1
|
Li B, Wang J, Zhang J, Jin Q, Wang H, Li W. Biobased hydrophobic liquid mulch film from soybean oil and starch for enhanced terraced field cultivation. Int J Biol Macromol 2024; 283:137490. [PMID: 39549798 DOI: 10.1016/j.ijbiomac.2024.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Terraced agriculture faces soil loss during rainstorms leading to natural disasters and crop growth impediments. This study describes a novel biobased hydrophobic liquid mulch film comprised of waste soybean oil, starch, and acrylate monomers that can be used to enhance terraced field cultivation. The novel film, optimized at a 3:7 soybean oil to acrylate monomers ratio, exhibited superior spray ability, reduced wicking, and excellent film formation, which are crucial for its effectiveness as a water erosion barrier. The wet state of the SOSA film demonstrated optimal impact resistance, with increased elongation at break and reduced breaking strength compared to its dry state, facilitating seedling emergence. It significantly improved soil moisture retention (4.8-5.7 %) and temperature (0.9-5.6 °C) and boosted maize seed germination by 28 %. Under extreme conditions of a 24° slope and 90 mm/h rainfall, the SOSA film achieved an 80.6 % reduction in soil loss and a 57.4 % increase in pakchoi yield over bare soil. This study's comprehensive analyses confirmed the film's formation mechanism and provided a scientific basis for its practical application performance, highlighting the film's unprecedented success in using waste materials for sustainable terrace farming and its potential as a transformative approach to soil conservation and crop productivity.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ju Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiabo Zhang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qidong Jin
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haoyu Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wenzhuo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
2
|
Fajardo-Espinoza FS, Cabrera-Nieto SA, Espada-Vargas AL, Pérez-Camargo DA, Mohar A, Cruz-Ramos M. Phase angle as a potential tool to evaluate chronic inflammatory state and predict quality of life deterioration in women with breast cancer and obesity: A narrative review. Nutrition 2024; 127:112524. [PMID: 39151209 DOI: 10.1016/j.nut.2024.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 08/18/2024]
Abstract
The interaction between lifestyle--defined more specifically in health care as the personal exposome--and its implications on obesity and breast cancer development highlights the critical role of body composition and inflammation in these patients. There is clear evidence that the personal and internal exposome triggers biochemical, inflammatory, and metabolic reprogramming, which might favor ectopic lipid accumulation within the body, such as muscles. Additionally, the presence of excessive adipose tissue exacerbates these alterations in the internal exposome, resulting in cell damage and modifying body composition. Understanding the nexus between these lifestyle-induced exposome modifications, such as inflammation, and the resultant changes in body composition is crucial to assess the association with breast cancer progression and treatment responses. Various techniques can be used to evaluate body composition; one of those most used currently is bioelectrical impedance analysis. This analysis provides parameters, including phase angle (PhA), by which cellular health and metabolic activity can be assessed. In addition, PhA is a potential indicator of nutritional status and disease prognosis, as it has been linked to survival and quality of life in patients with cancer. Therefore, PhA might be used in daily oncology practice to implement an accurate nutritional intervention, reducing side effects and complications of oncology management, and improving quality of life during treatment and survival, even in patients with breast cancer with obesity or overweight. The aim of this review is to analyze the existing information on the current application of PhA in patients with breast cancer and its potential use as a tool to assess inflammatory response, identify malnutrition, and predict the deterioration of quality of life so that it could be proposed as an early indicator for nutritional interventions in this group of patients.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Mohar
- Unidad de Epidemiología e Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marlid Cruz-Ramos
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico; Investigadora por México del Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Instituto Nacional de Cancerología, Mexico City, Mexico.
| |
Collapse
|
3
|
Ahmad MS, Minaee N, Serrano-Contreras JI, Kaluarachchi M, Shen EYL, Boulange C, Ahmad S, Phetcharaburanin J, Holmes E, Wist J, Albaloshi AH, Alaama T, Damanhouri ZA, Lodge S. Exploring the Interactions between Obesity and Diabetes: Implications for Understanding Metabolic Dysregulation in a Saudi Arabian Adult Population. J Proteome Res 2024; 23:809-821. [PMID: 38230637 PMCID: PMC10846529 DOI: 10.1021/acs.jproteome.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.
Collapse
Affiliation(s)
- Muhammad Saeed Ahmad
- Department
of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K.
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Novia Minaee
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | | | - Manuja Kaluarachchi
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Eric Yi-Liang Shen
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Department
of Radiation Oncology, Chang Gung Memorial
Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Claire Boulange
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Sultan Ahmad
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jutarop Phetcharaburanin
- Department
of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Elaine Holmes
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Julien Wist
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Ahmed Hakem Albaloshi
- King
Abdulaziz Hospital and Endocrine and Diabetic Center, Jeddah 23436, Saudi Arabia
| | - Tareef Alaama
- Department
of Medicine, Faculty of Medicine, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Zoheir Abdullah Damanhouri
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samantha Lodge
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Liu J, Zhou Y, Liu H, Ma M, Wang F, Liu C, Yuan Q, Wang H, Hou X, Yin P. Metabolic reprogramming enables the auxiliary diagnosis of breast cancer by automated breast volume scanner. Front Oncol 2022; 12:939606. [PMCID: PMC9597368 DOI: 10.3389/fonc.2022.939606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of female cancer-related deaths worldwide. New technologies with enhanced sensitivity and specificity for early diagnosis and monitoring of postoperative recurrence are in critical demand. Automatic breast full volume scanning system (ABVS) is an emerging technology used as an alternative imaging method for breast cancer screening. Despite its improved detection rate of malignant tumors, ABVS cannot accurately stage breast cancer preoperatively in 30–40% of cases. As a major hallmark of breast cancer, the characteristic metabolic reprogramming may provide potential biomarkers as an auxiliary method for ABVS.ObjectiveThe objective of this study was to identify differential metabolomic signatures between benign and malignant breast tumors and among different subtypes of breast cancer patients based on untargeted metabolomics and improve breast cancer detection rate by combining key metabolites and ABVS.MethodsUntargeted metabolomics approach was used to profile serum samples from 70 patients with different subtypes of breast cancer and benign breast tumor to determine specific metabolomic profiles through univariate and multivariate statistical data analysis.ResultsMetabolic profiles correctly distinguished benign and malignant breast tumors patients, and a total of 791 metabolites were identified. There were 54 different metabolites between benign and malignant breast tumors and 17 different metabolites between invasive and non-invasive breast cancer. Notably, the missed diagnosis rate of ABVS could be reduced by differential metabolite analysis. Moreover, the diagnostic performance analyses of combined metabolites (pelargonic acid, N-acetylasparagine, and cysteine-S-sulfate) with ABVS performance gave a ROC area under the curve of 0.967 (95% CI: 0.926, 0.993).ConclusionsOur study identified metabolic features both in benign and malignant breast tumors and in invasive and non-invasive breast cancer. Combined ultrasound ABVS and a panel of differential serum metabolites could further improve the accuracy of preoperative diagnosis of breast cancer and guide surgical therapy.
Collapse
Affiliation(s)
- Jianjun Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengyan Ma
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongjiang Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiukun Hou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| |
Collapse
|
6
|
Giskeødegård GF, Madssen TS, Sangermani M, Lundgren S, Wethal T, Andreassen T, Reidunsdatter RJ, Bathen TF. Longitudinal Changes in Circulating Metabolites and Lipoproteins After Breast Cancer Treatment. Front Oncol 2022; 12:919522. [PMID: 35785197 PMCID: PMC9245384 DOI: 10.3389/fonc.2022.919522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
The multimodal treatment of breast cancer may induce long term effects on the metabolic profile and increase the risk of future cardiovascular disease. In this study, we characterized longitudinal changes in serum lipoprotein subfractions and metabolites after breast cancer treatment, aiming to determine the long-term effect of different treatment modalities. Further, we investigated the prognostic value of treatment-induced changes in breast cancer-specific and overall 10-year survival. In this study, serum samples from breast cancer patients (n = 250) were collected repeatedly before and after radiotherapy, and serum metabolites and lipoprotein subfractions were quantified by NMR spectroscopy. Longitudinal changes were assessed by univariate and multivariate data analysis methods applicable for repeated measures. Distinct changes were detectable in levels of lipoprotein subfractions and circulating metabolites during the first year, with similar changes despite large differences in treatment regimens. We detect increased free cholesterol and decreased esterified cholesterol levels of HDL subfractions, a switch towards larger LDL particles and higher total LDL-cholesterol, in addition to a switch in the glutamine-glutamate ratio. Non-survivors had different lipid profiles from survivors already at baseline. To conclude, our results show development towards an atherogenic lipid profile in breast cancer patients with different treatment regimens.
Collapse
Affiliation(s)
- Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Torfinn S. Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matteo Sangermani
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medicine, Stroke Unit, St. Olavs University Hospital, Trondheim, Norway
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi J. Reidunsdatter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Ramos da Silva B, Rufato S, Mialich MS, Cruz LP, Gozzo T, Jordao AA. Metabolic syndrome and unfavorable outcomes on body composition and in visceral adiposities indexes among early breast cancer women post-chemotherapy. Clin Nutr ESPEN 2021; 44:306-315. [PMID: 34330483 DOI: 10.1016/j.clnesp.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE The study objected to investigate potential changes in metabolic, dietary, and nutritional status in women with stages I-III breast cancer exposed to chemotherapy. METHODS Women who were starting chemotherapy with no previous treatment were recruited. Anthropometrics, bioelectrical impedance analysis, handgrip strength, blood pressure and blood sample were collected. Visceral adiposity index and lipid accumulation product were calculated. Dietary intake was evaluated, and the multiple source methods program was applied. Metabolic syndrome (MetS) was assessed following the NCEP-ATP III criteria (defined as 3 of 5 components of MetS). All data were collected at 2-time points: diagnosis (T0) and after 1 month of completion of therapy (T1). Mean, standard deviation, percentage, and ANOVA in SAS Studio® were used to explore the results. RESULTS 61 women were included. We did not find any changes in anthropometrics and body composition. However, phase angle, extracellular water (EX) and ratio EX to total body water had expressive changes (p < 0.001). The results showed changes in lipid profile (p < 0.001), and greater unfavorable outcomes on adiposities index (p < 0.001). At the end of the study, 68,8% (N = 42) of the women developed MetS post-chemotherapy. CONCLUSION We have found supporting evidence for chemotherapy treatment resulting in worsening of nutritional markers, lipid profile and adiposity markers. After chemotherapy part of the sample developed MetS, even without changes in body weight, fat mass, and food intake. Breast cancer patients may benefit from targeted interventions before starting chemotherapy to prevent MetS post-treatment, and therefore reduce the risk of cardiovascular disease. Further investigation into this theme is needed.
Collapse
Affiliation(s)
- Bruna Ramos da Silva
- Department of Health Sciences, Ribeirão Preto Medical School. University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil.
| | - Sarah Rufato
- Department of Health Sciences, Ribeirão Preto Medical School. University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - Mirele S Mialich
- Department of Health Sciences, Ribeirão Preto Medical School. University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - Loris P Cruz
- Nursing School of Ribeirão Preto, University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - Thais Gozzo
- Nursing School of Ribeirão Preto, University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - Alceu A Jordao
- Department of Health Sciences, Ribeirão Preto Medical School. University of Sao Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Vignoli A, Risi E, McCartney A, Migliaccio I, Moretti E, Malorni L, Luchinat C, Biganzoli L, Tenori L. Precision Oncology via NMR-Based Metabolomics: A Review on Breast Cancer. Int J Mol Sci 2021; 22:ijms22094687. [PMID: 33925233 PMCID: PMC8124948 DOI: 10.3390/ijms22094687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal therapy for the right patient by considering each patient’s unique disease and individual health status. In the last years, it has become evident that breast cancer is an extremely heterogeneous disease, and therefore, patients need to be appropriately stratified to maximize survival and quality of life. Gene-expression tools have already positively assisted clinical decision making by estimating the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these approaches need refinement to further reduce the proportion of patients potentially exposed to unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for cancer research and has provided significant results in BC, in particular for prognostic and stratification purposes. In this review, we give an update on the status of NMR-based metabolomic studies for the biochemical characterization and stratification of breast cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine).
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Emanuela Risi
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Amelia McCartney
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
- School of Clinical Sciences, Monash University, Melbourne 3800, Australia
| | - Ilenia Migliaccio
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Erica Moretti
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Luca Malorni
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
- Correspondence: ; Tel.: +39-055-457-4296
| | - Laura Biganzoli
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Recognition of Immune Microenvironment Landscape and Immune-Related Prognostic Genes in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3909416. [PMID: 33274208 PMCID: PMC7683123 DOI: 10.1155/2020/3909416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 10/24/2020] [Indexed: 01/24/2023]
Abstract
Background Breast cancer (BC) is the most common malignant tumor in women. The immunophenotype of tumor microenvironment (TME) has shown great therapeutic potential in tumor. Method The transcriptome was obtained from TCGA and GEO data. Immune infiltration was analyzed by single-sample gene set enrichment (ssGSEA). The immune feature was constructed by Cox regression analysis. In addition, the coexpression of differential expression genes (DEGs) was identified. Through enrichment analysis, the function and pathway of module genes were identified. The somatic mutations related to immune characteristics were analyzed by Maftools. By using the consistency clustering algorithm, the molecular subtypes were constructed, and the overall survival time (OS) was predicted. Results Immune landscape can be divided into low immune infiltration and high immune infiltration. Cox regression analysis identified seven immune cells as protective factors of BC. In the coexpression modules for DEGs of high and low immune infiltration, module 1 was related to T cells and high immune infiltration. In particular, the area under the curve (AUC) value of hub gene SASH3 was the highest, and the correlation with T cells was stronger in the high immune infiltration. Enrichment analysis found that oxidative stress, T cell aggregation, and apoptosis were observed in high immune infiltration. In addition, TP53 was identified as the most important somatic gene mutation related to immune characteristics. Importantly, we also constructed seven immune cell-based breast cancer subtypes to predict OS. Conclusion We evaluated the immune landscape of BC and constructed the gene characteristics related to the immune landscape. The potential of T cells and SASH3 in immunotherapy of BC was revealed, which may guide the development of new clinical treatment strategies.
Collapse
|
10
|
Brown SA. Preventive Cardio-Oncology: The Time Has Come. Front Cardiovasc Med 2020; 6:187. [PMID: 31998754 PMCID: PMC6965025 DOI: 10.3389/fcvm.2019.00187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Ahmad F, Wang X, Jiang Z, Yu X, Liu X, Mao R, Chen X, Li W. Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics. ACS NANO 2019; 13:10419-10433. [PMID: 31430127 DOI: 10.1021/acsnano.9b04213] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radio- and photodynamic therapies are the first line of cancer treatments but suffer from poor light penetration and less radiation accumulation in soft tissues with high radiation toxicity. Therefore, a multifunctional nanoplatform with diagnosis-assisted synergistic radio- and photodynamic therapy and tools facilitating early prognosis are urgently needed to fight the war against cancer. Further, integrating cancer therapy with untargeted metabolomic analysis would collectively offer clinical pertinence through facilitating early diagnosis and prognosis. Here, we enriched scintillation of CeF3 nanoparticles (NPs) through codoping Tb3+ and Gd3+ (CeF3:Gd3+,Tb3+) for viable clinical approach in the treatment of deep-seated tumors. The codoped CeF3:Gd3+,Tb3+ scintillating theranostic NPs were then coated with mesoporous silica, followed by loading with rose bengal (CGTS-RB) for later computed tomography (CT)- and magnetic resonance image (MRI)-guided X-ray stimulated synergistic radio- and photodynamic therapy (RT+XPDT) using low-dose, one-time X-ray irradiation. The results corroborated an efficient tumor regression with synergistic RT+XPDT relative to single RT. Global untargeted metabolome shifts highlighted the mechanism behind this efficient tumor regression using RT, and synergistic RT+XPDT treatment is due to the starvation of nonessential amino acids involved in protein and DNA synthesis and energy regulation pathways necessary for growth and progression. Our study also concluded that tumor and serum metabolites shift during disease progression and regression and serve as robust biomarkers for early assessment of disease state and prognosis. From our results, we propose that codoping is an effective and extendable technique to other materials for gaining high optical yield and multifunctionality and for use in diagnostic and therapeutic applications. Critically, the integration of multifunctional theranostic nanomedicines with metabolomics has excellent potential for the discovery of early metabolic biomarkers to aid in better clinical disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xiaoyan Wang
- Shanghai Center for Systems Biomedicine , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Zhao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Rihua Mao
- Laboratory for Advanced Scintillation Materials & Performance , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 201800 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| |
Collapse
|
12
|
Debik J, Euceda LR, Lundgren S, Gythfeldt HVDL, Garred Ø, Borgen E, Engebraaten O, Bathen TF, Giskeødegård GF. Assessing Treatment Response and Prognosis by Serum and Tissue Metabolomics in Breast Cancer Patients. J Proteome Res 2019; 18:3649-3660. [DOI: 10.1021/acs.jproteome.9b00316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Steinar Lundgren
- Department of Oncology, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | | | - Øystein Garred
- Department of Tumor Biology, Oslo University Hospital, 0424 Oslo, Norway
| | - Elin Borgen
- Department of Tumor Biology, Oslo University Hospital, 0424 Oslo, Norway
| | - Olav Engebraaten
- Department of Oncology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | | | | |
Collapse
|
13
|
Wang F, Debik J, Andreassen T, Euceda LR, Haukaas TH, Cannet C, Schäfer H, Bathen TF, Giskeødegård GF. Effect of Repeated Freeze–Thaw Cycles on NMR-Measured Lipoproteins and Metabolites in Biofluids. J Proteome Res 2019; 18:3681-3688. [DOI: 10.1021/acs.jproteome.9b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | - Leslie R. Euceda
- Camo Analytics, Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway
| | - Tonje H. Haukaas
- SINTEF Industry, Richard Birkelands vei 3, 7034 Trondheim, Norway
| | - Claire Cannet
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - Hartmut Schäfer
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | | | | |
Collapse
|
14
|
Guan X, Liu Z, Zhao Z, Zhang X, Tao S, Yuan B, Zhang J, Wang D, Liu Q, Ding Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis 2019; 18:137. [PMID: 31182104 PMCID: PMC6558919 DOI: 10.1186/s12944-019-1075-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with increasing incidence and mortality and represents one of the most common cancer types worldwide. Low-density lipoprotein (LDL) is a complex particle composed of several proteins and lipids, which carries cholesterol into peripheral tissues and also affects the metabolism of fatty acids. Recent reports have indicated an emerging role of LDL in breast cancer, affecting cell proliferation and migration, thereby facilitating disease progression. However, controversy still exists among distinct types of breast cancer that can be affected by LDL. Classical therapeutic approaches, such as radiotherapy, chemotherapy, and lipid-lowering drugs were also reported as affecting LDL metabolism and content in breast cancer patients. Therefore, in this review we summarized and discussed the role of LDL in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Zhuo Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130333 China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
- The 85th Hospital of CPLA, Shanghai, 200040 China
| | - Xuefeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Siteng Tao
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Dawei Wang
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| |
Collapse
|
15
|
Forsgård RA, Marrachelli VG, Lindén J, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T, Österlund P. Two-Week Aflibercept or Erlotinib Administration Does Not Induce Changes in Intestinal Morphology in Male Sprague-Dawley Rats But Aflibercept Affects Serum and Urine Metabolic Profiles. Transl Oncol 2019; 12:1122-1130. [PMID: 31176994 PMCID: PMC6558216 DOI: 10.1016/j.tranon.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal toxicity is a frequently observed adverse event during cancer treatment with traditional chemotherapeutics. Currently, traditional chemotherapeutics are often combined with targeted biologic agents. These biologics, however, possess a distinct toxicity profile, and they may also exacerbate the adverse effects of traditional chemotherapeutics. In this study, we aimed to characterize the gastrointestinal and metabolic changes after a 2-week treatment period with aflibercept, an antiangiogenic VEGFR decoy, and with erlotinib, a tyrosine-kinase inhibitor. Male rats were treated either with aflibercept or erlotinib for 2 weeks. During the 2-week treatment period, the animals in the aflibercept group received two subcutaneous doses of 25 mg/kg aflibercept. The erlotinib group got 10 mg/kg of erlotinib by oral gavage every other day. The control groups were treated similarly but received either saline injections or oral gavage of water. Intestinal toxicity was assessed by measuring intestinal permeability and by histological analyses of intestinal tissues. Metabolic changes were measured with 1H nuclear magnetic resonance in serum and urine. Neither aflibercept nor erlotinib induced changes in intestinal permeability or intestinal tissue morphology. However, aflibercept treatment resulted in stunted body weight gain and altered choline, amino acid, and lipid metabolism. Two-week treatment with aflibercept or erlotinib alone does not induce observable changes in gastrointestinal morphology and function. However, observed aflibercept-treatment related metabolic changes suggest alterations in intestinal microbiota, nutrient intake, and adipose tissue function. The metabolic changes are also interesting in respect to the systemic effects of aflibercept and their possible associations with adverse events caused by aflibercept administration.
Collapse
Affiliation(s)
- Richard A Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Vannina G Marrachelli
- Health research Institute INCLIVA, Metabolomics and Molecular Imaging Lab, Valencia, Spain; Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| | - Jere Lindén
- FCLAP, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - Rafael Frias
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Riitta Korpela
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Daniel Monleon
- Health research Institute INCLIVA, Metabolomics and Molecular Imaging Lab, Valencia, Spain.
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Pia Österlund
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Oncology, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|