1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Yap TA, LoRusso P, Miller RE, Kristeleit R, Paulovich AG, McMorn S, Oplustil O'Connor L, Lombardi B, Marco-Casanova P, Gangl ET, Patel B, O'Connor MJ, Dean E, Zviezdin R, Plummer R. The DNA-PK inhibitor AZD7648 alone or combined with pegylated liposomal doxorubicin in patients with advanced cancer: results of a first-in-human Phase I/IIa study. Br J Cancer 2025:10.1038/s41416-025-03053-x. [PMID: 40382524 DOI: 10.1038/s41416-025-03053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Upregulation of DNA-dependent protein kinase (DNA-PK) is associated with poor prognosis and decreased response to DNA-damaging agents across cancer types. A Phase I/IIa study (NCT03907969) investigated the highly potent, selective DNA-PK inhibitor AZD7648 as monotherapy or combined with pegylated liposomal doxorubicin (PLD) in patients with advanced cancer. METHODS Thirty patients received escalating doses of AZD7648 as monotherapy (n = 14), starting at 5 mg QD, or with PLD 40 mg/m2 (n = 16). The primary objective was safety and tolerability. RESULTS AZD7648 monotherapy was administered at 5-160 mg BID. The most frequent class of adverse events was gastrointestinal disorders (9/14 patients, 64.3%); one patient (160 mg BID) experienced dose-limiting toxicities (DLTs). No responses to AZD7648 monotherapy were observed. The maximum dose of combination therapy was AZD7648 40 mg QD days 1-7 + PLD every 28 days. 13/16 patients (81.3%) experienced gastrointestinal disorders and 11/16 (68.8%) patients had anaemia. Three patients experienced DLTs (two at AZD7648 20 mg QD 7 days + PLD; one at AZD7648 30 mg QD 7 days + PLD). Limited efficacy was observed, with one RECIST partial response. DISCUSSION Toxicity of AZD7648 + PLD was greater than expected and antitumour activity was limited, leading to early study termination.
Collapse
Affiliation(s)
- Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Rowan E Miller
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Rebecca Kristeleit
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | | | | | | | | | | | - Eric T Gangl
- Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Ruth Plummer
- Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Du S, Liang Q, Shi J. Progress of ATM inhibitors: Opportunities and challenges. Eur J Med Chem 2024; 277:116781. [PMID: 39173286 DOI: 10.1016/j.ejmech.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.
Collapse
Affiliation(s)
- Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Wang F, Yu X, Qian J, Cao Y, Dong S, Zhan S, Lu Z, Bast RC, Song Q, Chen Y, Zhang Y, Zhou J. A novel SIK2 inhibitor SIC-19 exhibits synthetic lethality with PARP inhibitors in ovarian cancer. Drug Resist Updat 2024; 74:101077. [PMID: 38518726 DOI: 10.1016/j.drup.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuejiao Yu
- Department of Imaging Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumin Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shunli Dong
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qingxia Song
- Department of Obstetrics and Gynecology, Nanjing University of Chinese Medicine Affiliated Suzhou Hospital, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Elbialy A, Kitauchi M, Yamanouchi D. Antioxidants and azd0156 Rescue Inflammatory Response in Autophagy-Impaired Macrophages. Int J Mol Sci 2023; 25:169. [PMID: 38203340 PMCID: PMC10779076 DOI: 10.3390/ijms25010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a lysosomal degradation system that eliminates and recycles damaged intracellular organelles and proteins. Inflammatory macrophages play a critical role in the development of various age-related inflammatory illnesses such as abdominal aortic aneurysm, atherosclerosis, and rheumatoid arthritis; therefore, identifying the mechanisms that cause macrophage inflammation is crucial for a better understanding of and developing therapeutics for inflammatory diseases. Previous research has linked autophagy to macrophage inflammation; Atg16L1-deficient macrophages increase IL-1 and IL-18 production via inflammasome activation. In this study, however, we show an alternative pathway of macrophage inflammation in an autophagy-deficient environment. We found that inhibiting autophagy in THP1 macrophages progressively increased the expression of p65-mediated inflammatory genes. This effect was reversed by treatment with antioxidants or azd0156, an ataxia telangiectasia mutated (ATM) inhibitor. In addition, our results showed that M1 macrophages inhibit autophagy and induce DNA damage, whereas M2 macrophages activate autophagy and reduce DNA damage. Importantly, the chemical activation of autophagy or ATM inhibition during M1 polarization reduced the M1 phenotype and inflammation, whereas inhibiting autophagy during M2 polarization also reduced the M2 phenotype. Thus, our findings highlight the importance of the autophagy-ATM pathway in driving macrophage inflammation.
Collapse
Affiliation(s)
| | | | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 5151, Madison, WI 53705, USA; (A.E.); (M.K.)
| |
Collapse
|
6
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
7
|
Karmokar A, Sargeant R, Hughes AM, Baakza H, Wilson Z, Talbot S, Bloomfield S, Leo E, Jones GN, Likhatcheva M, Tobalina L, Dean E, Cadogan EB, Lau A. Relevance of ATM Status in Driving Sensitivity to DNA Damage Response Inhibitors in Patient-Derived Xenograft Models. Cancers (Basel) 2023; 15:4195. [PMID: 37627223 PMCID: PMC10453052 DOI: 10.3390/cancers15164195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.
Collapse
Affiliation(s)
- Ankur Karmokar
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Rebecca Sargeant
- Imaging & Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Hana Baakza
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Sara Talbot
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Maria Likhatcheva
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Luis Tobalina
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| |
Collapse
|
8
|
Jurczak W, Elmusharaf N, Fox CP, Townsend W, Paulovich AG, Whiteaker JR, Krantz F, Wun CC, Parr G, Sharma S, Munugalavadla V, Manwani R, Dean E, Munir T. Phase I/II results of ceralasertib as monotherapy or in combination with acalabrutinib in high-risk relapsed/refractory chronic lymphocytic leukemia. Ther Adv Hematol 2023; 14:20406207231173489. [PMID: 37273420 PMCID: PMC10233611 DOI: 10.1177/20406207231173489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Background Patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) have limited treatment options. Ceralasertib, a selective ataxia telangiectasia and Rad-3-related protein (ATR) inhibitor, demonstrated synergistic preclinical activity with a Bruton tyrosine kinase (BTK) inhibitor in TP53- and ATM-defective CLL cells. Acalabrutinib is a selective BTK inhibitor approved for treatment of CLL. Objectives To evaluate ceralasertib ± acalabrutinib in R/R CLL. Design Nonrandomized, open-label phase I/II study. Methods In arm A, patients received ceralasertib monotherapy 160 mg twice daily (BID) continuously (cohort 1) or 2 weeks on/2 weeks off (cohort 2). In arm B, patients received acalabrutinib 100 mg BID continuously (cycle 1), followed by combination treatment with ceralasertib 160 mg BID 1 week on/3 weeks off from cycle 2. Co-primary objectives were safety and pharmacokinetics. Efficacy was a secondary objective. Results Eleven patients were treated [arm A, n = 8 (cohort 1, n = 5; cohort 2, n = 3); arm B, n = 3 (acalabrutinib plus ceralasertib, n = 2; acalabrutinib only, n = 1)]. Median duration of exposure was 3.5 and 7.2 months for ceralasertib in arms A and B, respectively, and 15.9 months for acalabrutinib in arm B. Most common grade ⩾3 treatment-emergent adverse events (TEAEs) in arm A were anemia (75%) and thrombocytopenia (63%), with four dose-limiting toxicities (DLTs) of grade 4 thrombocytopenia. No grade ⩾3 TEAEs or DLTs occurred in arm B. Ceralasertib plasma concentrations were similar when administered as monotherapy or in combination. At median follow-up of 15.1 months in arm A, no responses were observed, median progression-free survival (PFS) was 3.8 months, and median overall survival (OS) was 16.9 months. At median follow-up of 17.2 months in arm B, overall response rate was 100%, and median PFS and OS were not reached. Conclusion Ceralasertib alone showed limited clinical benefit. Acalabrutinib plus ceralasertib was tolerable with preliminary activity in patients with R/R CLL, though findings are inconclusive due to small sample size. Registration NCT03328273.
Collapse
Affiliation(s)
- Wojciech Jurczak
- Maria Sklodowska-Curie National Institute of
Oncology, Garncarska 11, 31-115 Krakow, Poland
| | | | | | - William Townsend
- NIHR Biomedical Research Centre, University
College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge,
UK
| | | |
Collapse
|
9
|
Wiseman EJ, Moss JI, Atkinson J, Baakza H, Hayes E, Willis SE, Waring PM, Rodriguez Canales J, Jones GN. Epitope Lability of Phosphorylated Biomarkers of the DNA Damage Response Pathway Results in Increased Vulnerability to Effects of Delayed or Incomplete Formalin Fixation. J Histochem Cytochem 2023; 71:237-257. [PMID: 37119278 PMCID: PMC10227880 DOI: 10.1369/00221554231174069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
Phosphorylated biomarkers are crucial for our understanding of drug mechanism of action and dose selection during clinical trials, particularly for drugs that target protein kinases, such as DNA-damage-response (DDR) inhibitors. However, tissue fixation conditions needed to preserve DDR-specific phospho-biomarkers have not been previously investigated. Using xenograft tissues and tightly controlled formalin fixation conditions, we assessed how preanalytical factors affect phosphorylated DDR biomarkers pRAD50(Ser635), ɣH2AX(Ser139), pKAP1(Ser824), and non-phosphorylated biomarkers cMYC and ATM. Cold ischemia times ranged from 15 min to 6 hr, and the fixation duration ranged from 24 hr to 4 weeks. Epitopes pRAD50 and pKAP1 appeared the most labile assessed with staining loss after just 15 min of cold ischemia time, while ATM was more robust showing consistent expression up to 1 hr of cold ischemia. Notably, ɣH2AX expression was lost with formalin fixation over 48 hr. The use of core needle biopsies where possible and novel fixation methods such as the 2-step temperature-controlled formalin approach may improve phosphorylated biomarker preservation; however, practical challenges may affect wider clinical application. The most essential tissue-processing step when downstream analysis includes DDR phosphorylated biomarkers is immediate tissue submersion in formalin, without delay, upon excision from the patient, followed by room temperature fixation for 24 hr.
Collapse
Affiliation(s)
| | - Jennifer I. Moss
- Bioscience, Oncology R&D, AstraZeneca,
Cambridge, United Kingdom
| | - James Atkinson
- CPSS, Oncology R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Hana Baakza
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Emily Hayes
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Sophie E. Willis
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Paul M. Waring
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | | | - Gemma N. Jones
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
10
|
Davis SL, Hartman SJ, Bagby SM, Schlaepfer M, Yacob BW, Tse T, Simmons DM, Diamond JR, Lieu CH, Leal AD, Cadogan EB, Hughes GD, Durant ST, Messersmith WA, Pitts TM. ATM kinase inhibitor AZD0156 in combination with irinotecan and 5-fluorouracil in preclinical models of colorectal cancer. BMC Cancer 2022; 22:1107. [PMID: 36309653 PMCID: PMC9617348 DOI: 10.1186/s12885-022-10084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
AZD0156 is an oral inhibitor of ATM, a serine threonine kinase that plays a key role in DNA damage response (DDR) associated with double-strand breaks. Topoisomerase-I inhibitor irinotecan is used clinically to treat colorectal cancer (CRC), often in combination with 5-fluorouracil (5FU). AZD0156 in combination with irinotecan and 5FU was evaluated in preclinical models of CRC to determine whether low doses of AZD0156 enhance the cytotoxicity of irinotecan in chemotherapy regimens used in the clinic.
Methods
Anti-proliferative effects of single-agent AZD0156, the active metabolite of irinotecan (SN38), and combination therapy were evaluated in 12 CRC cell lines. Additional assessment with clonogenic assay, cell cycle analysis, and immunoblotting were performed in 4 selected cell lines. Four colorectal cancer patient derived xenograft (PDX) models were treated with AZD0156, irinotecan, or 5FU alone and in combination for assessment of tumor growth inhibition (TGI). Immunofluorescence was performed on tumor tissues. The DDR mutation profile was compared across in vitro and in vivo models.
Results
Enhanced effects on cellular proliferation and regrowth were observed with the combination of AZD0156 and SN38 in select models. In cell cycle analysis of these models, increased G2/M arrest was observed with combination treatment over either single agent. Immunoblotting results suggest an increase in DDR associated with irinotecan therapy, with a reduced effect noted when combined with AZD0156, which is more pronounced in some models. Increased TGI was observed with the combination of AZD0156 and irinotecan as compared to single-agent therapy in some PDX models. The DDR mutation profile was variable across models.
Conclusions
AZD0156 and irinotecan provide a rational and active combination in preclinical colorectal cancer models. Variability across in vivo and in vitro results may be related to the variable DDR mutation profiles of the models evaluated. Further understanding of the implications of individual DDR mutation profiles may help better identify patients more likely to benefit from treatment with the combination of AZD0156 and irinotecan in the clinical setting.
Collapse
|
11
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
12
|
Wilson Z, Odedra R, Wallez Y, Wijnhoven PW, Hughes AM, Gerrard J, Jones GN, Bargh-Dawson H, Brown E, Young LA, O'Connor MJ, Lau A. ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer Res 2022; 82:1140-1152. [PMID: 35078817 PMCID: PMC9359726 DOI: 10.1158/0008-5472.can-21-2997] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.
Collapse
Affiliation(s)
- Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Rajesh Odedra
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Yann Wallez
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Joe Gerrard
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Hannah Bargh-Dawson
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elaine Brown
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Lucy A. Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: Alan Lau, Bioscience, Oncology R&D, AstraZeneca, Hodgkin Building, C/O Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 OWG, United Kingdom. Phone: 4407-9171-88399; E-mail:
| |
Collapse
|
13
|
Whiteaker JR, Lundeen RA, Zhao L, Schoenherr RM, Burian A, Huang D, Voytovich U, Wang T, Kennedy JJ, Ivey RG, Lin C, Murillo OD, Lorentzen TD, Thiagarajan M, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Reading JJ, Kaczmarczyk JA, Richardson CW, Garcia-Buntley SS, Bocik W, Hewitt SM, Murray KE, Do N, Brophy M, Wilz SW, Yu H, Ajjarapu S, Boja E, Hiltke T, Rodriguez H, Paulovich AG. Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens. Front Immunol 2021; 12:765898. [PMID: 34858420 PMCID: PMC8632241 DOI: 10.3389/fimmu.2021.765898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel A. Lundeen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Aura Burian
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tao Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Richard G. Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Oscar D. Murillo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Travis D. Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rhonda R. Roberts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph G. Knotts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joshua J. Reading
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jan A. Kaczmarczyk
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Christopher W. Richardson
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William Bocik
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Karen E. Murray
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
| | - Nhan Do
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Mary Brophy
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Stephen W. Wilz
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
| | - Hongbo Yu
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Samuel Ajjarapu
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
14
|
Willis SE, Winkler C, Roudier MP, Baird T, Marco-Casanova P, Jones EV, Rowe P, Rodriguez-Canales J, Angell HK, Ng FSL, Waring PM, Hodgson D, Ledermann JA, Weberpals JI, Dean E, Harrington EA, Barrett JC, Pierce AJ, Leo E, Jones GN. Retrospective analysis of Schlafen11 (SLFN11) to predict the outcomes to therapies affecting the DNA damage response. Br J Cancer 2021; 125:1666-1676. [PMID: 34663950 PMCID: PMC8651811 DOI: 10.1038/s41416-021-01560-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background The absence of the putative DNA/RNA helicase Schlafen11 (SLFN11) is thought to cause resistance to DNA-damaging agents (DDAs) and PARP inhibitors. Methods We developed and validated a clinically applicable SLFN11 immunohistochemistry assay and retrospectively correlated SLFN11 tumour levels to patient outcome to the standard of care therapies and olaparib maintenance. Results High SLFN11 associated with improved prognosis to the first-line treatment with DDAs platinum-plus-etoposide in SCLC patients, but was not strongly linked to paclitaxel–platinum response in ovarian cancer patients. Multivariate analysis of patients with relapsed platinum-sensitive ovarian cancer from the randomised, placebo-controlled Phase II olaparib maintenance Study19 showed SLFN11 tumour levels associated with sensitivity to olaparib. Study19 patients with high SLFN11 had a lower progression-free survival (PFS) hazard ratio compared to patients with low SLFN11, although both groups had the benefit of olaparib over placebo. Whilst caveated by small sample size, this trend was maintained for PFS, but not overall survival, when adjusting for BRCA status across the olaparib and placebo treatment groups, a key driver of PARP inhibitor sensitivity. Conclusion We provide clinical evidence supporting the role of SLFN11 as a DDA therapy selection biomarker in SCLC and highlight the need for further clinical investigation into SLFN11 as a PARP inhibitor predictive biomarker.
Collapse
Affiliation(s)
- Sophie E Willis
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tarrion Baird
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Emma V Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Philip Rowe
- GMD, Oncology R&D, AstraZeneca, Macclesfield, UK
| | | | - Helen K Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Felicia S L Ng
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Paul M Waring
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Darren Hodgson
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Jonathan A Ledermann
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute, London, UK
| | | | - Emma Dean
- Clinical, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
15
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
16
|
Yap TA, Krebs MG, Postel-Vinay S, El-Khouiery A, Soria JC, Lopez J, Berges A, Cheung SA, Irurzun-Arana I, Goldwin A, Felicetti B, Jones GN, Lau A, Frewer P, Pierce AJ, Clack G, Stephens C, Smith SA, Dean E, Hollingsworth SJ. Ceralasertib (AZD6738), an Oral ATR Kinase Inhibitor, in Combination with Carboplatin in Patients with Advanced Solid Tumors: A Phase I Study. Clin Cancer Res 2021; 27:5213-5224. [PMID: 34301752 PMCID: PMC9401487 DOI: 10.1158/1078-0432.ccr-21-1032] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE This study reports the safety, tolerability, MTD, recommended phase II dose (RP2D), pharmacokinetic/pharmacodynamic profile, and preliminary antitumor activity of ceralasertib combined with carboplatin in patients with advanced solid tumors. It also examined exploratory predictive and pharmacodynamic biomarkers. PATIENTS AND METHODS Eligible patients (n = 36) received a fixed dose of carboplatin (AUC5) with escalating doses of ceralasertib (20 mg twice daily to 60 mg once daily) in 21-day cycles. Sequential and concurrent combination dosing schedules were assessed. RESULTS Two ceralasertib MTD dose schedules, 20 mg twice daily on days 4-13 and 40 mg once daily on days 1-2, were tolerated with carboplatin AUC5; the latter was declared the RP2D. The most common treatment-emergent adverse events (Common Terminology Criteria for Adverse Events grade ≥3) were anemia (39%), thrombocytopenia (36%), and neutropenia (25%). Dose-limiting toxicities of grade 4 thrombocytopenia (n = 2; including one grade 4 platelet count decreased) and a combination of grade 4 thrombocytopenia and grade 3 neutropenia occurred in 3 patients. Ceralasertib was quickly absorbed (tmax ∼1 hour), with a terminal plasma half-life of 8-11 hours. Upregulation of pRAD50, indicative of ataxia telangiectasia mutated (ATM) activation, was observed in tumor biopsies during ceralasertib treatment. Two patients with absent or low ATM or SLFN11 protein expression achieved confirmed RECIST v1.1 partial responses. Eighteen of 34 (53%) response-evaluable patients had RECIST v1.1 stable disease. CONCLUSIONS The RP2D for ceralasertib plus carboplatin was established as ceralasertib 40 mg once daily on days 1-2 administered with carboplatin AUC5 every 3 weeks, with pharmacokinetic and pharmacodynamic studies confirming pharmacodynamic modulation and preliminary evidence of antitumor activity observed.
Collapse
Affiliation(s)
- Timothy A. Yap
- Royal Marsden Hospital and The Institute of Cancer Research, London, United Kingdom.,Corresponding Author: Timothy A. Yap, Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX 77030. Phone: 713-563-1784; E-mail:
| | - Matthew G. Krebs
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, INSERM Unit U981, Institut Gustave Roussy and Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, and Department of Drug Development, DITEP, Institut Gustave Roussy, Villejuif, France
| | | | - Jean-Charles Soria
- ATIP-Avenir Group, INSERM Unit U981, Institut Gustave Roussy and Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, and Department of Drug Development, DITEP, Institut Gustave Roussy, Villejuif, France
| | - Juanita Lopez
- Royal Marsden Hospital and The Institute of Cancer Research, London, United Kingdom
| | - Alienor Berges
- Quantitative Clinical Pharmacology, AstraZeneca, Cambridge, United Kingdom
| | - S.Y. Amy Cheung
- Quantitative Clinical Pharmacology, AstraZeneca, Cambridge, United Kingdom
| | | | - Andrew Goldwin
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Brunella Felicetti
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Oncology Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Paul Frewer
- Oncology Biometrics, AstraZeneca, Cambridge, United Kingdom
| | - Andrew J. Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Glen Clack
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Christine Stephens
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Simon A. Smith
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emma Dean
- Early Clinical Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
17
|
Shapiro GI, Wesolowski R, Devoe C, Lord S, Pollard J, Hendriks BS, Falk M, Diaz-Padilla I, Plummer R, Yap TA. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br J Cancer 2021; 125:520-527. [PMID: 34040174 PMCID: PMC8367944 DOI: 10.1038/s41416-021-01406-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class ataxia telangiectasia-mutated and Rad3-related protein kinase (ATR) inhibitor. We assessed the safety, tolerability, pharmacokinetics, and preliminary efficacy of berzosertib plus cisplatin. METHODS Adult patients with advanced solid tumours refractory or resistant to standard of care therapies received ascending doses of cisplatin (day 1) and berzosertib (days 2 and 9) every 3 weeks (Q3W). RESULTS Thirty-one patients received berzosertib (90-210 mg/m2) and cisplatin (40-75 mg/m2) across seven dose levels. The most common grade ≥3 treatment-emergent adverse events were neutropenia (20.0%) and anaemia (16.7%). There were two dose-limiting toxicities: a grade 3 hypersensitivity reaction and a grade 3 increase in alanine aminotransferase. Berzosertib 140 mg/m2 (days 2 and 9) and cisplatin 75 mg/m2 (day 1) Q3W was determined as the recommended Phase 2 dose. Cisplatin had no apparent effect on berzosertib pharmacokinetics. Of the 31 patients, four achieved a partial response (two confirmed and two unconfirmed) despite having previously experienced disease progression following platinum-based chemotherapy. CONCLUSIONS Berzosertib plus cisplatin is well tolerated and shows preliminary clinical activity in patients with advanced solid tumours, warranting further evaluation in a Phase 2 setting. CLINICAL TRIALS IDENTIFIER NCT02157792.
Collapse
Affiliation(s)
- Geoffrey I. Shapiro
- grid.38142.3c000000041936754XDepartment of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Robert Wesolowski
- grid.261331.40000 0001 2285 7943Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
| | - Craig Devoe
- grid.257060.60000 0001 2284 9943Medical Oncology and Hematology, Zucker School of Medicine at Hofstra/Northwell, New York, NY USA
| | - Simon Lord
- grid.4991.50000 0004 1936 8948Department of Oncology, University of Oxford, Oxford, UK
| | - John Pollard
- grid.476839.7Biological Sciences, Vertex Pharmaceuticals Europe Ltd, Abingdon, UK ,grid.465123.7Present Address: Bayer plc, Reading, UK
| | - Bart S. Hendriks
- grid.39009.330000 0001 0672 7022Clinical Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany ,grid.418424.f0000 0004 0439 2056Present Address: Novartis Institutes for BioMedical Research, Cambridge, MA USA
| | - Martin Falk
- grid.39009.330000 0001 0672 7022Oncology Global Clinical Development, Merck KGaA, Darmstadt, Germany ,grid.476259.b0000 0004 5345 4022Present Address: CureVac, Tübingen, Germany
| | - Ivan Diaz-Padilla
- grid.39009.330000 0001 0672 7022Oncology Global Clinical Development, Ares Trading SA, Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany ,grid.418180.4Present Address: GlaxoSmithKline, Zug, Switzerland
| | - Ruth Plummer
- grid.420004.20000 0004 0444 2244Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Timothy A. Yap
- grid.18886.3f0000 0001 1271 4623Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, London, UK ,grid.240145.60000 0001 2291 4776Present Address: University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
18
|
Lara H, Li Z, Abels E, Aeffner F, Bui MM, ElGabry EA, Kozlowski C, Montalto MC, Parwani AV, Zarella MD, Bowman D, Rimm D, Pantanowitz L. Quantitative Image Analysis for Tissue Biomarker Use: A White Paper From the Digital Pathology Association. Appl Immunohistochem Mol Morphol 2021; 29:479-493. [PMID: 33734106 PMCID: PMC8354563 DOI: 10.1097/pai.0000000000000930] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/12/2021] [Indexed: 01/19/2023]
Abstract
Tissue biomarkers have been of increasing utility for scientific research, diagnosing disease, and treatment response prediction. There has been a steady shift away from qualitative assessment toward providing more quantitative scores for these biomarkers. The application of quantitative image analysis has thus become an indispensable tool for in-depth tissue biomarker interrogation in these contexts. This white paper reviews current technologies being employed for quantitative image analysis, their application and pitfalls, regulatory framework demands, and guidelines established for promoting their safe adoption in clinical practice.
Collapse
Affiliation(s)
- Haydee Lara
- GlaxoSmithKline-R&D, Cellular Biomarkers, Collegeville, PA
| | - Zaibo Li
- The Ohio State University, Columbus, OH
| | | | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc
| | | | | | | | | | | | | | | | - David Rimm
- Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
19
|
Whiteaker JR, Wang T, Zhao L, Schoenherr RM, Kennedy JJ, Voytovich U, Ivey RG, Huang D, Lin C, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Kaczmarczyk JA, Blonder J, Reading JJ, Richardson CW, Hewitt SM, Garcia-Buntley SS, Bocik W, Hiltke T, Rodriguez H, Harrington EA, Barrett JC, Lombardi B, Marco-Casanova P, Pierce AJ, Paulovich AG. Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers (Basel) 2021; 13:3843. [PMID: 34359745 PMCID: PMC8345163 DOI: 10.3390/cancers13153843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The ATM serine/threonine kinase (HGNC: ATM) is involved in initiation of repair of DNA double-stranded breaks, and ATM inhibitors are currently being tested as anti-cancer agents in clinical trials, where pharmacodynamic (PD) assays are crucial to help guide dose and scheduling and support mechanism of action studies. To identify and quantify PD biomarkers of ATM inhibition, we developed and analytically validated a 51-plex assay (DDR-2) quantifying protein expression and DNA damage-responsive phosphorylation. The median lower limit of quantification was 1.28 fmol, the linear range was over 3 orders of magnitude, the median inter-assay variability was 11% CV, and 86% of peptides were stable for storage prior to analysis. Use of the assay was demonstrated to quantify signaling following ionizing radiation-induced DNA damage in both immortalized lymphoblast cell lines and primary human peripheral blood mononuclear cells, identifying PD biomarkers for ATM inhibition to support preclinical and clinical studies.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Tao Wang
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Lei Zhao
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Regine M. Schoenherr
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Jacob J. Kennedy
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Ulianna Voytovich
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Richard G. Ivey
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Dongqing Huang
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Chenwei Lin
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Rhonda R. Roberts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Joseph G. Knotts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Jan A. Kaczmarczyk
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Josip Blonder
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Joshua J. Reading
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Christopher W. Richardson
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA;
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - William Bocik
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; (S.C.); (T.W.C.); (R.R.R.); (J.G.K.); (J.A.K.); (J.B.); (J.J.R.); (C.W.R.); (S.S.G.-B.); (W.B.)
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA; (T.H.); (H.R.)
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA; (T.H.); (H.R.)
| | - Elizabeth A. Harrington
- Translational Sciences, Oncology, AstraZeneca, Cambridge CB4 0WG, UK; (E.A.H.); (J.C.B.); (B.L.); (P.M.-C.); (A.J.P.)
| | - J. Carl Barrett
- Translational Sciences, Oncology, AstraZeneca, Cambridge CB4 0WG, UK; (E.A.H.); (J.C.B.); (B.L.); (P.M.-C.); (A.J.P.)
| | - Benedetta Lombardi
- Translational Sciences, Oncology, AstraZeneca, Cambridge CB4 0WG, UK; (E.A.H.); (J.C.B.); (B.L.); (P.M.-C.); (A.J.P.)
| | - Paola Marco-Casanova
- Translational Sciences, Oncology, AstraZeneca, Cambridge CB4 0WG, UK; (E.A.H.); (J.C.B.); (B.L.); (P.M.-C.); (A.J.P.)
| | - Andrew J. Pierce
- Translational Sciences, Oncology, AstraZeneca, Cambridge CB4 0WG, UK; (E.A.H.); (J.C.B.); (B.L.); (P.M.-C.); (A.J.P.)
| | - Amanda G. Paulovich
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; (J.R.W.); (T.W.); (L.Z.); (R.M.S.); (J.J.K.); (U.V.); (R.G.I.); (D.H.); (C.L.)
| |
Collapse
|
20
|
Whiteaker JR, Sharma K, Hoffman MA, Kuhn E, Zhao L, Cocco AR, Schoenherr RM, Kennedy JJ, Voytovich U, Lin C, Fang B, Bowers K, Whiteley G, Colantonio S, Bocik W, Roberts R, Hiltke T, Boja E, Rodriguez H, McCormick F, Holderfield M, Carr SA, Koomen JM, Paulovich AG. Targeted mass spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP Kinase, and AKT signaling. CELL REPORTS METHODS 2021; 1:100015. [PMID: 34671754 PMCID: PMC8525888 DOI: 10.1016/j.crmeth.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SUMMARY A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kanika Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Melissa A. Hoffman
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra R. Cocco
- Gillings School of Global Public Health, Kenan-Flagler Business School, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gordon Whiteley
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Simona Colantonio
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - William Bocik
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Rhonda Roberts
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew Holderfield
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA 94063, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - John M. Koomen
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Kim ST, Smith SA, Mortimer P, Loembé AB, Cho H, Kim KM, Smith C, Willis S, Irurzun-Arana I, Berges A, Hong JY, Park SH, Park JO, Park YS, Lim HY, Kang WK, Kozarewa I, Pierce AJ, Dean E, Lee J. Phase I Study of Ceralasertib (AZD6738), a Novel DNA Damage Repair Agent, in Combination with Weekly Paclitaxel in Refractory Cancer. Clin Cancer Res 2021; 27:4700-4709. [PMID: 33975862 PMCID: PMC8974415 DOI: 10.1158/1078-0432.ccr-21-0251] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Ceralasertib is a potent and selective oral inhibitor of the serine/threonine protein kinase ataxia telangiectasia and Rad3-related (ATR) protein. PATIENTS AND METHODS Eligible patients with solid tumors, enriched for melanoma, received ceralasertib in combination with a fixed dose of paclitaxel (80 mg/m2 on D1, D8, D15) in 28-day cycles. The dose of ceralasertib was escalated to reach an MTD in a rolling 6 design. The starting dose of ceralasertib was 40 mg QD. Fifty-seven patients (33 patients with melanoma who failed prior PD1/L1 treatment) were enrolled in 7 dose cohorts ranging from 40 mg QD to 240 mg BD plus weekly paclitaxel. RESULTS The RP2D was established as ceralasertib 240 mg BD days 1-14 plus paclitaxel 80 mg/m2 on D1, D8, D15 every 28 days. The most common toxicities were neutropenia (n = 39, 68%), anemia (n = 25, 44%), and thrombocytopenia (n = 21, 37%). In the full analysis set of 57 patients, the overall response rate (ORR) was 22.6% (95% CI, 12.5-35.3). In 33 patients with melanoma, resistant to prior anti-PD1 therapy, the ORR was 33.3% (95% CI, 18.0-51.8). In the melanoma subset, the mPFS was 3.6 months (95% CI, 2.0-5.8), the median duration of response was 9.9 months (95% CI, 3.7-23.2), and the mOS was 7.4 months (95% CI, 5.7-11.9). CONCLUSIONS Ceralasertib in combination with paclitaxel was well tolerated in patients with advanced malignancies and showed evidence of antitumor activity. Durable responses were observed in patients with advanced cutaneous, acral, and mucosal melanoma resistant to anti-PD1/L1 treatment.See related commentary by Ashworth, p. 4667.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | - Heejin Cho
- Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Claire Smith
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sophie Willis
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea.,Corresponding Author: Jeeyun Lee, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwondong Kangnamgu, Seoul 135-710, Korea (South), Republic of, Korea. Phone: 82-23-410-1779; Fax: 82-23-410-1754; E-mail:
| |
Collapse
|
22
|
Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 2021; 184:1661-1670. [PMID: 33798439 PMCID: PMC8459793 DOI: 10.1016/j.cell.2021.02.055] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
When it comes to precision oncology, proteogenomics may provide better prospects to the clinical characterization of tumors, help make a more accurate diagnosis of cancer, and improve treatment for patients with cancer. This perspective describes the significant contributions of The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium to precision oncology and makes the case that proteogenomics needs to be fully integrated into clinical trials and patient care in order for precision oncology to deliver the right cancer treatment to the right patient at the right dose and at the right time.
Collapse
Affiliation(s)
- Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jean Claude Zenklusen
- Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas R Lowy
- Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Winkler C, Armenia J, Jones GN, Tobalina L, Sale MJ, Petreus T, Baird T, Serra V, Wang AT, Lau A, Garnett MJ, Jaaks P, Coker EA, Pierce AJ, O'Connor MJ, Leo E. SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br J Cancer 2021; 124:951-962. [PMID: 33339894 PMCID: PMC7921667 DOI: 10.1038/s41416-020-01199-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Schlafen 11 (SLFN11) has been linked with response to DNA-damaging agents (DDA) and PARP inhibitors. An in-depth understanding of several aspects of its role as a biomarker in cancer is missing, as is a comprehensive analysis of the clinical significance of SLFN11 as a predictive biomarker to DDA and/or DNA damage-response inhibitor (DDRi) therapies. METHODS We used a multidisciplinary effort combining specific immunohistochemistry, pharmacology tests, anticancer combination therapies and mechanistic studies to assess SLFN11 as a potential biomarker for stratification of patients treated with several DDA and/or DDRi in the preclinical and clinical setting. RESULTS SLFN11 protein associated with both preclinical and patient treatment response to DDA, but not to non-DDA or DDRi therapies, such as WEE1 inhibitor or olaparib in breast cancer. SLFN11-low/absent cancers were identified across different tumour types tested. Combinations of DDA with DDRi targeting the replication-stress response (ATR, CHK1 and WEE1) could re-sensitise SLFN11-absent/low cancer models to the DDA treatment and were effective in upper gastrointestinal and genitourinary malignancies. CONCLUSION SLFN11 informs on the standard of care chemotherapy based on DDA and the effect of selected combinations with ATR, WEE1 or CHK1 inhibitor in a wide range of cancer types and models.
Collapse
Affiliation(s)
| | - Joshua Armenia
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Luis Tobalina
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridge, UK
| | - Tudor Petreus
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tarrion Baird
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d' Hebron Institute of Oncology, Barcelona, Spain
| | | | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
24
|
Liu Q, Palomero L, Moore J, Guix I, Espín R, Aytés A, Mao JH, Paulovich AG, Whiteaker JR, Ivey RG, Iliakis G, Luo D, Chalmers AJ, Murnane J, Pujana MA, Barcellos-Hoff MH. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci Transl Med 2021; 13:eabc4465. [PMID: 33568520 PMCID: PMC8208885 DOI: 10.1126/scitranslmed.abc4465] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Among the pleotropic roles of transforming growth factor-β (TGFβ) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFβ signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFβ broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFβ and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFβ and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFβ competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFβ and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFβ signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFβ biology.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jade Moore
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ines Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Alvaro Aytés
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Daxian Luo
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Anthony J Chalmers
- Institute of Cancer Sciences and Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - John Murnane
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, Lau A, Richards FM, Jodrell DI. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br J Cancer 2020; 123:1424-1436. [PMID: 32741974 PMCID: PMC7591912 DOI: 10.1038/s41416-020-1016-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.
Collapse
Affiliation(s)
- Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Alan Lau
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Lloyd RL, Wijnhoven PWG, Ramos-Montoya A, Wilson Z, Illuzzi G, Falenta K, Jones GN, James N, Chabbert CD, Stott J, Dean E, Lau A, Young LA. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 2020; 39:4869-4883. [PMID: 32444694 PMCID: PMC7299845 DOI: 10.1038/s41388-020-1328-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib.
Collapse
Affiliation(s)
- Rebecca L Lloyd
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- The Wellcome trust and CRUK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, UK
| | | | | | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Neil James
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, UK
| | | | - Jonathan Stott
- Quantitative Biology, Discovery Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Emma Dean
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Lucy A Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
27
|
Völkening L, Vatselia A, Asgedom G, Bastians H, Lavin M, Schindler D, Schambach A, Bousset K, Dörk T. RAD50 regulates mitotic progression independent of DNA repair functions. FASEB J 2020; 34:2812-2820. [PMID: 31908056 DOI: 10.1096/fj.201902318r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/11/2022]
Abstract
The Mre11A/RAD50/NBN complex (MRN) is an essential regulator of the cellular damage response after DNA double-strand breaks (DSBs). More recent work has indicated that MRN may also impact on the duration of mitosis. We show here that RAD50-deficient fibroblasts exhibit a marked delay in mitotic progression that can be rescued by lentiviral transduction of RAD50. The delay was observed throughout all mitotic phases in live cell imaging using GFP-labeled H2B as a fluorescent marker. In complementation assays with RAD50 phosphorylation mutants, modifications at Ser635 had little effect on mitotic progression. By contrast with RAD50, fibroblast strains deficient in ATM or NBN did not show a significant slowing of mitotic progression. Ataxia-telangiectasia-like disorder (ATLD) fibroblasts with nuclease-deficient MRE11A (p.W210C) tended to show slower mitosis, though by far not as significant as RAD50-deficient cells. Inhibitor studies indicated that ATM kinase activity might not grossly impact on mitotic progression, while treatment with MRE11A inhibitor PFM39 modestly prolonged mitosis. Inhibition of ATR kinase significantly prolonged mitosis but this effect was mostly independent of RAD50 status. Taken together, our data unravel a mitotic role of RAD50 that can be separated from its known functions in DNA repair.
Collapse
Affiliation(s)
- Lea Völkening
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Anna Vatselia
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Girmay Asgedom
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Holger Bastians
- Institute of Molecular Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Lavin
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Detlev Schindler
- Institute of Human Genetics, Biocenter, University Würzburg, Würzburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Kristine Bousset
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Oplawski M, Dziobek K, Zmarzły N, Grabarek B, Tomala B, Leśniak E, Adwent I, Januszyk P, Dąbruś D, Boroń D. Evaluation of Changes in the Expression Pattern of EDIL3 in Different Grades of Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:483-488. [PMID: 30961491 PMCID: PMC6806535 DOI: 10.2174/1389201020666190408112822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND EDIL3 is an extracellular matrix protein that plays a key role in angiogenesis. Changes in the pattern of its expression also affect cellular processes and the tumor microenvironment. Elevated level of EDIL3 is considered an unfavorable prognostic marker of survival. OBJECTIVE The aim of this study was to evaluate the changes in EDIL3 expression in endometrial cancer at various degrees of its differentiation (G1-G3) and to discuss its potential role as a molecular diagnostic marker and therapeutic target. METHODS The study group consisted of 45 patients with endometrial cancer: G1, 17; G2, 15; G3, 13. The control group (C) included 15 patients without neoplastic changes. The expression of EDIL3 was assessed using immunohistochemistry. Statistical analysis was performed using the Statistica 12 PL software (p<0.05). RESULTS Analysis of EDIL3 expression showed that the average optical density of the reaction product in G1 reached 130% of the control, while the values in G2 and G3 were 153% and 158%, respectively. Regardless of the endometrial cancer grade, an increase in EDIL3 level was observed compared to the control. CONCLUSION In our study, we demonstrated overexpression of EDIL3 protein in endometrial cancer. Differences in expression between degrees of tumor differentiation suggest the potential of using changes in EDIL3 level as a new complementary diagnostic marker and target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Ewa Leśniak
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Iwona Adwent
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Piotr Januszyk
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
29
|
Abstract
Alterations in DNA damage response (DDR) pathways are hallmarks of cancer. Incorrect repair of DNA lesions often leads to genomic instability. Ataxia telangiectasia mutated (ATM), a core component of the DNA repair system, is activated to enhance the homologous recombination (HR) repair pathway upon DNA double-strand breaks. Although ATM signaling has been widely studied in different types of cancer, its research is still lacking compared with other DDR-involved molecules such as PARP and ATR. There is still a vast research opportunity for the development of ATM inhibitors as anticancer agents. Here, we focus on the recent findings of ATM signaling in DNA repair of cancer. Previous studies have identified several partners of ATM, some of which promote ATM signaling, while others have the opposite effect. ATM inhibitors, including KU-55933, KU-60019, KU-59403, CP-466722, AZ31, AZ32, AZD0156, and AZD1390, have been evaluated for their antitumor effects. It has been revealed that ATM inhibition increases a cancer cell's sensitivity to radiotherapy. Moreover, the combination with PARP or ATR inhibitors has synergistic lethality in some cancers. Of note, among these ATM inhibitors, AZD0156 and AZD1390 achieve potent and highly selective ATM kinase inhibition and have an excellent ability to penetrate the blood-brain barrier. Currently, AZD0156 and AZD1390 are under investigation in phase I clinical trials. Taken together, targeting ATM may be a promising strategy for cancer treatment. Hence, further development of ATM inhibitors is urgently needed in cancer research.
Collapse
Affiliation(s)
- Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|