1
|
Chen QS, Cai RZ, Wang Y, Liang GH, Zhang KM, Yang XY, Yang D, Zhao DC, Zhu XF, Deng R, Tang J. Profiling triple-negative breast cancer-specific super-enhancers identifies high-risk mesenchymal development subtype and BETi-Targetable vulnerabilities. Mol Cancer 2025; 24:141. [PMID: 40361105 PMCID: PMC12070678 DOI: 10.1186/s12943-025-02342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Super-enhancers (SEs) are critical regulators of tumorigenesis and represent promising targets for bromodomain and extra-terminal domain inhibitors (BETi). However, clinical studies across various solid tumors, including triple-negative breast cancer (TNBC), have demonstrated limited BETi efficacy. This study aims to investigate SE heterogeneity in TNBC and its influence on BETi effectiveness, with the goal of advancing BETi precision treatment strategies and enhancing therapeutic efficacy. METHODS We conducted a comprehensive analysis of H3K27ac ChIP-Seq data from TNBC cell lines and clinical samples, integrating multiple bulk RNA-Seq, scRNA-Seq, and stRNA-Seq datasets to characterize the SE landscape and heterogeneity in TNBC. Utilizing various bioinformatics algorithms, CERES scoring, and clinical prognostic data on transcription factors (TFs), we identified core transcriptional regulatory circuits (CRCs) composed of TNBC-specific SEs and master regulators, characterizing different TNBC subtypes. The biological significance of CRCs in these different TNBC subtypes and their influence on BETi sensitivity were evaluated using in vitro and in vivo models. RESULTS Our findings revealed a distinct SE landscape in TNBC compared to non-TNBC and normal breast epithelium, allowing TNBC to be classified into distinct subtypes based on TNBC-specific SEs. Importantly, we identified a high-risk mesenchymal development subtype, validated across cell lines and transcriptomic analyses, primarily driven by a CRC consisting of the master regulator VAX2 and a TNBC-specific SE. This SE-VAX2 CRC is essential for sustaining the malignant traits of this subtype and increasing its sensitivity to BETi. CONCLUSIONS Our research clarifies the heterogeneity of SEs in TNBC and identifies a high-risk mesenchymal development subtype driven by the SE-VAX2 CRC. The subtype shows more sensitivity to BETi, supporting its precision application in TNBC.
Collapse
Affiliation(s)
- Qing-Shan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Zhao Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge-Hao Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai-Ming Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Yu Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - De-Chang Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Pellaers E, Janssens J, Wils L, Denis A, Bhat A, Van Belle S, Feng D, Christ F, Zhan P, Debyser Z. BRD4 modulator ZL0580 and LEDGINs additively block and lock HIV-1 transcription. Nat Commun 2025; 16:4226. [PMID: 40335477 PMCID: PMC12059001 DOI: 10.1038/s41467-025-59398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
The persistence of HIV-1 in a latent state within long-lived immune cells remains a major barrier to a cure for HIV-1 infection. The "block-and-lock" strategy aims to silence the HIV-1 provirus permanently using latency promoting agents (LPAs). LEDGINs, a well-known class of LPAs, inhibit the interaction between viral integrase and LEDGF/p75, reducing viral integration and retargeting the provirus to regions resistant to reactivation. However, proximity to enhancers may still permit residual transcription. Given BRD4's central role in the enhancer biology, we now test two BRD4 modulators, JQ1 and ZL0580. Mechanistic studies reveal that JQ1 and ZL0580 have contrasting effects on Tat-dependent HIV-1 transcription, resulting in JQ1 promoting viral reactivation and ZL0580 inducing transcriptional silencing. Combining ZL0580 with LEDGINs has an additive effect in blocking HIV-1 transcription and reactivation, in both cell lines and primary cells. These findings demonstrate the potential of ZL0580 to enhance the block-and-lock cure strategy.
Collapse
Affiliation(s)
- Eline Pellaers
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lore Wils
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Alexe Denis
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Anayat Bhat
- Department of Microbiology, Washington University (WashU), Saint Louis, MI, USA
| | - Siska Van Belle
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Frauke Christ
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zeger Debyser
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium.
| |
Collapse
|
3
|
Zheng B, Iwanaszko M, Soliman SHA, Ishi Y, Gold S, Qiu R, Howard BC, Das M, Zhao Z, Hashizume R, Wang L, Shilatifard A. Ectopic expression of testis-specific transcription elongation factor in driving cancer. SCIENCE ADVANCES 2025; 11:eads4200. [PMID: 40085698 PMCID: PMC11908497 DOI: 10.1126/sciadv.ads4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
The testis-specific BET protein BRDT structurally resembles the ubiquitous BRD4 and is misexpressed in cancer, and we show that BRDT misexpression may affect lung cancer progression. BRDT knockdown in lung cancer cells slowed tumor growth and prolonged survival in a xenograft model. Comparative characterization of PTEFb complex participation and chromatin binding indicates BRD4-redundant and BRD4-distinct BRDT functions. Unlike dual depletion, individual BRD4 or BRDT knockdown did not impair transcriptional responses to hypoxia in BRDT-expressing cells, consistent with redundant function. However, BRD4 depletion/BRDT complementation revealed that BRDT can also release paused RNA polymerase II independently of its bromodomains as we previously demonstrated not to be required for Pol II pause/release function of BRD4, underscoring the functional importance of the C-terminal domains in both BRD4 and BRDT and their potential as therapeutic targets in solid tumors. Based on this study, future investigations should explore BRD4-distinct BRDT functions and BRDT misexpression driving cancer pathogenesis.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shimaa Hassan AbdelAziz Soliman
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruxuan Qiu
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madhurima Das
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zibo Zhao
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Yang Y, Liu H, Yuan H, Lyu K, Zhong H, Li Y, Cao D, Zhao W, Zhang H, Xiong B, Chen D, Guo D. Design of Selective BRD4 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease. J Med Chem 2025; 68:5257-5274. [PMID: 39945752 DOI: 10.1021/acs.jmedchem.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Epigenetic modulation plays a pivotal role in restraining tumor progression by governing gene expression and protein function. Autosomal dominant polycystic kidney disease (ADPKD), characterized by neoplastic-like progression, can be managed by inhibiting cyst expansion. Of note, the epigenetic regulator BRD4 has been implicated in ADPKD's development. Our prior research unveiled a class of (pyrazol-3-yl) pyrimidin-4-amine compounds as potent BRD4 inhibitors with additional kinase inhibition, which might induce unwanted biological activities. To address this, this study focused on creating selective BRD4 inhibitors through structure-guided design, minimizing off-target kinase interactions. Specifically, compound 23 emerged as an efficacious and selective BRD4 inhibitor in cellular and embryonic kidney models of ADPKD, along with encouraging outcomes in murine models. Collectively, these results highlight the therapeutic potential of targeted BRD4 inhibition as a safe and efficacious strategy for managing ADPKD.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Kaikai Lyu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yanlian Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Danyan Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Bing Xiong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danqi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
5
|
Yonezawa A, Shimomura K, Okamoto K, Takeda H. Inhibition of BRD4 attenuated IFNγ-induced apoptosis in colorectal cancer organoids. BMC Cancer 2025; 25:136. [PMID: 39849410 PMCID: PMC11759431 DOI: 10.1186/s12885-025-13544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses. The role of Brd4 in CRC development remains largely unknown. METHODS We knocked out Brd4 in tumor organoids carrying mutations in Apc and Kras to generate Brd4KO organoids, and performed RNA-seq. The response of Brd4KO organoids to IFNγ was analyzed via a cell viability assay, an apoptosis assay, and RNAseq. The results were validated by pharmacological inhibition experiments with JQ1 in human CRC organoids. RESULTS In Brd4KO organoids, the IFNγ signaling genes Il33 and Myc target genes were downregulated. The addition of IFNγ to the colon organoids induced apoptosis, but IFNγ-induced apoptosis was attenuated in the Brd4KO organoids compared with the control organoids (two-sided t-test, P < 0.05). Similar results were obtained from pharmacological inhibition with JQ1 in human CRC organoids; IL33 expression was decreased, and IFNγ-induced apoptosis was attenuated in the presence of JQ1. CONCLUSIONS Our results showed that the inhibition of Brd4 suppressed IFNγ-induced cytotoxicity by modulating the Jak-Stat pathway. These data suggested that the inhibition of Brd4 could increase cell viability in the cancer microenvironment where IFNγ is abundant, revealing a new aspect of the molecular mechanism of CRC development. Our results may help in evaluating the application of Bet inhibitors in treating CRC. Additionally, our RNA-seq data sets will be helpful for clarifying the relationship between Brd4 and immunomodulators, such as Il33, or for studying the responses of colonic epithelial cells to IFNγ.
Collapse
Affiliation(s)
- Akimi Yonezawa
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Shimomura
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
6
|
Li J, Hu Q, Zhu R, Dong R, Shen H, Hu J, Zhang C, Zhang X, Xu T, Xiang Q, Zhang Y, Lin B, Zhao L, Wu X, Xu Y. Discovery of the First BRD4 Second Bromodomain (BD2)-Selective Inhibitors. J Med Chem 2024; 67:21577-21616. [PMID: 39602227 DOI: 10.1021/acs.jmedchem.4c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pan-BD2 inhibitors have been shown to retain an antileukemia effect and display less dose-limiting toxicities than pan-BET inhibitors. However, it is necessary to consider the potential off-target toxicity associated with the inhibition of four BET BD2 proteins. To date, no BRD4 BD2 domain selective inhibitor has been reported. Based on our previous pan-BD2 inhibitor 12 (XY153), we successfully identified 16o (XY221) as the first BRD4 BD2-selective inhibitor. 16o demonstrated potent binding affinity for BRD4 BD2 (IC50 = 5.8 nM), along with high pan-BD2 selectivity (667-fold over BRD4 BD1) and BRD4 BD2 domain selectivity (9-32-fold over BRD2/3/T BD2). The BRD4 BD2 selectivity of 16o was further confirmed by the BLI assay, showing 66-144-fold selectivity over other BET BD2 domains. 16o exhibited good liver microsomal stability (T1/2 > 120 min) and pharmacokinetic properties (F = 13.1%). These data indicate that 16o may serve as a valuable candidate for BRD4 BD2 advancing epigenetic research.
Collapse
Affiliation(s)
- Junhua Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qingqing Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Run Zhu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruibo Dong
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Shen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jiankang Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaohan Zhang
- Analysis and Testing Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Tingting Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315010, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
8
|
Walton J, Ng ASN, Arevalo K, Apostoli A, Meens J, Karamboulas C, St-Germain J, Prinos P, Dmytryshyn J, Chen E, Arrowsmith CH, Raught B, Ailles L. PRMT1 inhibition perturbs RNA metabolism and induces DNA damage in clear cell renal cell carcinoma. Nat Commun 2024; 15:8232. [PMID: 39300069 PMCID: PMC11413393 DOI: 10.1038/s41467-024-52507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
In addition to the ubiquitous loss of the VHL gene in clear cell renal cell carcinoma (ccRCC), co-deletions of chromatin-regulating genes are common drivers of tumorigenesis, suggesting potential vulnerability to epigenetic manipulation. A library of chemical probes targeting a spectrum of epigenetic regulators is screened using a panel of ccRCC models. MS023, a type I protein arginine methyltransferase (PRMT) inhibitor, is identified as an antitumorigenic agent. Individual knockdowns indicate PRMT1 as the specific critical dependency for cancer growth. Further analyses demonstrate impairments to cell cycle and DNA damage repair pathways upon MS023 treatment or PRMT1 knockdown. PRMT1-specific proteomics reveals an interactome rich in RNA binding proteins and further investigation indicates significant widespread disruptions in mRNA metabolism with both MS023 treatment and PRMT1 knockdown, resulting in R-loop accumulation and DNA damage over time. Our data supports PRMT1 as a target in ccRCC and informs a mechanism-based strategy for translational development.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Angel S N Ng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Karen Arevalo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anthony Apostoli
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Julia Dmytryshyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
9
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
10
|
Gold S, Shilatifard A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr Opin Genet Dev 2024; 86:102181. [PMID: 38564841 DOI: 10.1016/j.gde.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.
Collapse
Affiliation(s)
- Sarah Gold
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/@rwx_life
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Luo J, Sanchez M, Lee E, Hertzler H, Luong N, Mazzola E, Finstein B, Tamen R, Brisbane G, Nguyen T, Paik PK, Chaft JE, Cheng ML, Khalil H, Piha-Paul SA, Sholl LM, Nishino M, Jänne PA, DuBois SG, Hanna GJ, Shapiro GI, French CA. Initial Chemotherapy for Locally Advanced and Metastatic NUT Carcinoma. J Thorac Oncol 2024; 19:829-838. [PMID: 38154515 PMCID: PMC11081848 DOI: 10.1016/j.jtho.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION NUT carcinoma (NC) is an underdiagnosed and aggressive poorly differentiated or squamous cell cancer. A subset of NC is sensitive to chemotherapy, but the optimal regimen is unknown. Experts have recommended platinum- and ifosfamide-based therapy based on case reports. METHODS Patients with pathologically confirmed NC with known survival outcomes after chemotherapy and consented to participate in a worldwide registry were studied. Results were summarized using descriptive methods. RESULTS The study included 118 patients with NC. Median age was 34 (range: 1-82) years, 39% were women, and 61% harbored a BRD4::NUTM1 fusion. Patients received platinum (74%) or ifosfamide (26%, including regimens with both, 13%). Of 62 patients with nonmetastatic disease, 40% had a thoracic primary. Compared with platinum-based chemotherapy, patients who received ifosfamide-based chemotherapy had nominally higher progression-free survival (12 mo: 59% [95% CI: 32-87] versus 37% [95% CI: 22-52], hazard ratio = 0.68 [0.32, 1.42], p = 0.3) but not overall survival (OS). Among the 56 patients with metastatic disease, 80% had a thoracic primary. Ifosfamide had an objective response rate (ORR) of 75% (six of eight) and platinum had an ORR of 31% (11 of 36). Nevertheless, there was no difference in progression-free survival or OS. The 3-year OS of the entire cohort was 19% (95% CI: 10%-28%). Of the 11 patients alive greater than 3 years, all presented with nonmetastatic and operable or resectable disease. CONCLUSION There is a numerically higher ORR for ifosfamide-based therapy compared with platinum-based therapy, with limited durability. OS at 3 years is only 19%, and development of effective therapies is an urgent unmet need for this patient population.
Collapse
Affiliation(s)
- Jia Luo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michelle Sanchez
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hans Hertzler
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bryanna Finstein
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rubii Tamen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gifty Brisbane
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul K Paik
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie E Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hassan Khalil
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Glenn J Hanna
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Cancer Therapeutic Innovation, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Cadesky A, Schulman-Rosenbaum R, Carter A, Paul E, Jaggi S. A Rare Case of NUT Carcinoma of the Thyroid. JCEM CASE REPORTS 2024; 2:luae037. [PMID: 38524390 PMCID: PMC10958768 DOI: 10.1210/jcemcr/luae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 03/26/2024]
Abstract
NUT carcinoma is an aggressive, poorly differentiated squamous cell carcinoma, defined by rearrangement of the NUTM1 (Nuclear Protein in Testis) gene. Diagnosis is challenging due to histologic similarities with other poorly differentiated tumors requiring advanced diagnostic techniques. There is no established treatment, and prognosis remains extremely poor. A 27-year-old woman without known medical history presented with a rapidly enlarging neck mass and compressive symptoms. Chemotherapy for presumed squamous cell carcinoma with a component of anaplastic thyroid cancer based on pathology was initiated. Next-generation sequencing revealed thyroid NUT carcinoma with high PD-L1 expression, prompting PD-1 targeted therapy. The patient expired shortly afterwards from progressive disease. NUT carcinoma of thyroid origin is an extremely rare disease. This case brings awareness to the disease, highlights the importance of advanced diagnostic techniques and complexities in managing patients with NUT carcinoma.
Collapse
Affiliation(s)
- Adam Cadesky
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Rifka Schulman-Rosenbaum
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Amanda Carter
- Division of Endocrinology, Diabetes & Metabolism, NYU Langone Health, Manhasset, NY 11030, USA
| | - Elizabeth Paul
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Shuchie Jaggi
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| |
Collapse
|
14
|
Zhu R, Li J, Dong R, Hu Q, Chen Z, Chen X, Zhong Z, Xiang Q, Huang C, Lin B, Wu X, Zhang Y, Zhao L, Xu Y. Optimization of the synthesis of BET BD2 selective inhibitor XY153. Chem Biodivers 2024; 21:e202301584. [PMID: 38163253 DOI: 10.1002/cbdv.202301584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
XY153 is a promising BET BD2 inhibitor with an IC50 value of 0.79 nM against BRD4 BD2. It shows 354-fold selectivity over BRD4-BD1 and 6-fold selectivity over other BET BD2 domains. However, the reported synthesis route of XY153 and its derivatives are extremely poor-yielding. After the synthesis of three key fragments, XY153 can only be obtained with a yield of 1.3 % in the original four-step reaction. In this study, we reported a three-step alternative route in the synthesis process of XY153. The reaction conditions for this route were thoroughly investigated and optimized, resulting in a significantly improved yield of 61.5 %. This efficient synthesis route establishes a robust chemical foundation for the rapid synthesis of XY153 derivatives as BET BD2 inhibitors in the near future.
Collapse
Affiliation(s)
- Run Zhu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Ruibo Dong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Qingqing Hu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Zhiming Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshan Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixin Zhong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Cen Huang
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing, 210042, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yong Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| |
Collapse
|
15
|
Herbison H, Davis S, Nickless D, Haydon A, Ameratunga M. Sustained Clinical Response to Immunotherapy Followed by BET Inhibitor in a Patient with Unresectable Sinonasal NUT Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:67-72. [PMID: 38327754 PMCID: PMC10846633 DOI: 10.36401/jipo-23-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 02/09/2024]
Abstract
NUT carcinomas (NCs) are a group of rare tumors that can occur anywhere in the body and are defined by the fusion of the nuclear protein in testis (NUTM1) resulting in increased transcription of proto-oncogenes. NCs have a poor prognosis that varies according to the site of origin with an urgent need to develop new treatment strategies. Case reports on immunotherapy in pulmonary NC have been published, and bromodomain and extraterminal (BET) inhibitors have shown activity in NC in phase I/II trials. We present the case of a 27-year-old woman with an unresectable sinonasal NC who had a sustained clinical response to both immunotherapy and BET inhibitor therapy. This is the first reported case of immunotherapy in sinonasal NC, and it highlights the different responses to a range of treatments including BET inhibitor therapy. This case supports the theory that NCs arising from different primary sites have differing prognoses.
Collapse
Affiliation(s)
- Harriet Herbison
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
| | - Sidney Davis
- Department of Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - David Nickless
- Department of Anatomical Pathology, Cabrini Pathology, Melbourne, Victoria, Australia
| | - Andrew Haydon
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Jiang W, Hou Q, Xu H, Yang K, Wang X, Zhang K, Zeng Y, Li W, Wang B, Luo G, Zhao X, Shen H, Xu Y, Wu X. Discovery of Novel Phenoxyaryl Pyridones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with High Selectivity for the Second Bromodomain (BD2) to Potentially Treat Acute Myeloid Leukemia. J Med Chem 2024; 67:1513-1532. [PMID: 38175809 DOI: 10.1021/acs.jmedchem.3c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bromodomain-selective BET inhibition has emerged as a promising strategy to improve the safety profiles of pan-BET inhibitors. Herein, we report the discovery of potent phenoxyaryl pyridones as highly BD2-selective BET inhibitors. Compound 23 (IC50 = 2.9 nM) exhibited a comparable BRD4 BD2 inhibitory activity relative to 10 (IC50 = 1.0 nM) and remarkably improved selectivity over BRD4 BD1 (23: 2583-fold; 10: 344-fold). This lead compound significantly inhibited the proliferation of acute myeloid leukemia (AML) cell lines through induction of G0/G1 arrest and apoptosis in vitro. Excellent in vivo antitumor efficacy with 23 was achieved in an MV;411 mouse xenograft model. Pleasingly, compound 23 (hERG IC50 > 30 μM) mitigated the inhibition of the human ether-à-go-go-related gene (hERG) ion channel compared with 10 (hERG IC50 = 2.8 μM). This work provides a promising BD2-selective lead for the development of more effective and safe BET inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Wenhua Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kexin Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohui Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zeng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenqiang Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofan Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
17
|
Daniels VA, Luo J, Paller CJ, Kanayama M. Therapeutic Approaches to Targeting Androgen Receptor Splice Variants. Cells 2024; 13:104. [PMID: 38201308 PMCID: PMC10778271 DOI: 10.3390/cells13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Therapeutic options for advanced prostate cancer have vastly expanded over the last decade and will continue to expand in the future. Drugs targeting the androgen receptor (AR) signaling pathway, i.e., androgen receptor targeting agents (ARTAs), remain the mainstream treatments that are increasingly transforming the disease into one that can be controlled for an extended period of time. Prostate cancer is inherently addicted to AR. Under the treatment pressure of ARTA, molecular alterations occur, leading to the clonal expansion of resistant cells in a disease state broadly categorized as castration-resistant prostate cancer (CRPC). One castration resistance mechanism involves AR splice variants (AR-Vs) lacking the ligand-binding domain. Some AR-Vs have been identified as constitutively active, capable of activating AR signaling pathways without androgenic ligands. Among these variants, AR-V7 is the most extensively studied and may be measured non-invasively using validated circulating tumor cell (CTC) tests. In the context of the evolving prostate cancer treatment landscape, novel agents are developed and evaluated for their efficacy in targeting AR-V7. In patients with metastatic CRPC (mCRPC), the availability of the AR-V7 tests will make it possible to determine whether the treatments are effective for CTC AR-V7-positive disease, even though the treatments may not be specifically designed to target AR-V7. In this review, we will first outline the current prostate cancer treatment landscape, followed by an in-depth review of relatively newer prostate cancer therapeutics, focusing on AR-targeting agents under clinical development. These drugs are categorized from the standpoint of their activities against AR-V7 through direct or indirect mechanisms.
Collapse
Affiliation(s)
- Violet A. Daniels
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Channing J. Paller
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
| |
Collapse
|
18
|
Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov 2023; 9:470. [PMID: 38135679 PMCID: PMC10746725 DOI: 10.1038/s41420-023-01775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptional super-enhancers and the BET bromodomain protein BRD4 are emerging as critical drivers of tumorigenesis and therapeutic targets. Characterized by substantial accumulation of histone H3 lysine 27 acetylation (H3K27ac) signals at the loci of cell identity genes and critical oncogenes, super-enhancers are recognized, bound and activated by BRD4, resulting in considerable oncogene over-expression, malignant transformation, cancer cell proliferation, survival, tumor initiation and progression. Small molecule compound BRD4 BD1 and BD2 bromodomain inhibitors block BRD4 binding to super-enhancers, suppress oncogene transcription and expression, reduce cancer cell proliferation and survival, and repress tumor progression in a variety of cancer types. Like other targeted therapy agents, BRD4 inhibitors show moderate anticancer effects on their own, and exert synergistic anticancer effects in vitro and in preclinical models, when combined with other anticancer agents including CDK7 inhibitors, CBP/p300 inhibitors and histone deacetylase inhibitors. More recently, BRD4 BD2 bromodomain selective inhibitors, proteolysis-targeting chimera (PROTAC) BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors have been developed and shown better anticancer efficacy and/or safety profile. Importantly, more than a dozen BRD4 inhibitors have entered clinical trials in patients with cancer of various organ origins. In summary, super-enhancers and their reader BRD4 are critical tumorigenic drivers, and BRD4 BD1 and BD2 bromodomain inhibitors, BRD4 BD2 bromodomain selective inhibitors, PROTAC BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors are promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Haihong Qian
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Min Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xinyu Tan
- Department of Dentistry, Kunming Medical University, Kunming, 650032, China
| | - Yixing Zhang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xiangning Liu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Li Yang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
19
|
Berico P, Nogaret M, Cigrang M, Lallement A, Vand-Rajabpour F, Flores-Yanke A, Gambi G, Davidson G, Seno L, Obid J, Vokshi BH, Le Gras S, Mengus G, Ye T, Cordero CF, Dalmasso M, Compe E, Bertolotto C, Hernando E, Davidson I, Coin F. Super-enhancer-driven expression of BAHCC1 promotes melanoma cell proliferation and genome stability. Cell Rep 2023; 42:113363. [PMID: 37924516 DOI: 10.1016/j.celrep.2023.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
Super-enhancers (SEs) are stretches of enhancers ensuring a high level of expression of key genes associated with cell function. The identification of cancer-specific SE-driven genes is a powerful means for the development of innovative therapeutic strategies. Here, we identify a MITF/SOX10/TFIIH-dependent SE promoting the expression of BAHCC1 in a broad panel of melanoma cells. BAHCC1 is highly expressed in metastatic melanoma and is required for tumor engraftment, growth, and dissemination. Integrative genomics analyses reveal that BAHCC1 is a transcriptional regulator controlling expression of E2F/KLF-dependent cell-cycle and DNA-repair genes. BAHCC1 associates with BRG1-containing remodeling complexes at the promoters of these genes. BAHCC1 silencing leads to decreased cell proliferation and delayed DNA repair. Consequently, BAHCC1 deficiency cooperates with PARP inhibition to induce melanoma cell death. Our study identifies BAHCC1 as an SE-driven gene expressed in melanoma and demonstrates how its inhibition can be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Pietro Berico
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Maguelone Nogaret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Max Cigrang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Antonin Lallement
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Fatemeh Vand-Rajabpour
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Amanda Flores-Yanke
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Giovanni Gambi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Leane Seno
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julian Obid
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Bujamin H Vokshi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Stephanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Carlos Fernandez Cordero
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Mélanie Dalmasso
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Equipe labellisée "Ligue contre le Cancer 2020" and Equipe labellisée "Fondation ARC 2022", Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Equipe labellisée "Ligue contre le Cancer 2020" and Equipe labellisée "Fondation ARC 2022", Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labéllisée, "Ligue contre le Cancer 2022", BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
20
|
Hamilton EP, Wang JS, Oza AM, Patel MR, Ulahannan SV, Bauer T, Karlix JL, Zeron-Medina J, Fabbri G, Marco-Casanova P, Moorthy G, Hattersley MM, Littlewood GM, Mitchell P, Saeh J, Pouliot GP, Moore KN. First-in-human Study of AZD5153, A Small-molecule Inhibitor of Bromodomain Protein 4, in Patients with Relapsed/Refractory Malignant Solid Tumors and Lymphoma. Mol Cancer Ther 2023; 22:1154-1165. [PMID: 37486983 PMCID: PMC10544002 DOI: 10.1158/1535-7163.mct-23-0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AZD5153, a reversible, bivalent inhibitor of the bromodomain and extraterminal family protein BRD4, has preclinical activity in multiple tumors. This first-in-human, phase I study investigated AZD5153 alone or with olaparib in patients with relapsed/refractory solid tumors or lymphoma. Adults with relapsed tumors intolerant of, or refractory to, prior therapies received escalating doses of oral AZD5153 once daily or twice daily continuously (21-day cycles), or AZD5153 once daily/twice daily continuously or intermittently plus olaparib 300 mg twice daily, until disease progression or unacceptable toxicity. Between June 30, 2017 and April 19, 2021, 34 patients received monotherapy and 15 received combination therapy. Dose-limiting toxicities were thrombocytopenia/platelet count decreased (n = 4/n = 2) and diarrhea (n = 1). The recommended phase II doses (RP2D) were AZD5153 30 mg once daily or 15 mg twice daily (monotherapy) and 10 mg once daily (intermittent schedule) with olaparib. With AZD5153 monotherapy, common treatment-emergent adverse events (TEAE) included fatigue (38.2%), thrombocytopenia, and diarrhea (each 32.4%); common grade ≥ 3 TEAEs were thrombocytopenia (14.7%) and anemia (8.8%). With the combination, common TEAEs included nausea (66.7%) and fatigue (53.3%); the most common grade ≥ 3 TEAE was thrombocytopenia (26.7%). AZD5153 had dose-dependent pharmacokinetics, with minimal accumulation, and demonstrated dose-dependent modulation of peripheral biomarkers, including upregulation of HEXIM1. One patient with metastatic pancreatic cancer receiving combination treatment had a partial response lasting 4.2 months. These results show AZD5153 was tolerable as monotherapy and in combination at the RP2Ds; common toxicities were fatigue, hematologic AEs, and gastrointestinal AEs. Strong evidence of peripheral target engagement was observed.
Collapse
Affiliation(s)
- Erika P. Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Judy S. Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Amit M. Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre/University Health Network/Sinai Health Systems, Toronto, Ontario, Canada
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Susanna V. Ulahannan
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Todd Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | | | | | | | - Ganesh Moorthy
- Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Jamal Saeh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | - Kathleen N. Moore
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
21
|
Gallo-Oller G, de Ståhl TD, Alaiya A, Nilsson S, Holmberg AR, Márquez-Méndez M. Cytotoxicity of poly-guanidine in medulloblastoma cell lines. Invest New Drugs 2023; 41:688-698. [PMID: 37556022 PMCID: PMC10560188 DOI: 10.1007/s10637-023-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor. The therapy frequently causes serious side effects, and new selective therapies are needed. MB expresses hyper sialylation, a possible target for selective therapy. The cytotoxic efficacy of a poly guanidine conjugate (GuaDex) incubated with medulloblastoma cell cultures (DAOY and MB-LU-181) was investigated. The cells were incubated with 0.05-8 µM GuaDex from 15 min to 72 h. A fluorometric cytotoxicity assay (FMCA) measured the cytotoxicity. Labeled GuaDex was used to study tumor cell interaction. FITC-label Sambucus nigra confirmed high expression of sialic acid (Sia). Immunofluorescence microscopy was used to visualize the cell F-actin and microtubules. The cell interactions were studied by confocal and fluorescence microscopy. Annexin-V assay was used to detect apoptosis. Cell cycle analysis was done by DNA content determination. A wound-healing migration assay determined the effects on the migratory ability of DAOY cells after GuaDex treatment. IC50 for GuaDex was 223.4 -281.1 nM. FMCA showed potent growth inhibition on DAOY and MB-LU-181 cells at 5 uM GuaDex after 4 h of incubation. GuaDex treatment induced G2/M phase cell cycle arrest. S. nigra FITC-label lectin confirmed high expression of Sia on DAOY medulloblastoma cells. The GuaDex treatment polymerized the cytoskeleton (actin filaments and microtubules) and bound to DNA, inducing condensation. The Annexin V assay results were negative. Cell migration was inhibited at 0.5 µM GuaDex concentration after 24 h of incubation. GuaDex showed potent cytotoxicity and invasion-inhibitory effects on medulloblastoma cells at low micromolar concentrations. GuaDex efficacy was significant and warrants further studies.
Collapse
Affiliation(s)
- Gabriel Gallo-Oller
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Ayodele Alaiya
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre Oncology Centre, Riyadh, Saudi Arabia
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders R Holmberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Márquez-Méndez
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Center for Research and Development in Health Sciences, Autonomous University of Nuevo León, Monterrey, N.L., Mexico.
| |
Collapse
|
22
|
Ji Y, Tan E, Hengelage T, Quinlan M, Hendriks BS. Exploratory Food Effect Assessment in Patients in Early Clinical Development of Oncology Drugs. Clin Pharmacol Ther 2023; 114:288-302. [PMID: 37078098 DOI: 10.1002/cpt.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Instructions for administration with regard to food are a key aspect of how patients experience oral drugs. Through potential effects on pharmacokinetics, the food condition can influence safety and efficacy, and thereby is one of many dimensions of dose optimization. Regulatory guidance from major health authorities advocates for the early investigation of food effect (FE) in clinical development. In oncology, exploratory FE (eFE) evaluation is often incorporated into the first-in-human (FIH) studies in patients to inform food condition of later clinical studies. However, the design aspects of such exploratory assessments are generally under-reported and barely described, and yet complex, due to uniqueness of FIH study design and drug development process in oncology. Herein, we review literature of eFE assessment study design in oncology in patients, and present the Novartis experience in the design, execution, and impact of eFE in FIH oncology studies from 2014 to 2021. Based on this, we propose a roadmap for eFE assessment in early clinical drug development for oncology drugs in patients, including a framework for common study design options with a focus on study- and patient-level timing for typical scenarios. We also provide a broad spectrum of decision-making factors which should be evaluated to drive the design and implementation of eFE assessment, spanning from clinical development strategy, FIH study design, to compound-specific features.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Eugene Tan
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Michelle Quinlan
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Bart S Hendriks
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Cheng ML, Huang Y, Luong N, LoPiccolo J, Nishino M, Sholl LM, Chirieac LR, Santucci AD, Rabin MS, Jänne PA, Coker S, Diamond JR, Hilton J, Shapiro GI, French CA. Exceptional Response to Bromodomain and Extraterminal Domain Inhibitor Therapy With BMS-986158 in BRD4-NUTM1 NUT Carcinoma Harboring a BRD4 Splice Site Mutation. JCO Precis Oncol 2023; 7:e2200633. [PMID: 37384867 PMCID: PMC10581614 DOI: 10.1200/po.22.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Michael L. Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jaclyn LoPiccolo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lucian R. Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alison D. Santucci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Boston Medical Center, Boston, MA
| | - Michael S. Rabin
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - John Hilton
- Division of Medical Oncology, Ottawa Hospital, Ottawa, ON
| | - Geoffrey I. Shapiro
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Christopher A. French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
26
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
28
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
30
|
Jiang J, Zhao PL, Sigua LH, Chan A, Schönbrunn E, Qi J, Georg GI. 1,4-Dihydropyridinebutyrolactone-derived ring-opened ester and amide analogs targeting BET bromodomains. Arch Pharm (Weinheim) 2022; 355:e2200288. [PMID: 35941525 PMCID: PMC9633406 DOI: 10.1002/ardp.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Based on a previously reported 1,4-dihydropyridinebutyrolactone virtual screening hit, nine lactone ring-opened ester and seven amide analogs were prepared. The analogs were designed to provide interactions with residues at the entrance of the ZA loop of the testis-specific bromodomain (ZA) channel to enhance the affinity and selectivity for the bromodomain and extra-terminal (BET) subfamily of bromodomains. Compound testing by AlphaScreen showed that neither the affinity nor the selectivity of the ester and lactam analogs was improved for BRD4-1 and the first bromodomain of the testis-specific bromodomain (BRDT-1). The esters retained affinity comparable to the parent compound, whereas the affinity for the amide analogs was reduced 10-fold. A representative benzyl ester analog was found to retain high selectivity for BET bromodomains as shown by a BROMOscan. X-ray analysis of the allyl ester analog in complex with BRD4-1 and BRDT-1 revealed that the ester side chain is located next to the ZA loop and solvent exposed.
Collapse
Affiliation(s)
- Jiewei Jiang
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pei-Liang Zhao
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alice Chan
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Ernst Schönbrunn
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gunda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
NSMCE2, a novel super-enhancer-regulated gene, is linked to poor prognosis and therapy resistance in breast cancer. BMC Cancer 2022; 22:1056. [PMID: 36224576 PMCID: PMC9555101 DOI: 10.1186/s12885-022-10157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/07/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite today's advances in the treatment of cancer, breast cancer-related mortality remains high, in part due to the lack of effective targeted therapies against breast tumor types that do not respond to standard treatments. Therefore, identifying additional breast cancer molecular targets is urgently needed. Super-enhancers are large regions of open chromatin involved in the overactivation of oncogenes. Thus, inhibition of super-enhancers has become a focus in clinical trials for its therapeutic potential. Here, we aimed to identify novel super-enhancer dysregulated genes highly associated with breast cancer patients' poor prognosis and negative response to treatment. METHODS Using existing datasets containing super-enhancer-associated genes identified in breast tumors and public databases comprising genomic and clinical information for breast cancer patients, we investigated whether highly expressed super-enhancer-associated genes correlate to breast cancer patients' poor prognosis and to patients' poor response to therapy. Our computational findings were experimentally confirmed in breast cancer cells by pharmacological SE disruption and gene silencing techniques. RESULTS We bioinformatically identified two novel super-enhancer-associated genes - NSMCE2 and MAL2 - highly upregulated in breast tumors, for which high RNA levels significantly and specifically correlate with breast cancer patients' poor prognosis. Through in-vitro pharmacological super-enhancer disruption assays, we confirmed that super-enhancers upregulate NSMCE2 and MAL2 transcriptionally, and, through bioinformatics, we found that high levels of NSMCE2 strongly associate with patients' poor response to chemotherapy, especially for patients diagnosed with aggressive triple negative and HER2 positive tumor types. Finally, we showed that decreasing NSMCE2 gene expression increases breast cancer cells' sensitivity to chemotherapy treatment. CONCLUSIONS Our results indicate that moderating the transcript levels of NSMCE2 could improve patients' response to standard chemotherapy consequently improving disease outcome. Our approach offers a new avenue to identify a signature of tumor specific genes that are not frequently mutated but dysregulated by super-enhancers. As a result, this strategy can lead to the discovery of potential and novel pharmacological targets for improving targeted therapy and the treatment of breast cancer.
Collapse
|
32
|
Kuang C, Tong J, Ermine K, Cai M, Dai F, Hao S, Giles F, Huang Y, Yu J, Zhang L. Dual inhibition of BET and HAT/p300 suppresses colorectal cancer via DR5- and p53/PUMA-mediated cell death. Front Oncol 2022; 12:1018775. [PMID: 36313707 PMCID: PMC9599411 DOI: 10.3389/fonc.2022.1018775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 01/30/2023] Open
Abstract
Background Colorectal cancer (CRC) frequently has a dysregulated epigenome causing aberrant up-regulation of oncogenes such as c-MYC. Bromodomain and extra-terminal domain (BET) proteins and histone acetyltransferases (HAT) are epigenetic regulatory proteins that create and maintain epigenetic states supporting oncogenesis. BET inhibitors and HAT inhibitors are currently being investigated as cancer therapeutics due to their ability to suppress cancer-promoting epigenetic modifiers. Due to the extensive molecular crosstalk between BET proteins and HAT proteins, we hypothesized that dual inhibition of BET and HAT could more potently inhibit CRC cells than inhibition of each individual protein. Methods We investigated the activity and mechanisms of a dual BET and HAT inhibitor, NEO2734, in CRC cell lines and mouse xenografts. MTS, flow cytometry, and microscopy were used to assess cell viability. qPCR, Western blotting, and immunofluorescent staining were used to assess mechanisms of action. Results We found that NEO2734 more potently suppresses CRC cell growth than first generation BET inhibitors, regardless of the status of common CRC driver mutations. We previously showed that BET inhibitors upregulate DR5 to induce extrinsic apoptosis. In the current study, we show that NEO2734 treatment induces CRC cell apoptosis via both the intrinsic and extrinsic apoptosis pathways. NEO2734 increases p53 expression and subsequently increased expression of the p53-upregulated mediator of apoptosis (PUMA), which is a critical mechanism for activating intrinsic apoptosis. We demonstrate that inhibition of either the intrinsic or extrinsic branches of apoptosis partially rescues CRC cells from NEO2734 treatment, while the dual inhibition of both branches of apoptosis more strongly rescues CRC cells from NEO2734 treatment. Finally, we show that NEO2734 monotherapy is able to suppress tumor growth in CRC xenografts by inducing apoptosis. Conclusions Our study demonstrates NEO2734 potently suppresses CRC cells in vitro and in vivo by simultaneously upregulating PUMA and DR5 to induce cell death. Further studies of NEO2734 for treating CRC are warranted.
Collapse
Affiliation(s)
- Chaoyuan Kuang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jingshan Tong
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaylee Ermine
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Manbo Cai
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fujun Dai
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Suisui Hao
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Francis Giles
- Developmental Therapeutics Consortium, Chicago, IL, United States
| | - Yi Huang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jian Yu
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Zhang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Roles of Bromodomain Extra Terminal Proteins in Metabolic Signaling and Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081032. [PMID: 36015180 PMCID: PMC9414451 DOI: 10.3390/ph15081032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
BET proteins, which recognize and bind to acetylated histones, play a key role in transcriptional regulation. The development of chemical BET inhibitors in 2010 greatly facilitated the study of these proteins. BETs play crucial roles in cancer, inflammation, heart failure, and fibrosis. In particular, BETs may be involved in regulating metabolic processes, such as adipogenesis and metaflammation, which are under tight transcriptional regulation. In addition, acetyl-CoA links energy metabolism with epigenetic modification through lysine acetylation, which creates docking sites for BET. Given this, it is possible that the ambient energy status may dictate metabolic gene transcription via a BET-dependent mechanism. Indeed, recent studies have reported that various BET proteins are involved in both metabolic signaling regulation and disease. Here, we discuss some of the most recent information on BET proteins and their regulation of the metabolism in both cellular and animal models. Further, we summarize data from some randomized clinical trials evaluating BET inhibitors for the treatment of metabolic diseases.
Collapse
|
34
|
Emerging Biomarker-Guided Therapies in Prostate Cancer. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5054-5076. [PMID: 35877260 PMCID: PMC9319825 DOI: 10.3390/curroncol29070400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Prostate cancer remains one of the leading causes of cancer death in men worldwide. In the past decade, several new treatments for advanced prostate cancer have been approved. With a wide variety of available drugs, including cytotoxic agents, androgen receptor axis-targeted therapies, and alpha-emitting radiation therapy, identifying their optimal sequencing remains a challenge. Progress in the understanding of the biology of prostate cancer has provided an opportunity for a more refined and personalized treatment selection process. With the advancement of molecular sequencing techniques, genomic precision through the identification of potential treatment targets and predictive biomarkers has been rapidly evolving. In this review, we discussed biomarker-driven treatments for advanced prostate cancer. First, we presented predictive biomarkers for established, global standard treatments for advanced diseases, such as chemotherapy and androgen receptor axis-targeted agents. We also discussed targeted agents with recent approval for special populations, such as poly ADP ribose polymerase (PARP) inhibitors in patients with metastatic castrate-resistant prostate cancer with homologous recombination repair-deficient tumors, pembrolizumab in patients with high levels of microsatellite instability or high tumor mutational burden, and prostate-specific membrane antigen (PSMA) directed radioligand theragnostic treatment for PSMA expressing tumors. Additionally, we discussed evolving treatments, such as cancer vaccines, chimeric antigen receptor T-cells (CAR-T), Bispecific T-cell engagers (BiTEs), other targeted agents such as AKT inhibitors, and various combination treatments. In summary, advances in molecular genetics have begun to propel personalized medicine forward in the management of advanced prostate cancer, allowing for a more precise, biomarker-driven treatment selection with the goal of improving overall efficacy.
Collapse
|
35
|
French CA, Cheng ML, Hanna GJ, DuBois SG, Chau NG, Hann CL, Storck S, Salgia R, Trucco M, Tseng J, Stathis A, Piekarz R, Lauer UM, Massard C, Bennett K, Coker S, Tontsch-Grunt U, Sos ML, Liao S, Wu CJ, Polyak K, Piha-Paul SA, Shapiro GI. Report of the First International Symposium on NUT Carcinoma. Clin Cancer Res 2022; 28:2493-2505. [PMID: 35417004 PMCID: PMC9197941 DOI: 10.1158/1078-0432.ccr-22-0591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
NUT carcinoma is a rare, aggressive cancer defined by rearrangements of the NUTM1 gene. No routinely effective treatments of NUT carcinoma exist, despite harboring a targetable oncoprotein, most commonly BRD4-NUT. The vast majority of cases are fatal. Poor awareness of the disease is a major obstacle to progress in the treatment of NUT carcinoma. While the incidence likely exceeds that of Ewing sarcoma, and BRD4-NUT heralded the bromodomain and extra-terminal domain (BET) inhibitor class of selective epigenetic modulators, NUT carcinoma is incorrectly perceived as "impossibly rare," and therefore receives comparatively little private or governmental funding or prioritization by pharma. To raise awareness, propagate scientific knowledge, and initiate a consensus on standard and targeted treatment of NUT carcinoma, we held the First International Symposium on NUT Carcinoma on March 3, 2021. This virtual event had more than eighty attendees from the Americas, Europe, Asia, and Australia. Patients with NUT carcinoma and family members were represented and shared perspectives. Broadly, the four areas discussed by experts in the field included (1) the biology of NUT carcinoma; (2) standard approaches to the treatment of NUT carcinoma; (3) results of clinical trials using BET inhibitors; and (4) future directions, including novel BET bromodomain inhibitors, combinatorial approaches, and immunotherapy. It was concluded that standard chemotherapeutic approaches and first-generation BET bromodomain inhibitors, the latter complicated by a narrow therapeutic window, are only modestly effective in a minority of cases. Nonetheless, emerging second-generation targeted inhibitors, novel rational synergistic combinations, and the incorporation of immuno-oncology approaches hold promise to improve the prognosis of this disease.
Collapse
Affiliation(s)
| | | | | | - Steven G. DuBois
- Dana-Farber Cancer Institute, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA
| | - Nicole G. Chau
- British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | | | - Simone Storck
- Swabian Children’s Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | | | | | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland and Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Lugano, Switzerland
| | - Richard Piekarz
- Investigational Drug Branch, Cancer Therapy Evaluation Program (CTEP), Bethesda, MD
| | | | - Christophe Massard
- Gustave Roussy-Molecular Radiotherapy INSERM U1030, Faculty of Medicine Kremlin-Bicêtre and Paris-Saclay University , France
| | | | - Shodeinde Coker
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey, USA
| | | | - Martin L. Sos
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Molecular Pathology University of Cologne, Cologne, Germany and Department of Translational Genomics and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Sida Liao
- TScan Therapeutics, Waltham, MA, USA
| | | | | | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
36
|
Moreno V, Saluja K, Pina-Oviedo S. NUT Carcinoma: Clinicopathologic Features, Molecular Genetics and Epigenetics. Front Oncol 2022; 12:860830. [PMID: 35372003 PMCID: PMC8966081 DOI: 10.3389/fonc.2022.860830] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear protein in testis (NUT) carcinoma is a rare, highly aggressive, poorly differentiated carcinoma occurring mostly in adolescents and young adults. This tumor usually arises from the midline structures of the thorax, head, and neck, and exhibits variable degrees of squamous differentiation. NUT carcinoma is defined by the presence of a NUTM1 (15q14) rearrangement with multiple other genes. In about 70-80% of the cases, NUTM1 is involved in a balanced translocation with the BRD4 gene (19p13.12), leading to a BRD4-NUTM1 fusion oncogene. Other variant rearrangements include BRD3-NUTM1 fusion (~15-20%) and NSD3-NUTM1 fusion (~6%), among others. The diagnosis of NUT carcinoma requires the detection of nuclear expression of the NUT protein by immunohistochemistry. Additional methods for diagnosis include the detection of a NUTM1 rearrangement by fluorescence in situ hybridization or by reverse transcriptase PCR. NUT carcinoma is usually underrecognized due to its rarity and lack of characteristic histological features. Therefore, the goal of this review is to provide relevant recent information regarding the clinicopathologic features of NUT carcinoma, the role of the multiple NUTM1 gene rearrangements in carcinogenesis, and the impact of understanding these underlying molecular mechanisms that may result in the development of possible novel targeted therapies.
Collapse
Affiliation(s)
- Vanessa Moreno
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karan Saluja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sergio Pina-Oviedo
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
37
|
Lemelle L, Moya-Plana A, Dumont B, Fresneau B, Laprie A, Claude L, Deneuve S, Cordero C, Pierron G, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Metayer L, Fréneaux P, Helfre S, Kolb F, Thariat J, Réguerre Y, Orbach D. NUT carcinoma in children, adolescents and young adults. Bull Cancer 2022; 109:491-504. [DOI: 10.1016/j.bulcan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
38
|
Li X, Baek G, Carreira S, Yuan W, Ma S, Hofstad M, Lee S, Gao Y, Bertan C, Fenor de la Maza MDLD, Alluri PG, Burma S, Chen BP, Raj GV, de Bono J, Pommier Y, Mani RS. Targeting radioresistance and replication fork stability in prostate cancer. JCI Insight 2022; 7:152955. [PMID: 35349486 PMCID: PMC9090241 DOI: 10.1172/jci.insight.152955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The bromodomain and extraterminal (BET) family of chromatin reader proteins bind to acetylated histones and regulate gene expression. The development of BET inhibitors (BETi) has expanded our knowledge of BET protein function beyond transcriptional regulation and has ushered several prostate cancer (PCa) clinical trials. However, BETi as a single agent is not associated with antitumor activity in patients with castration-resistant prostate cancer (CRPC). We hypothesized novel combinatorial strategies are likely to enhance the efficacy of BETi. By using PCa patient-derived explants and xenograft models, we show that BETi treatment enhanced the efficacy of radiation therapy (RT) and overcame radioresistance. Mechanistically, BETi potentiated the activity of RT by blocking DNA repair. We also report a synergistic relationship between BETi and topoisomerase I (TOP1) inhibitors (TOP1i). We show that the BETi OTX015 synergized with the new class of synthetic noncamptothecin TOP1i, LMP400 (indotecan), to block tumor growth in aggressive CRPC xenograft models. Mechanistically, BETi potentiated the antitumor activity of TOP1i by disrupting replication fork stability. Longitudinal analysis of patient tumors indicated that TOP1 transcript abundance increased as patients progressed from hormone-sensitive prostate cancer to CRPC. TOP1 was highly expressed in metastatic CRPC, and its expression correlated with the expression of BET family genes. These studies open new avenues for the rational combinatorial treatment of aggressive PCa.
Collapse
Affiliation(s)
- Xiangyi Li
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - GuemHee Baek
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Carreira
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, United Kingdom
| | - Wei Yuan
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, United Kingdom
| | | | | | - Sora Lee
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Yunpeng Gao
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Claudia Bertan
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, United Kingdom
| | - Maria de los Dolores Fenor de la Maza
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, United Kingdom
| | - Prasanna G. Alluri
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology and Department of Neurosurgery, UT Health Science Center, San Antonio, Texas, USA
| | - Benjamin P.C. Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Johann de Bono
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, United Kingdom
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ram S. Mani
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology and
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Li J, Zhang C, Xu H, Wang C, Dong R, Shen H, Zhuang X, Chen X, Li Q, Lu J, Zhang M, Wu X, Loomes KM, Zhou Y, Zhang Y, Liu J, Xu Y. Structure-Based Discovery and Optimization of Furo[3,2- c]pyridin-4(5 H)-one Derivatives as Potent and Second Bromodomain (BD2)-Selective Bromo and Extra Terminal Domain (BET) Inhibitors. J Med Chem 2022; 65:5760-5799. [PMID: 35333526 DOI: 10.1021/acs.jmedchem.2c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ruibo Dong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jibu Lu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Kerry M Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinsong Liu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
40
|
Argyropoulos KV, Lin LH, Moreira A, Krock B, Simsir A, Brandler TC. Cytologic features of NUT-carcinoma harboring an NSD3-NUTM1 fusion. Cytopathology 2022; 33:540-543. [PMID: 35325484 DOI: 10.1111/cyt.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kimon V Argyropoulos
- Division of Cytopathology, Department of Pathology, New York University, School of Medicine, New York
| | - Lawrence Hsu Lin
- Division of Cytopathology, Department of Pathology, New York University, School of Medicine, New York
| | - Andre Moreira
- Division of Thoracic Pathology, Department of Pathology, New York University, School of Medicine, New York
| | | | - Aylin Simsir
- Division of Cytopathology, Department of Pathology, New York University, School of Medicine, New York
| | - Tamar C Brandler
- Division of Cytopathology, Department of Pathology, New York University, School of Medicine, New York
| |
Collapse
|
41
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance. Front Oncol 2022; 12:852950. [PMID: 35311140 PMCID: PMC8924419 DOI: 10.3389/fonc.2022.852950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive tumor and is associated with a dismal prognosis. The availability of few active treatments as well as the inexorable recurrence after surgery are important hallmarks of the disease. The biological behavior of glioblastoma tumor cells reveals a very complex pattern of genomic alterations and is partially responsible for the clinical aggressiveness of this tumor. It has been observed that glioblastoma cells can recruit, manipulate and use other cells including neurons, glial cells, immune cells, and endothelial/stromal cells. The final result of this process is a very tangled net of interactions promoting glioblastoma growth and progression. Nonetheless, recent data are suggesting that the microenvironment can also be a niche in which glioblastoma cells can differentiate into glial cells losing their tumoral phenotype. Here we summarize the known interactions between micro-environment and glioblastoma cells highlighting possible therapeutic implications.
Collapse
Affiliation(s)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Costa BA, Maraveyas A, Wilkoff MH, Correia GSDC, de Lara PT, Rohs NC, Salonia J. Primary Pulmonary NUT Carcinoma: Case Illustration and Updated Review of Literature. Clin Lung Cancer 2022; 23:e296-e300. [DOI: 10.1016/j.cllc.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
|
43
|
Cai M, Dong J, Li H, Qin JJ. Recent Developments in Targeting Bromodomain and Extra Terminal Domain Proteins for Cancer Therapeutics. Curr Med Chem 2022; 29:4391-4409. [PMID: 35152859 DOI: 10.2174/0929867329666220211091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials, but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure, the recent development of BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.
Collapse
Affiliation(s)
- Maohua Cai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Haobin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| |
Collapse
|
44
|
Zou Z, Iwata M, Yamanishi Y, Oki S. Epigenetic landscape of drug responses revealed through large-scale ChIP-seq data analyses. BMC Bioinformatics 2022; 23:51. [PMID: 35073843 PMCID: PMC8785570 DOI: 10.1186/s12859-022-04571-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Elucidating the modes of action (MoAs) of drugs and drug candidate compounds is critical for guiding translation from drug discovery to clinical application. Despite the development of several data-driven approaches for predicting chemical–disease associations, the molecular cues that organize the epigenetic landscape of drug responses remain poorly understood.
Results
With the use of a computational method, we attempted to elucidate the epigenetic landscape of drug responses, in terms of transcription factors (TFs), through large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs that regulate the expression of chemically induced genes by integrating transcriptome data from chemical induction experiments and almost all publicly available ChIP-seq data (consisting of 13,558 experiments). By relating the resultant chemical–TF associations to a repository of associated proteins for a wide range of diseases, we made a comprehensive prediction of chemical–TF–disease associations, which could then be used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin promotes the anti-tumor activity of TP53 family members but suppresses the cancer-inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism.
Conclusions
Our proposed approach has the potential to elucidate the MoAs for both approved drugs and candidate compounds from an epigenetic perspective, thereby revealing new therapeutic targets, and to guide the discovery of unexpected therapeutic effects, side effects, and novel targets and actions.
Collapse
|
45
|
Jiang H, Wang C, Hou Z, Wang Y, Qiao J, Li H. Case report: NUT carcinoma with MXI1::NUTM1 fusion characterized by abdominopelvic lesions and ovarian masses in a middle-aged female. Front Oncol 2022; 12:1091877. [PMID: 36741693 PMCID: PMC9890191 DOI: 10.3389/fonc.2022.1091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background Nuclear protein of the testis (NUT) carcinoma is a rare subset of poorly differentiated, highly aggressive malignancy defined by NUTM1 gene rearrangements. Only three NUT cases of probable ovarian origin have been reported. Case presentation We report a case of NUT carcinoma in a 53-year-old female who presented with extensive abdominopelvic lesions and bilateral ovarian masses suggestive of advanced ovarian cancer. This patient was admitted to our hospital due to abdominal pain and distension for over two months. Imaging examinations suggested a possible malignancy of bilateral adnexal origin. This patient first underwent diagnostic laparoscopy. After receiving neoadjuvant chemotherapy, she underwent cytoreductive surgery. Surgical pathology showed infiltration of monotonous round tumor cells with no apparent differentiation characteristics. Immunohistochemistry (IHC) revealed nuclear expression of the NUT protein. And MXI1::NUTM1 fusion was identified by next-generation sequencing (NGS). Herein, we introduce an unusual NUT carcinoma and describe the clinical, imaging, and pathological features. In addition, we briefly reviewed the published literature and discussed the possibility of primary gynecological NUT carcinoma. Conclusions Identifying a NUT carcinoma arising from the abdominopelvic cavity is essential, and we underscore the need for NUT testing in undifferentiated malignant neoplasms that appear in this clinical setting. Although it is unclear from which origin this tumor arose, proper classification is essential for treatment planning.
Collapse
Affiliation(s)
- Huahua Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zheng Hou
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Huajun Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
46
|
The Clinical Challenges, Trials, and Errors of Combatting Poly(ADP-Ribose) Polymerase Inhibitors Resistance. Cancer J 2021; 27:491-500. [PMID: 34904812 DOI: 10.1097/ppo.0000000000000562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitor (PARPi) exploits synthetic lethality in solid tumors with homologous recombination repair (HRR) defects. Significant clinical benefit has been established in breast and ovarian cancers harboring BRCA1/2 mutations, as well as tumors harboring characteristics of "BRCAness." However, the durability of treatment responses is limited, and emerging data have demonstrated the clinical challenge of PARPi resistance. With the expanding use of PARPi, the significance of PARP therapy in patients pretreated with PARPi remains in need of significant further investigation. Molecular mechanisms contributing to this phenomenon include restoration of HRR function, replication fork stabilization, BRCA1/2 reversion mutations, and epigenetic changes. Current studies are evaluating the utility of combination therapies of PARPi with cell cycle checkpoint inhibitors, antiangiogenic agents, phosphatidylinositol 3-kinase/AKT pathway inhibitors, MEK inhibitors, and epigenetic modifiers to overcome this resistance. In this review, we address the mechanisms of PARPi resistance supported by preclinical models, examine current clinical trials applying combination therapy to overcome PARPi resistance, and discuss future directions to enhance the clinical efficacy of PARPi.
Collapse
|
47
|
Kim EJ, Liu P, Zhang S, Donahue K, Wang Y, Schehr J, Wolfe S, Dickerson A, Lu L, Rui L, Zhong X, Wisinski K, Yu M, Suzuki A, Lang J, Ong I, Xu W. BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Res 2021; 49:12211-12233. [PMID: 34865122 PMCID: PMC8643633 DOI: 10.1093/nar/gkab1122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer L Schehr
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Serena K Wolfe
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Lu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Lixin Rui
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Irene M Ong
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
48
|
Nunno VD, Franceschi E, Gatto L, Brandes AA. BET inhibitors: the promise of a new generation of immunotherapy in glioblastoma. Immunotherapy 2021; 14:Pages 169-172. [PMID: 34850637 DOI: 10.2217/imt-2021-0296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale di Bologna, Bologna, Italy
| | - Enrico Franceschi
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
49
|
Targeted protein degraders from an oncologist point of view: The Holy Grail of cancer therapy? Crit Rev Oncol Hematol 2021; 169:103532. [PMID: 34800655 DOI: 10.1016/j.critrevonc.2021.103532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the era of precision medicine, monoclonal antibodies and small molecule inhibitors are the mainstays of the biological therapy in patients with solid tumors. However, resistance to treatment and the "undruggability" of certain key oncogenic proteins emerged as major limitations and jeopardize the clinical benefit of modern therapeutic approaches. Targeted protein degraders are novel molecules entering the early phase of clinical development that exploit the intracellular ubiquitine-proteasome system to promote a specific degradation of target proteins. Since the peculiar mechanism of action, targeted protein degraders have the potential to limit and overcome resistance to treatment and to allow a full actionability of certain cancer drivers that are actually elusive targets. Here, we discuss the state-of-the-art and the open issues in the development of these emerging biological agents from a clinical perspective and with a focus on solid tumors.
Collapse
|
50
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|