rosenzweig
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ahmed M. Aribi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Anthony S. Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | | | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| |
Collapse
|
7
|
Papadopoulou A, Stavridou F, Giannaki M, Paschoudi K, Chatzopoulou F, Gavriilaki E, Georgolopoulos G, Anagnostopoulos A, Yannaki E. Robust SARS-COV-2-specific T-cell immune memory persists long-term in immunocompetent individuals post BNT162b2 double shot. Heliyon 2022; 8:e09863. [PMID: 35815135 PMCID: PMC9250414 DOI: 10.1016/j.heliyon.2022.e09863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Background A robust efficiency of mRNA vaccines against coronavirus disease-2019 has been demonstrated, however, the intended long-term protection against SARS-CoV-2 has been challenged by the waning humoral and cellular immunity over time, leading to a third vaccination dose recommendation for immunocompetent individuals, six months after completion of primary mRNA vaccination. Methods We here measured humoral responses via an immunoassay measuring SARS-CoV-2 neutralizing antibodies and T-cell responses using Elispot for interferon-γ 1- and 8- months post full BNT162b2 vaccination, in 10 health-care professionals. To explore whether the declining abundance of coronavirus-specific T-cells (CoV-2-STs) truly reflects decreased capacity for viral control, rather than the attenuating viral stimulus over time, we modeled ex vivo the T-cellular response upon viral challenge in fully vaccinated immunocompetent individuals, 1- and 8-months post BNT162b2. Findings. Notwithstanding the declining CoV-2-neutralizing antibodies and CoV-2-STs, re-challenged CoV-2-STs, 1- and 8-months post vaccination, presented similar functional characteristics including high cytotoxicity against both the unmutated virus and the delta variant. Interpretation. These findings suggest robust and sustained cellular immune response upon SARS-CοV-2 antigen exposure, 8 months post mRNA vaccination, despite declining CοV-2-STs over time in the presence of an attenuating viral stimulus.
Collapse
|