1
|
Stefanova D, Olszewski D, Glitscher M, Bauer M, Ferrarese L, Wüst D, Hildt E, Greber UF, Werner S. FGF receptor kinase inhibitors exhibit broad antiviral activity by targeting Src family kinases. Cell Mol Life Sci 2024; 81:471. [PMID: 39621133 PMCID: PMC11612106 DOI: 10.1007/s00018-024-05502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Abstract
The development of antiviral strategies is a key task of biomedical research, but broad-spectrum virus inhibitors are scarce. Here we show that fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors reduce infection of several cell types with DNA and RNA viruses by blocking early stages of infection, but not viral cell association. Unexpectedly, their antiviral activity was largely independent of FGFR kinase inhibition. RNA profiling showed upregulation of interferon response genes by FGFR inhibitors, but their expression did not correlate with the antiviral activity in infected cells. Using bioinformatics analysis of kinome data, targeted kinase assays, siRNA-mediated knock-down and pharmacological inhibition experiments, we show that blockade of Src family kinases, in particular Lyn, is mainly responsible for the antiviral activity of FGFR inhibitors. These results identify FGFR inhibitors as broad-spectrum antiviral agents and suggest the poorly studied Lyn kinase as a promising target for the treatment of viral infections.
Collapse
Affiliation(s)
- Debora Stefanova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland.
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Mirco Glitscher
- Paul-Ehrlich-Institute, Department of Virology, D-63225, Langen, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Luca Ferrarese
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daria Wüst
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225, Langen, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland.
| |
Collapse
|
2
|
Li G, Li Z, Shen J, Ma X, Zheng S, Zheng Y, Cao K, Dong N. Identifying and validating angiogenesis-related genes remodeling tumor microenvironment and suppressing immunotherapy response in gastric cancer. Gene 2024; 928:148796. [PMID: 39067544 DOI: 10.1016/j.gene.2024.148796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Angiogenesis significantly correlates with tumor microenvironment remodeling and immunotherapy response. Our study aimed to construct a prognostic angiogenesis-related model for gastric cancer. Using public database, a angiogenetic related five-gene (FGF1, GRB14, PAK3, PDGFRA, and PRKD1) model was identified. The top 25 % of patients were defined as high-risk, and the remaining as low-risk. The area under the curve for 1-, 3-, and 5-year overall survival (OS) were 0.646, 0.711, and 0.793, respectively. Survival analysis showed a better 10-year OS in low-risk patients in the construction (HR = 0.57, p = 0.002) and validation cohorts. GO and GSEA revealed that DEGs were enriched in extracellular matrix receptor interactions, dendritic cell antigen processing/presentation regulation, and angiogenesis pathways. CIBERSORT analysis revealed abundant naïve B cells, resting mast cells, resting CD4+ memory T cells, M2 macrophages, and monocytes in high-risk subgroups. The TIMER database showed strong positive correlations between PAK3, FGF1, PRKD1, and PDGFRA expression levels and the infiltration of CD4+ T cells and macrophages. The IOBR analysis revealed an immunosuppressive environment in the high-risk subgroup. Low-risk patients show a higher response rate to anti-PD1 treatment. TMA showed that FGF1 overexpression was associated with poor prognosis and CD4+ T cells and macrophage infiltration. In vivo study based on the 615 mice indicated that inhibiting FGF1 function could suppress tumor growth and enhance anti-PD1 therapeutic efficacy. In summary, we established a five-angiogenesis-related gene model to predict survival outcomes and immunotherapy responses in patients with gastric cancer and identified FGF1 as a prognostic gene and potential target for improving immune treatment.
Collapse
Affiliation(s)
- Guiyuan Li
- Department of Oncology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jing Shen
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaoqiang Zheng
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunlu Zheng
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - KaiMing Cao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ningxin Dong
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Goetten ALF, Barreta MH, Pinto da Silva Y, Bertolin K, Koch J, Rocha CC, Dias Gonçalves PB, Price CA, Antoniazzi AQ, Portela VM. FGF18 impairs blastocyst viability, DNA double-strand breaks and maternal recognition of pregnancy genes. Theriogenology 2024; 225:81-88. [PMID: 38796960 DOI: 10.1016/j.theriogenology.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Embryonic mortality in cattle is high, reaching 10-40 % in vivo and 60-70 % in vitro. Death of embryos involves reduced expression of genes related to embryonic viability, inhibition of DNA repair and increased DNA damage. In follicular granulosa cells, FGF18 from the theca layer increases apoptosis and DNA damage, so we hypothesized that FGF18 may also affect the oocyte and contribute to early embryonic death. The aims of this study were to identify the effects of FGF18 on cumulus expansion, oocyte maturation and embryo development from cleavage to blastocyst stage using a conventional bovine in vitro embryo production system using ovaries of abattoir origin. Addition of FGF18 during in-vitro maturation did not affect FSH-induced cumulus expansion or rates of nuclear maturation. When FGF18 was present in the culture system, rates of cleavage were not affected however, blastocyst and expanded blastocyst development was substantially inhibited (P < 0.05), indicating a delay of blastulation. The number of phosphorylated histone H2AFX foci per nucleus, a marker of DNA damage, was higher in cleavage-stage embryos cultured with FGF18 than in those from control group (P < 0.05). Furthermore, FGF18 decreased accumulation of PTGS2 and IFNT2 mRNA in blastocysts. In conclusion, these novel findings suggest that FGF18 plays a role in the regulation of embryonic death during the early stages of development by impairing DNA double-strand break repair and expression of genes associated with embryo viability and maternal recognition of pregnancy during the progression from oocyte to expanded blastocysts.
Collapse
Affiliation(s)
- André Lucio Fontana Goetten
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Marcos Henrique Barreta
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Yago Pinto da Silva
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Kalyne Bertolin
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Júlia Koch
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Cecilia Constantino Rocha
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Paulo Bayard Dias Gonçalves
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Christopher Alan Price
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | - Alfredo Quites Antoniazzi
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Valerio Marques Portela
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Zhou W, Zeng T, Chen J, Tang X, Yuan Y, Hu D, Zhang Y, Li Y, Zou J. Aberrant angiogenic signaling pathways: Accomplices in ovarian cancer progression and treatment. Cell Signal 2024; 120:111240. [PMID: 38823664 DOI: 10.1016/j.cellsig.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Ovarian cancer is one of the most common malignant tumors in women, and treatment options are limited. Despite efforts to adjust cancer treatment models and develop new methods, including tumor microenvironment (TME) therapy, more theoretical support is needed. Increasing attention is being given to antiangiogenic measures for TME treatment. Another important concept in ovarian cancer TME is angiogenesis, where tumor cells obtain nutrients and oxygen from surrounding tissues through blood vessels to support further expansion and metastasis. Many neovascularization signaling pathways become imbalanced and hyperactive during this process. Inhibiting these abnormal pathways can yield ideal therapeutic effects in patients, even by reversing drug resistance. However, these deep TME signaling pathways often exhibit crosstalk and correlation. Understanding these interactions may be an important strategy for further treating ovarian cancer. This review summarizes the latest progress and therapeutic strategies for these angiogenic signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daopu Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
5
|
Biegała Ł, Kołat D, Gajek A, Płuciennik E, Marczak A, Śliwińska A, Mikula M, Rogalska A. Uncovering miRNA-mRNA Regulatory Networks Related to Olaparib Resistance and Resensitization of BRCA2MUT Ovarian Cancer PEO1-OR Cells with the ATR/CHK1 Pathway Inhibitors. Cells 2024; 13:867. [PMID: 38786089 PMCID: PMC11119970 DOI: 10.3390/cells13100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFβR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFβ1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Jana Matejki 21/23, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
6
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
7
|
Chen Z, Wakabayashi H, Kuroda R, Mori H, Hiromasa T, Kayano D, Kinuya S. Radiation exposure lymphocyte damage assessed by γ-H2AX level using flow cytometry. Sci Rep 2024; 14:4339. [PMID: 38383619 PMCID: PMC10881581 DOI: 10.1038/s41598-024-54986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
DNA double-strand breaks (DSBs) are considered the most relevant lesions to the DNA damage of ionizing radiation (IR), and γ-H2AX foci in peripheral blood lymphocytes are regarded as an adequate marker for DSB quantitative studies. This study aimed to investigate IR-induced DNA damage in mice through γ-H2AX fluorescence analyses by flow cytometry (FCM). The levels of γ-H2AX in CD4/CD8/B220-positive lymphocytes were quantified by FCM through mean fluorescence intensity (MFI) values. Peripheral venous blood samples were collected for evaluation, and all the control groups were restrained from irradiation. For external irradiation experiments, the dose-dependency of MFI values and temporal alternations were assessed both in vitro and in vivo. External radiation exposure damage was positively correlated with the absorbed radiation dose, and the lymphocyte recovered from damage within 3 days. I-131 sodium iodide solution (74 MBq) was injected into the mice intraperitoneally for internal irradiation experiments. Gamma counting and γH2AX foci analyses were performed at 1 h and 24 h by the group. The blood-to-blood S values (Sblood←blood) were applied for the blood-absorbed dose estimation. Internal low-dose-irradiation-induced damage was proved to recover within 24 h. The FCM method was found to be an effective way of quantitatively assessing IR-induced DNA damage.
Collapse
Affiliation(s)
- Zhuoqing Chen
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Rie Kuroda
- Department of Pediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
8
|
Zhang YL, Tang TT, Ni WJ, Li ZT, Jiang LYZ, Wang Y, Zhou X, Cao JY, Yin Q, Jiang W, Zhao YJ, Gan WH, Zhang AQ, Li ZL, Wen Y, Lv LL, Liu BC, Wang B. Tubule-specific cyclin-dependent kinase 12 knockdown potentiates kidney injury through transcriptional elongation defects. Int J Biol Sci 2024; 20:1669-1687. [PMID: 38481813 PMCID: PMC10929189 DOI: 10.7150/ijbs.90872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/17/2024] [Indexed: 07/18/2024] Open
Abstract
Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zhong-Tang Li
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang-Yun-Zi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuan Zhou
- Shanghai OE Biotech Co., Ltd., Shanghai, China
| | - Jing-Yuan Cao
- Institute of Nephrology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jinagsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ya-Jie Zhao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Qing Zhang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhang Y, Chen Y, Huang W, Zhou Y, Wang Y, Fu K, Zhuang W. NPAS2 dampens chemo-sensitivity of lung adenocarcinoma cells by enhancing DNA damage repair. Cell Death Dis 2024; 15:101. [PMID: 38291048 PMCID: PMC10827782 DOI: 10.1038/s41419-023-06256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 02/01/2024]
Abstract
Chemotherapeutic agents, including cisplatin, have remained a cornerstone of lung adenocarcinoma (LUAD) treatment and continue to play an essential role in clinical practice, despite remarkable progress in therapeutic strategies. Hence, a thorough comprehension of the molecular mechanisms underlying chemotherapeutic agent resistance is paramount. Our investigation centered on the potential involvement of the NPAS2 gene in LUAD, which is highly expressed in tumors and its high expression has been associated with unfavorable overall survival rates in patients. Intriguingly, we observed that the depletion of NPAS2 in LUAD cells resulted in increased susceptibility to cisplatin treatment. Furthermore, mRNA sequencing analysis revealed that NPAS2 deficiency downregulated genes crucial to DNA repair. Additionally, NPAS2 depletion significantly impairs γH2AX accumulation, a pivotal component of the DNA damage response. Further investigation demonstrates that NPAS2 plays a crucial role in DNA double-strand breakage repair via homology-directed repair (HDR). Our inquiry into the molecular mechanisms underlying NPAS2 regulation of DDR revealed that it may enhance the stability of H2AX mRNA by binding to its mRNA, thereby upregulating the DNA damage repair pathway. In-vivo experiments further confirmed the crucial role of NPAS2 in modulating the effect of cisplatin in LUAD. Taken together, our findings suggest that NPAS2 binds to and enhances the stability of H2AX mRNA, thereby decreasing the sensitivity of tumor cells to chemotherapy by augmenting DNA damage repair.
Collapse
Affiliation(s)
- Youyu Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Cardiothoracic Vascular Surgery, Zhuzhou Central Hospital, 412001, Zhuzhou, Hunan, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yuan Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 410031, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 410008, Changsha, Hunan, China.
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 410031, Changsha, Hunan, China.
| |
Collapse
|
10
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
11
|
Palovcak A, Yuan F, Verdun R, Luo L, Zhang Y. Fanconi anemia associated protein 20 (FAAP20) plays an essential role in homology-directed repair of DNA double-strand breaks. Commun Biol 2023; 6:873. [PMID: 37620397 PMCID: PMC10449828 DOI: 10.1038/s42003-023-05252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
FAAP20 is a Fanconi anemia (FA) protein that associates with the FA core complex to promote FANCD2/FANCI monoubiquitination and activate the damage response to interstrand crosslink damage. Here, we report that FAAP20 has a marked role in homologous recombination at a DNA double-strand break not associated with an ICL and separable from its binding partner FANCA. While FAAP20's role in homologous recombination is not dependent on FANCA, we found that FAAP20 stimulates FANCA's biochemical activity in vitro and participates in the single-strand annealing pathway of double-strand break repair in a FANCA-dependent manner. This indicates that FAAP20 has roles in several homology-directed repair pathways. Like other homology-directed repair factors, FAAP20 loss causes a reduction in nuclear RAD51 Irradiation-induced foci; and sensitizes cancer cells to ionizing radiation and PARP inhibition. In summary, FAAP20 participates in DNA double strand break repair by supporting homologous recombination in a non-redundant manner to FANCA, and single-strand annealing repair via FANCA-mediated strand annealing activity.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ramiro Verdun
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Yan J, Xu F, Zhou D, Zhang S, Zhang B, Meng Q, Lv Q. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1231460. [PMID: 37681030 PMCID: PMC10482409 DOI: 10.3389/fonc.2023.1231460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Metabolic reprogramming is a phenomenon in which cancer cells alter their metabolic pathways to support their uncontrolled growth and survival. Platinum-based chemotherapy resistance is associated with changes in glucose metabolism, amino acid metabolism, fatty acid metabolism, and tricarboxylic acid cycle. These changes lead to the creation of metabolic intermediates that can provide precursors for the biosynthesis of cellular components and help maintain cellular energy homeostasis. This article reviews the research progress of the metabolic reprogramming mechanism of platinumbased chemotherapy resistance caused by three major nutrients in ovarian cancer.
Collapse
Affiliation(s)
- Jinbowen Yan
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Dan Zhou
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingwei Meng
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Suzuki T, Conant A, Curow C, Alexander A, Ioffe Y, Unternaehrer JJ. Role of epithelial-mesenchymal transition factor SNAI1 and its targets in ovarian cancer aggressiveness. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:25. [PMID: 38009093 PMCID: PMC10673625 DOI: 10.20517/2394-4722.2023.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the USA. For over twenty years, epithelial-mesenchymal transition (EMT) has been characterized extensively in development and disease. The dysregulation of this process in cancer has been identified as a mechanism by which epithelial tumors become more aggressive, allowing them to survive and invade distant tissues. This occurs in part due to the increased expression of the EMT transcription factor, SNAI1 (Snail). In the case of epithelial ovarian cancer, Snail has been shown to contribute to cancer invasion, stemness, chemoresistance, and metabolic changes. Thus, in this review, we focus on summarizing current findings on the role of EMT (specifically, factors downstream of Snail) in determining ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashlyn Conant
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Casey Curow
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- University of Redlands, Department of Biology, Redlands, CA 92373, USA
| | - Audrey Alexander
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Natural and Mathematical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Yevgeniya Ioffe
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
15
|
Wang Y, Zhang Y, Chen R, Tian X. Autocrine EGF and TGF-α promote primary and acquired resistance to ALK/c-Met kinase inhibitors in non-small-cell lung cancer. Pharmacol Res Perspect 2023; 11:e01047. [PMID: 36583451 PMCID: PMC9801488 DOI: 10.1002/prp2.1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Drug resistance severely limits the clinical therapeutic value of molecularly targeted drugs. Growth factors gain a tremendous amount of focus due to the ability to promote drug resistance in non-small-cell lung cancer (NSCLC). However, whether tumor cells themselves can mediate drug resistance by secreting growth factors needs further clarification. Here, we first screened growth factors to identify autocrine epidermal growth factor (EGF) and transforming growth factor alpha (TGF-α) that caused primary resistance to the ALK inhibitor TAE684 in H3122 cells and the c-MET-specific inhibitor SGX-523 in EBC-1 cells. Next, we discovered increased autocrine production of EGF and TGF-α in established acquired resistant H3122/TR and EBC-1/SR cells. Importantly, overexpression of EGF and TGF-α in two NSCLC cell lines produced resistance to TAE684 and SGX-523. Clinically, NSCLC patients with high expression of EGF and TGF-α developed primary resistance to crizotinib. Mechanistically, autocrine EGF and TGF-α activated EGFR signaling pathways to survive targeted c-Met and ALK inhibition. Furthermore, combined treatment with gefitinib circumvented EGF- and TGF-α-mediated primary and acquired resistance to TAE684/SGX-523. Taken together, these results suggested increased autocrine EGF and TGF-α conferred primary and acquired resistance to ALK/c-Met kinase inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ruiying Chen
- Department of Respiratory medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|