1
|
Xu L, Wang B, Wang C, Mao N, Huang Y, Fu X, Feng T, He Q, Zhang Y, You G, Ma X, Peng X, Su J. A model of basement membrane-related regulators for prediction of prognoses in esophageal cancer and verification in vitro. BMC Cancer 2025; 25:696. [PMID: 40234833 PMCID: PMC11998150 DOI: 10.1186/s12885-025-14081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Emerging evidence suggests the importance of basement membrane components in cancer metastasis; however, their specific roles in esophageal carcinoma remain underexplored. To investigate this, we analyzed 152 esophageal cancer and 11 normal esophageal tissue samples, identifying basement membrane-related prognostic signatures through differential gene expression profiling and Least Absolute Shrinkage and Selection Operator regression. A six-gene panel (LAMC2, GPC2, AGRN, ITGA3, LAMA3, and LOXL4) demonstrated robust predictive capacity, which we subsequently integrated with clinical features via nomogram modeling to predict overall survival. Our computational analyses revealed distinct tumor microenvironment immune cell profiles and chemotherapeutic drug sensitivities across risk strata. We performed an immunohistochemical assay to confirm increased tumor tissue expression, thereby reinforcing the clinical relevance of these biomarkers. Experimental validation using KYSE-150 esophageal squamous carcinoma cells demonstrated that while LAMC2 knockdown attenuated cellular migration, AGRN, GPC2, ITGA3, LAMA3, and LOXL4 suppression enhanced migratory capacity. Proliferation assays further revealed increased growth rates upon GPC2, ITGA3, and LAMA3 expression inhibition. Our results established a basement membrane-derived risk model for esophageal carcinoma and revealed the roles of the model genes in tumor progression regulation. This model advances prognostic stratification and provides insights into therapeutic targets.
Collapse
Affiliation(s)
- Lang Xu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bingna Wang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chen Wang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Nan Mao
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Yating Huang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Xihua Fu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Tao Feng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qiming He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yang Zhang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojun Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianfen Su
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GTK, Sivakumar A, Wang CC, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413443. [PMID: 40165020 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Paige Eversole
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Cheng-Chun Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Han Yu
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wenjie Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-1088, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
3
|
Cai H, Zhou L, Hu Y, Zhou T. Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines 2025; 13:780. [PMID: 40299352 PMCID: PMC12024895 DOI: 10.3390/biomedicines13040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background: This study integrated four Gene Expression Omnibus (GEO) datasets to identify disease-specific feature genes in head and neck squamous cell carcinoma (HNSCC) through differential expression analysis with batch effect correction. Methods: The GeneCards database was used to find genes related to exosomes, and samples were categorized into groups with high and low expression levels based on these feature genes. Functional and pathway enrichment analyses (GO, KEGG, and GSEA) were used to investigate the possible biological mechanisms underlying feature genes. A predictive model was produced by using machine learning algorithms (LASSO regression, SVM, and random forest) to find disease-specific feature genes. Receiver operating characteristic (ROC) curve analysis was used to assess the model's effectiveness. The diagnostic model showed excellent predictive accuracy through external data GSE83519 validation. Results: This analysis highlighted 22 genes with significant differential expression. A predictive model based on five important genes (AGRN, TSPAN6, MMP9, HBA1, and PFN2) was produced by using machine learning algorithms. MMP9 and TSPAN6 showed relatively high predictive performance. Using the ssGSEA algorithm, three key genes (MMP9, AGRN, and PFN2) were identified as strongly linked to immune regulation, immune response suppression, and critical signaling pathways involved in HNSCC progression. Matching HNSCC feature gene expression profiles with DSigDB compound signatures uncovered potential therapeutic targets. Molecular docking simulations identified ligands with high binding affinity and stability, notably C5 and Hoechst 33258, which were prioritized for further validation and potential drug development. Conclusions: This study employs a novel diagnostic model for HNSCC constructed using machine learning technology, which can provide support for the early diagnosis of HNSCC and thus contribute to improving patient treatment plans and clinical management strategies.
Collapse
Affiliation(s)
- Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Yao Hu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| |
Collapse
|
4
|
Chen L, Zhang H, Gao K, Meng F, Yang F, Li J, Wang L, Tai J. Investigation of the correlation between AGRN expression and perineural invasion in colon cancer. Front Mol Biosci 2024; 11:1510478. [PMID: 39691475 PMCID: PMC11649504 DOI: 10.3389/fmolb.2024.1510478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background and Purpose Colon cancer is one of the most common gastrointestinal malignancies. According to the traditional view, the primary modes of transmission include direct dissemination, hematogenous metastasis, and lymph node metastasis. In recent years, the role of perineural invasion (PNI) in the spread and metastasis of tumors has received immense attention. However, there are still relatively few reports on the potential mechanisms and biomarkers of PNI occurrence and development in colon cancer. Method We identified genes linked to the onset and progression of PNI in colon cancer using bioinformatics tools and extensive databases. Gene function enrichment analysis was used to explore the potential roles of these genes in tumor proliferation, invasion, and PNI. A collection of postoperative pathological specimens from colon cancer patients who underwent surgery, related clinicopathological data, and immunohistochemistry were used to validate AGRN expression in PNI tissues. Results Bioinformatics analysis revealed that AGRN is overexpressed in colon cancer tissues and correlates with poor patient prognosis. The findings from gene association and enrichment studies indicate that AGRN and its associated genes may play a role in PNI development and progression in colon cancer by simultaneously enhancing tumor cell invasion and neural cell growth. Immunohistochemical analysis of clinical samples confirmed that AGRN expression is elevated in colon cancer tissues with PNI. Conclusion We found that AGRN is significantly overexpressed in colon cancer tissues exhibiting PNI and is linked to poor patient survival. AGRN and its related genes may contribute to PNI by promoting tumor cell invasion and neural cell growth. Hence, AGRN may play a crucial role in the initiation and progression of PNI in colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Haijia Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Kaiyue Gao
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lijie Wang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
6
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
7
|
Kapoor A, Bayat Mokhtari R, Sonti SS, Patel R, George A, Attwood K, Iyer R, Chakraborty S. Circulatory Agrin Serves as a Prognostic Indicator for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2719. [PMID: 39123447 PMCID: PMC11312157 DOI: 10.3390/cancers16152719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of liver cancer, is associated with high mortality rates both in the United States and globally. Despite current advances in immunotherapy regimens, there is a scarcity of biomarkers to guide therapy selection. Alpha-fetoprotein (AFP) and glypican-3 have been proposed as biomarkers for HCC, but they do not provide any prognostic benefit for modeling disease progression. Agrin, a secreted proteoglycan, is frequently overexpressed in HCC and plays prominent role(s) in the liver tumor microenvironment (TME) to promote hepatocarcinogenesis. Here we employed a pilot single-center retrospective investigation to assess the prognostic value of agrin in HCC. Our evidence suggests that elevated serum agrin levels are associated with poor prognosis and performance among HCC patients. Multivariate Cox regression models indicate that secreted agrin serves as a better prognostic indicator compared to AFP that is significantly correlated with other secreted biomarkers (e.g., IL6). Cumulatively, this work demonstrates a promising clinical value of agrin in the detection and prognosis of HCC.
Collapse
Affiliation(s)
- Ankita Kapoor
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Sahithi Savithri Sonti
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Riya Patel
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.G.); (K.A.)
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.G.); (K.A.)
| | - Renuka Iyer
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Adamiok-Ostrowska A, Grzanka M, Czarnocka B. Agrin is a novel oncogenic protein in thyroid cancer. Oncol Lett 2023; 26:483. [PMID: 37818129 PMCID: PMC10561154 DOI: 10.3892/ol.2023.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Agrin (AGRN) is a matricellular glycoprotein involved in extracellular signal transduction. AGRN is involved in tumorigenesis and cancer progression; however, the role of AGRN in thyroid cancer (TC) remains unclear. In the present study, using cell lines derived from various subtypes of TC including CGTH, FTC-133 and BcPAP and transcriptomic data from patients with TC, the role of AGRN in TC was analyzed by migration, invasion, viability and proliferation assays as well as Western blot with EMT markers. AGRN expression was significantly increased in thyroid tumors and cell lines derived from various TC subtypes. The highest AGRN expression was found in follicular and papillary thyroid carcinoma subtypes. Immunocytochemistry revealed nuclear AGRN localization in normal (NTHY) and TC cells. Silencing of AGRN decreased viability, proliferation, migration and invasion of TC cell lines by upregulating vimentin and downregulating N-cadherin and E-cadherin. Furthermore, the expression of AGRN was associated with neutrophil infiltration in thyroid tumors. In conclusion, the present results indicated that increased AGRN expression promoted tumorigenic phenotypes of TC cells, while AGRN expression was associated with immune infiltration in thyroid tumors. AGRN may represent a target for future cancer therapy and requires further evaluation.
Collapse
Affiliation(s)
- Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
Zhang H, Liang J, Lu T, Li M, Shan G, Bi G, Zhao M, Jin X, Wang Q, Chen Z, Zhan C. AGRN promotes lung adenocarcinoma progression by activating Notch signaling pathway and acts as a therapeutic target. Pharmacol Res 2023; 194:106819. [PMID: 37321467 DOI: 10.1016/j.phrs.2023.106819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China; Division of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, People's Republic of China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengcong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China; Department of Thoracic Surgery, ShangHai Geriatric Medicine Center, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
12
|
Li X, Lu Y, Wen P, Yuan Y, Xiao Z, Shi H, Feng E. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:809-819. [PMID: 36620879 DOI: 10.1002/tox.23730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Colorectal cancer is a common malignant digestive tract tumor. This study aimed to explore the biological role and potential underlying mechanism of matrine in colorectal cancer. METHODS The mRNA expression of AGRN was measured using RT-qPCR. Cell proliferation, migration, invasion and apoptosis were determined using CCK-8, EdU, transwell assays and flow cytometry, respectively. Xenograft tumor experiment was performed to explore the action of matrine and AGRN on tumor growth in colorectal cancer in vivo. Immunohistochemistry (IHC) assay was applied for AGRN, β-catenin, and c-Myc expression in the tumor tissues from mice. RESULTS Matrine dramatically repressed cell growth and reduced the level of AGRN in colorectal cancer cells. AGRN expression was boosted colorectal cancer tissues and cells. AGRN downregulation depressed cell proliferation, migration, invasion, and enhanced cell apoptosis in colorectal cancer cells. Moreover, matrine showed the anti-tumor effects on colorectal cancer cells via regulating AGRN expression. AGRN knockdown could inactivate the Wnt/β-catenin pathway in colorectal cancer cells. We found that AGRN downregulation exhibited the inhibition action in the progression of colorectal cancer by modulating the Wnt/β-catenin pathway. In addition, matrine could inhibit the activation of the Wnt/β-catenin pathway through regulating AGRN in colorectal cancer cells. Furthermore, xenograft tumor experiment revealed that matrine treatment or AGRN knockdown repressed the development of colorectal cancer via the Wnt/β-catenin pathway in vivo. CONCLUSION Matrine retarded colorectal cancer development by modulating AGRN to inactivate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Ye Lu
- Department of radiation oncology, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Penghao Wen
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Yan Yuan
- Department of Radiotherapy, Nanshi Hospital, Nanyang, China
| | - Zhenghong Xiao
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Hengwei Shi
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Eryan Feng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
13
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
14
|
Cheng Y, Chen J, Shi Y, Fang X, Tang Z. MAPK Signaling Pathway in Oral Squamous Cell Carcinoma: Biological Function and Targeted Therapy. Cancers (Basel) 2022; 14:cancers14194625. [PMID: 36230547 PMCID: PMC9563402 DOI: 10.3390/cancers14194625] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma accounts for 95% of human head and neck squamous cell carcinoma cases. It is highly malignant and aggressive, with a poor prognosis and a 5-year survival rate of <50%. In recent years, basic and clinical studies have been performed on the role of the mitogen-activated protein kinase (MAPK) signaling pathway in oral cancer. The MAPK signaling pathway is activated in over 50% of human oral cancer cases. Herein, we review research progress on the MAPK signaling pathway and its potential therapeutic mechanisms and discuss its molecular targeting to explore its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Yuxin Shi
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| |
Collapse
|
15
|
Costa A, Balbi C, Garbati P, Palamà MEF, Reverberi D, De Palma A, Rossi R, Paladini D, Coviello D, De Biasio P, Ceresa D, Malatesta P, Mauri P, Quarto R, Gentili C, Barile L, Bollini S. Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal. Front Bioeng Biotechnol 2022; 10:902038. [PMID: 35757808 PMCID: PMC9214211 DOI: 10.3389/fbioe.2022.902038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid–derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity. Here, we analyze whether hAFSC secretome formulations, namely, hAFSC conditioned medium (hAFSC-CM) over extracellular vesicles (hAFSC-EVs) separated from it, can induce cardiomyocyte renewal. c-KIT+ hAFSC were obtained by leftover samples of II trimester prenatal amniocentesis (fetal hAFSC) and from clinical waste III trimester amniotic fluid during scheduled C-section procedures (perinatal hAFSC). hAFSC were primed under 1% O2 to enrich hAFSC-CM and EVs with cardioactive factors. Neonatal mouse ventricular cardiomyocytes (mNVCM) were isolated from cardiac tissue of R26pFUCCI2 mice with cell cycle fluorescent tagging by mutually exclusive nuclear signal. mNVCM were stimulated by fetal versus perinatal hAFSC-CM and hAFSC-EVs to identify the most promising formulation for in vivo assessment in a R26pFUCCI2 neonatal mouse model of myocardial infarction (MI) via intraperitoneal delivery. While the perinatal hAFSC secretome did not provide any significant cardiogenic effect, fetal hAFSC-EVs significantly sustained mNVCM transition from S to M phase by 2-fold, while triggering cytokinesis by 4.5-fold over vehicle-treated cells. Treated mNVCM showed disorganized expression of cardiac alpha-actinin, suggesting cytoskeletal re-arrangements prior to cell renewal, with a 40% significant downregulation of Cofilin-2 and a positive trend of polymerized F-Actin. Fetal hAFSC-EVs increased cardiomyocyte cell cycle progression by 1.8-fold in the 4-day-old neonatal left ventricle myocardium short term after MI; however, such effect was lost at the later stage. Fetal hAFSC-EVs were enriched with a short isoform of Agrin, a mediator of neonatal heart regeneration acting by YAP-related signaling; yet in vitro application of YAP inhibitor verteporfin partially affected EV paracrine stimulation on mNVCM. EVs secreted by developmentally juvenile fetal hAFSC can support cardiomyocyte renewal to some extension, via intercellular conveyance of candidates possibly involving Agrin in combination with other factors. These perinatal derivative promising cardiogenic effects need further investigation to define their specific mechanism of action and enhance their potential translation into therapeutic opportunity.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Patrizia Garbati
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Pierangela De Biasio
- Prenatal Diagnosis Perinatal Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Malatesta
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Gentili
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Lucio Barile
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università Svizzera Italiana, Lugano, Switzerland
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| |
Collapse
|
16
|
Rickelt S, Neyaz A, Condon C, Whittaker CA, Zaidi AH, Taylor MS, Abbruzzese G, Mattia AR, Zukerberg L, Shroff SG, Yilmaz OH, Yılmaz O, Wu EY, Choi WT, Jobe BA, Odze RD, Patil DT, Deshpande V, Hynes RO. Agrin loss in Barrett's esophagus-related neoplasia and its utility as a diagnostic and predictive biomarker. Clin Cancer Res 2021; 28:1167-1179. [PMID: 34785582 DOI: 10.1158/1078-0432.ccr-21-2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE There is an unmet need for identifying novel biomarkers in Barrett's esophagus (BE) that could stratify patients with regards to neoplastic progression. We investigate the expression patterns of extracellular matrix (ECM) molecules in BE and BE-related neoplasia, and assess their value as biomarkers for the diagnosis of BE-related neoplasia and to predict neoplastic progression. EXPERIMENTAL DESIGN Gene expression analyses of ECM matrisome gene sets were performed using publicly available data on human BE, BE-related dysplasia, esophageal ADCA and normal esophagus. Immunohistochemical expression of basement membrane (BM) marker agrin (AGRN) and p53 was analyzed in biopsies of BE-related neoplasia from 321 patients in three independent cohorts. RESULTS Differential gene expression analysis revealed significant enrichment of ECM matrisome gene sets in dysplastic BE and ADCA compared with controls. Loss of BM AGRN expression was observed in both BE-related dysplasia and ADCA. The mean AGRN loss in BE glands was significantly higher in BErelated dysplasia and ADCA compared to non-dysplastic BE (NDBE; p<0.001; specificity=82.2% and sensitivity=96.4%). Loss of AGRN was significantly higher in NDBE samples from progressors compared to non-progressors (p<0.001) and identified patients who progressed to advanced neoplasia with a specificity of 80.2% and sensitivity of 54.8%. Moreover, the combination of AGRN loss and abnormal p53 staining identified progression to BE-related advanced neoplasia with a specificity and sensitivity of 86.5% and 58.7%. CONCLUSIONS We highlight ECM changes during BE progression to neoplasia. BM AGRN loss is a novel diagnostic biomarker that can identify NDBE patients at increased risk of developing advanced neoplasia.
Collapse
Affiliation(s)
- Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital
| | - Charlene Condon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Ali H Zaidi
- Esophageal and Lung Institute, Allegheny Health Network
| | | | - Genevieve Abbruzzese
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | | | | | - Omer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology
| | - Osman Yılmaz
- Pathology & Laboratory Medicine, Boston University School of Medicine
| | | | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco
| | | | | | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
17
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
18
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
19
|
Kim BC, Kim J, Kim K, Byun BH, Lim I, Kong CB, Song WS, Koh JS, Woo SK. Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDF PET/CT, EZRIN and KI67. Cancers (Basel) 2021; 13:cancers13112671. [PMID: 34071614 PMCID: PMC8198322 DOI: 10.3390/cancers13112671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Pediatric osteosarcoma is one of the most aggressive cancers, and predictions of metastasis and chemotherapy response have a significant impact on pediatric patient survival. Radiogenomics, as methods of analyzing gene expression or image texture features, have previously been used for the diagnosis of chemotherapy responses and metastasis and can reveal the current state of cancer. In this study, we aimed to generate a predictive model using gene expression and 18F-FDG PET/CT image texture features in pediatric osteosarcoma in relation to metastasis and chemotherapy response. A predictive model using radiogenomics technology that incorporates both imaging features and gene expression can accurately predict metastasis and chemotherapy responses to improve patient outcomes. Abstract Chemotherapy response and metastasis prediction play important roles in the treatment of pediatric osteosarcoma, which is prone to metastasis and has a high mortality rate. This study aimed to estimate the prediction model using gene expression and image texture features. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of 52 pediatric osteosarcoma patients were used to estimate the machine learning algorithm. An appropriate algorithm was selected by estimating the machine learning accuracy. 18F-FDG PET/CT images of 21 patients were selected for prediction model development based on simultaneous KI67 and EZRIN expression. The prediction model for chemotherapy response and metastasis was estimated using area under the curve (AUC) maximum image texture features (AUC_max) and gene expression. The machine learning algorithm with the highest test accuracy in chemotherapy response and metastasis was selected using the random forest algorithm. The chemotherapy response and metastasis test accuracy with image texture features was 0.83 and 0.76, respectively. The highest test accuracy and AUC of chemotherapy response with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.89, respectively. The highest test accuracy and AUC of metastasis with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.8, respectively. The metastasis prediction accuracy increased by 10% using radiogenomics data.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Jingyu Kim
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
| | - Kangsan Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Chang-Bae Kong
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Won Seok Song
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Jae-Soo Koh
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Sang-Keun Woo
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
- Correspondence: ; Tel.: +82-2-970-1659
| |
Collapse
|
20
|
He M, Cheng C, Tu J, Ji SS, Lou D, Bai B. Agrin expression is correlated with tumor development and poor prognosis in cholangiocarcinoma. J Int Med Res 2021; 49:3000605211009722. [PMID: 34018826 PMCID: PMC8150497 DOI: 10.1177/03000605211009722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study examined the role of agrin in the development of cholangiocarcinoma (CCA). Methods Western blotting was performed to detect the expression of target genes. The correlation between agrin expression and prognosis was analyzed using the Kaplan–Meier method. Proliferation, migration, invasion, and tumorigenesis were examined in CCA cells and tissues using the Cell Counting Kit-8 assay, cell cycle analysis, transwell migration assay, and nude mouse tumorigenicity assay in vivo, respectively. Results Agrin expression was significantly upregulated in CCA tissues compared with that in adjacent non-tumor tissues, and agrin expression was correlated with poorer tumor characteristics such as portal vein tumor thrombus, intrahepatic metastasis, and worse survival. Forced agrin expression in CCA cells apparently promoted proliferation, colony formation, migration, invasion, and cell cycle progression, but agrin depletion had the opposite effects. Furthermore, agrin-depleted CCA cells developed fewer and smaller tumors than control cells in vivo. Mechanistic analyses indicated that agrin activated the Hippo signaling pathway and induced the translocation of YAP to the nucleus. Conclusions Agrin promoted CCA progression by activating the Hippo signaling pathway, suggesting its promise as a target for CCA therapy.
Collapse
Affiliation(s)
- Meimei He
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Junxue Tu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Sha-Sha Ji
- Department of Pharmacy, Shaoxing Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China
| | - Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Binglong Bai
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
21
|
Sá JDO, Trino LD, Oliveira AK, Lopes AFB, Granato DC, Normando AGC, Santos ES, Neves LX, Carnielli CM, Paes Leme AF. Proteomic approaches to assist in diagnosis and prognosis of oral cancer. Expert Rev Proteomics 2021; 18:261-284. [PMID: 33945368 DOI: 10.1080/14789450.2021.1924685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Oral squamous cell carcinoma (OSCC) ranks among the top 10 leading causes of cancer worldwide, with 5-year survival rate of about 50%, high lymph node metastasis, and relapse rates. The OSCC diagnosis, prognosis, and treatment are mostly based on the clinical TNM classification. There is an urgent need for the discovery of biomarkers and therapeutic targets to assist in the clinical decision-making process.Areas covered: We summarize proteomic studies of the OSCC tumor, immune microenvironment, potential liquid biopsy sites, and post-translational modifications trying to retrieve information in the discovery and verification or (pre)validation phases. The search strategy was based on the combination of MeSH terms and expert refinement.Expert opinion: Untargeted combined with targeted proteomics are strategies that provide reliable and reproducible quantitation of proteins and are the methods of choice of many groups worldwide. Undoubtedly, proteomics has been contributing to the understanding of OSCC progression and uncovers potential candidates as biomarker or therapeutic targets. Nevertheless, none of these targets are available in the clinical practice yet. The scientific community needs to overcome the limitations by investing in robust experimental designs to strengthen the value of the findings, leveraging the translation of knowledge, and further supporting clinical decisions.
Collapse
Affiliation(s)
- Jamile De Oliveira Sá
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Luciana Daniele Trino
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ariane Fidelis Busso Lopes
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Gabriela Costa Normando
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Erison Santana Santos
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Leandro Xavier Neves
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| |
Collapse
|
22
|
Sun X, Malandraki-Miller S, Kennedy T, Bassat E, Klaourakis K, Zhao J, Gamen E, Vieira JM, Tzahor E, Riley PR. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development 2021; 148:261801. [PMID: 33969874 PMCID: PMC8172119 DOI: 10.1242/dev.197525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing β-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.
Collapse
Affiliation(s)
- Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Sophia Malandraki-Miller
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Tahnee Kennedy
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Jia Zhao
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elisabetta Gamen
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
23
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Barkovskaya A, Buffone A, Žídek M, Weaver VM. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front Cell Dev Biol 2020; 8:569377. [PMID: 33330449 PMCID: PMC7734320 DOI: 10.3389/fcell.2020.569377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and mechanical properties of the interstitial extracellular matrix where they modulate cellular behavior by engaging transmembrane receptors. Proteoglycans also comprise a major component of the cellular glycocalyx to influence transmembrane receptor structure/function and mechanosignaling. Through their ability to initiate biochemical and mechanosignaling in cells, proteoglycans elicit profound effects on proliferation, adhesion and migration. Pathologies including cancer and cardiovascular disease are characterized by perturbed expression of proteoglycans where they compromise cell and tissue behavior by stiffening the extracellular matrix and increasing the bulkiness of the glycocalyx. Increasing evidence indicates that a bulky glycocalyx and proteoglycan-enriched extracellular matrix promote malignant transformation, increase cancer aggression and alter anti-tumor therapy response. In this review, we focus on the contribution of proteoglycans to mechanobiology in the context of normal and transformed tissues. We discuss the significance of proteoglycans for therapy response, and the current experimental strategies that target proteoglycans to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Anna Barkovskaya
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander Buffone
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin Žídek
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M. Weaver
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Zhang Y, Sun X. Role of Focal Adhesion Kinase in Head and Neck Squamous Cell Carcinoma and Its Therapeutic Prospect. Onco Targets Ther 2020; 13:10207-10220. [PMID: 33116602 PMCID: PMC7553669 DOI: 10.2147/ott.s270342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers are one of the most prevalent cancers globally. Among them, head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers, which occurs in the oral cavity, oral pharynx, hypopharynx and larynx. The 5-year survival rate of HNSCC patients is only 63%, mainly because about 80–90% of patients with advanced HNSCC tend to suffer from local recurrence or even distant metastasis. Despite the more in-depth understanding of the molecular mechanisms underlying the occurrence and progression of HNSCC in recent years, effective targeted therapies are unavailable for HNSCC, which emphasize the urgent demand for studies in this area. Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase that contributes to oncogenesis and tumor progression by its significant function in cell survival, proliferation, adhesion, invasion and migration. In addition, FAK exerts an effect on the tumor microenvironment, epithelial–mesenchymal transition, radiation (chemotherapy) resistance, tumor stem cells and regulation of inflammatory factors. Moreover, the overexpression and activation of FAK are detected in multiple types of tumors, including HNSCC. FAK inhibition can induce cell cycle arrest and apoptosis, significantly decrease cell growth, invasion and migration in HNSCC cell lines. In this article, we mainly review the research progress of FAK in the occurrence, development and metastasis of HNSCC, and put forward the prospects for the therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
27
|
Wang ZQ, Sun XL, Wang YL, Miao YL. Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J Recept Signal Transduct Res 2020; 41:363-370. [PMID: 32862766 DOI: 10.1080/10799893.2020.1811325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rectal cancer is the most common malignant tumor in the digestive system with rapidly metastasis and highly recurrence. Agrin (AGRN) is a proteoglycan involving in a large number of human cancers. However, how AGRN regulates the progression of rectal cancer remains largely unknown. We aimed to determine the biological role of AGRN and its mechanism in rectal cancer. AGRN expression in rectal cancer tissues was detected based on TCGA. The survival curve was plotted using the Kaplan-Meier method. qRT-PCR and western blot were utilized to examine the expression level of AGRN in cells. Cell proliferation, clonogenic ability, invasion, and migration of rectal cancer cells were analyzed by CCK-8, colony formation and transwell experiments. GSEA was employed for the analysis of the potential pathways-related with AGRN in rectal cancer. The activity of WNT pathway was determined by western blot. AGRN expression was dramatically increased in rectal cancer, and its up-regulation was associated with poorer prognosis of rectal cancer patients. AGRN expression was an independent factor for the prognosis of rectal cancer. AGRN inhibition suppressed rectal cancer cell growth, invasion, and migration, whereas AGRN overexpression facilitated these behaviors of rectal cancer cells in vitro. Mechanistically, WNT signaling pathway was enriched in high AGRN-expressing patients with rectal cancer. AGRN elevated the activity of WNT pathway through increasing Cyclin D1, C-Myc, p-GSK-3β, and p-β-catenin expression. Our present study indicated that AGRN might function as an oncogenic indicator in rectal cancer via activating the WNT pathway, which would help develop optimized therapeutic therapies for rectal cancer.
Collapse
Affiliation(s)
- Zai-Qiu Wang
- Department of Anorectal Surgery, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Xiao-Li Sun
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Ye-Li Wang
- Department of Anorectal Surgery, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Ya-Li Miao
- Department of Oncology, The First People's Hospital of Jining, Jining, PR China
| |
Collapse
|
28
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
29
|
Bigotti MG, Skeffington KL, Jones FP, Caputo M, Brancaccio A. Agrin-Mediated Cardiac Regeneration: Some Open Questions. Front Bioeng Biotechnol 2020; 8:594. [PMID: 32612983 PMCID: PMC7308530 DOI: 10.3389/fbioe.2020.00594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023] Open
Abstract
After cardiac injury, the mammalian adult heart has a very limited capacity to regenerate, due to the inability of fully differentiated cardiomyocytes (CMs) to efficiently proliferate. This has been directly linked to the extracellular matrix (ECM) surrounding and connecting cardiomyocytes, as its increasing rigidity during heart maturation has a crucial impact over the proliferative capacity of CMs. Very recent studies using mouse models have demonstrated how the ECM protein agrin might promote heart regeneration through CMs de-differentiation and proliferation. In maturing CMs, this proteoglycan would act as an inducer of a specific molecular pathway involving ECM receptor(s) within the transmembrane dystrophin-glycoprotein complex (DGC) as well as intracellular Yap, an effector of the Hippo pathway involved in the replication/regeneration program of CMs. According to the mechanism proposed, during mice heart development agrin gets progressively downregulated and ultimately replaced by other ECM proteins eventually leading to loss of proliferation/ regenerative capacity in mature CMs. Although the role played by the agrin-DGC-YAP axis during human heart development remains still largely to be defined, this scenario opens up fascinating and promising therapeutic avenues. Herein, we discuss the currently available relevant information on this system, with a view to explore how the fundamental understanding of the regenerative potential of this cellular program can be translated into therapeutic treatment of injured human hearts.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Katie L. Skeffington
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Ffion P. Jones
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC)—CNR, Rome, Italy
| |
Collapse
|
30
|
Oral lichen planus interactome reveals CXCR4 and CXCL12 as candidate therapeutic targets. Sci Rep 2020; 10:5454. [PMID: 32214134 PMCID: PMC7096434 DOI: 10.1038/s41598-020-62258-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023] Open
Abstract
Today, we face difficulty in generating new hypotheses and understanding oral lichen planus due to the large amount of biomedical information available. In this research, we have used an integrated bioinformatics approach assimilating information from data mining, gene ontologies, protein–protein interaction and network analysis to predict candidate genes related to oral lichen planus. A detailed pathway analysis led us to propose two promising therapeutic targets: the stromal cell derived factor 1 (CXCL12) and the C-X-C type 4 chemokine receptor (CXCR4). We further validated our predictions and found that CXCR4 was upregulated in all oral lichen planus tissue samples. Our bioinformatics data cumulatively support the pathological role of chemokines and chemokine receptors in oral lichen planus. From a clinical perspective, we suggest a drug (plerixafor) and two therapeutic targets for future research.
Collapse
|
31
|
Rickelt S, Condon C, Mana M, Whittaker C, Pfirschke C, Roper J, Patil DT, Brown I, Mattia AR, Zukerberg L, Zhao Q, Chetty R, Lauwers GY, Neyaz A, Leijssen LGJ, Boylan K, Yilmaz OH, Deshpande V, Hynes RO. Agrin in the Muscularis Mucosa Serves as a Biomarker Distinguishing Hyperplastic Polyps from Sessile Serrated Lesions. Clin Cancer Res 2020; 26:1277-1287. [PMID: 31852835 PMCID: PMC7073301 DOI: 10.1158/1078-0432.ccr-19-2898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Sessile serrated lesions (SSL) are precursors to colon carcinoma, and their distinction from other polyps, in particular hyperplastic polyps (HP), presents significant diagnostic challenges. We evaluated expression patterns in colonic polyps of previously identified colon carcinoma-associated extracellular matrix (ECM) proteins to identify markers distinguishing SSLs from other polyps. EXPERIMENTAL DESIGN Gene-expression analyses of ECM proteins were performed using publicly available data on preneoplastic colonic polyps. In parallel, we evaluated by IHC the expression of agrin (AGRN) in over 400 colonic polyps, including HP, SSL with and without dysplasia, traditional serrated adenomas (TSA), and tubular adenomas (TA), and compared the consistency of standard histologic diagnosis of SSLs by experienced gastrointestinal pathologists with that of AGRN IHC. RESULTS Differential gene expression analysis and IHC identified AGRN, serine peptidase inhibitor (SERPINE2), and TIMP metallopeptidase inhibitor 1 (TIMP1) elevated in SSLs and HPs but decreased in TAs and absent in normal colon. AGRN-positive basal laminae were noted in all TA, TSA, HP, and SSL in distinguishable patterns, whereas other polyps and normal mucosa were negative. SSL with or without dysplasia consistently showed IHC staining for AGRN in the muscularis mucosae, which was absent in HP, TSA, TA, and other polyps. In contrast, histologic evaluation showed only weak interobserver agreement (kappa value = 0.493) in distinguishing SSLs. CONCLUSIONS Muscularis mucosae-based AGRN immunostaining is a novel biomarker to distinguish SSL from HP, TSA, and TA, with a specificity of 97.1% and sensitivity of 98.9% and can assist in diagnosis of morphologically challenging colonic polyps.
Collapse
Affiliation(s)
- Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Charlene Condon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Swanson Biotechnology Center, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Miyeko Mana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charlie Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Swanson Biotechnology Center, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Jatin Roper
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Deepa T Patil
- Cleveland Clinic, Department of Pathology, Cleveland, Ohio
| | - Ian Brown
- Envoi Pathology, Kelvin Grove, Queensland, Australia
| | - Anthony R Mattia
- Department of Pathology, North Shore Medical Center, Salem, Massachusetts
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Runjan Chetty
- Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lieve G J Leijssen
- Department of General and Gastrointestinal Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katherine Boylan
- Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Omer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
32
|
Chakraborty S, Njah K, Hong W. Agrin Mediates Angiogenesis in the Tumor Microenvironment. Trends Cancer 2020; 6:81-85. [PMID: 32061308 DOI: 10.1016/j.trecan.2019.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
Angiogenesis represents a hallmark of cancer. Several proteoglycans associate with cell surface receptors and regulate angiogenesis within the tumor microenvironment (TME). We highlight the recent discovery that the proteoglycan Agrin cross talks between the tumor and the endothelium to promote an angiogenesis privileged niche during cancer progression.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Kizito Njah
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
33
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
34
|
Kang H, Wu Q, Sun A, Liu X, Fan Y, Deng X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int J Mol Sci 2018; 19:ijms19092484. [PMID: 30135409 PMCID: PMC6163906 DOI: 10.3390/ijms19092484] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells’ glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| |
Collapse
|