1
|
Xing P, Chen Z, Zhu W, Lin B, Quan M. NRF3 suppresses the malignant progression of TNBC by promoting M1 polarization of macrophages via ROS/HMGB1 axis. Cancer Biol Ther 2024; 25:2416221. [PMID: 39443820 PMCID: PMC11509002 DOI: 10.1080/15384047.2024.2416221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC. METHODS The study analyzed NRF3's clinical expression, differentially expressed genes (DEGs), and immune infiltration in TNBC using the TCGA database and bioinformatics tools. Cellular functions of MDA-MB-468 and Hs578t cells were evaluated through MTT, colony formation, transwell, flow cytometry, and western blotting. The regulatory function of NRF3 in TNBC cell lines was assessed using Immunofluorescence, Immunohistochemistry, qRT-PCR, CHIP, luciferase assay, and ELISA. Moreover, a xenograft model was established to investigate the role of NRF3 in TNBC in vivo. RESULTS Low expression of NRF3 in TNBC tumors was associated with unfavorable prognosis and transcripts from tumors with higher NRF3 levels were enriched in oxidative stress and immune-related pathways. The subsequent gain- and loss-functional experiments indicated that NRF3 overexpression significantly suppressed malignant phenotypes, MAPK/ERK signaling pathways, and epithelial-mesenchymal transition (EMT), whereas it promoted reactive oxygen species (ROS) levels in TNBC. Further mechanistic exploration showed that NRF3 inhibited TNBC cell function by regulating oxidative stress-related genes to inhibit the MAPK/ERK signaling pathway by promoting the release of HMGB1 via ROS, thereby promoting M1 macrophage polarization. CONCLUSION NRF3 promotes M1 macrophage polarization through the ROS/HMGB1 axis, thereby inhibiting the malignant progression of TNBC. It is expected to become a therapeutic biomarker for TNBC.
Collapse
Affiliation(s)
- Ping Xing
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Zhenzhen Chen
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Wenbo Zhu
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Bangyi Lin
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Mingming Quan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Xiong G, Li J, Yao F, Yang F, Xiang Y. New insight into the CNC-bZIP member, NFE2L3, in human diseases. Front Cell Dev Biol 2024; 12:1430486. [PMID: 39149514 PMCID: PMC11325725 DOI: 10.3389/fcell.2024.1430486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Nuclear factor erythroid 2 (NF-E2)-related factor 3 (NFE2L3), a member of the CNC-bZIP subfamily and widely found in a variety of tissues, is an endoplasmic reticulum (ER) membrane-anchored transcription factor that can be released from the ER and moved into the nucleus to bind the promoter region to regulate a series of target genes involved in antioxidant, inflammatory responses, and cell cycle regulation in response to extracellular or intracellular stress. Recent research, particularly in the past 5 years, has shed light on NFE2L3's participation in diverse biological processes, including cell differentiation, inflammatory responses, lipid homeostasis, immune responses, and tumor growth. Notably, NFE2L3 has been identified as a key player in the development and prognosis of multiple cancers including colorectal cancer, thyroid cancer, breast cancer, hepatocellular carcinoma, gastric cancer, renal cancer, bladder cancer, esophageal squamous cell carcinoma, T cell lymphoblastic lymphoma, pancreatic cancer, and squamous cell carcinoma. Furthermore, research has linked NFE2L3 to other cancers such as lung adenocarcinoma, malignant pleural mesothelioma, ovarian cancer, glioblastoma multiforme, and laryngeal carcinoma, indicating its potential as a target for innovative cancer treatment approaches. Therefore, to gain a better understanding of the role of NFE2L3 in disease, this review offers insights into the discovery, structure, function, and recent advancements in the study of NFE2L3 to lay the groundwork for the development of NFE2L3-targeted cancer therapies.
Collapse
Affiliation(s)
- Guanghui Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Children Rehabilitation, Maternal and Child Health Hospital of Jintang County, Chendu, Sichuan, China
| | - Jie Li
- Department of Anaesthesia, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuli Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Jin Y, Huang Y, Zeng G, Hu J, Li M, Tian M, Lei T, Huang R. Advanced glycation end products regulate macrophage apoptosis and influence the healing of diabetic foot wound through miR-361-3p/CSF1R and PI3K/AKT pathway. Heliyon 2024; 10:e24598. [PMID: 38312602 PMCID: PMC10835292 DOI: 10.1016/j.heliyon.2024.e24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Background Diabetic foot ulcers (DFUs) are a severe complication of diabetes. Persistent inflammation and impaired vascularization present considerable challenges in tissue wound healing. The aim of this study was to identify the crucial regulators of DFU wound healing and investigate their specific mechanisms in DFU. Methods DFU RNA sequencing data were obtained to identify crucial feature genes. The expression levels of the feature genes and their corresponding microRNAs (miRNAs) were verified in clinical samples. Subsequently, the expression of CD68 was determined in DFU and non-diabetic foot skin samples. RAW 264.7 cells were treated with advanced glycation end products (AGEs) to determine their viability and apoptosis. Finally, the roles of the selected crucial genes and their corresponding miRNAs were investigated using in vitro experiments and a mouse model of diabetes. Results Bioinformatic analysis showed that five crucial feature genes (CORO1A, CSF1R, CTSH, NFE2L3, and SLC16A10) were associated with DFU wound healing. The expression validation showed that miR-361-3p-CSF1R had a significant negative correlation and was thus selected for further experiments. AGEs significantly inhibited the viability of RAW 264.7 cells and enhanced their apoptosis; furthermore, the AGEs significantly downregulated CSF1R and increased miR-361-3p levels compared with the control cells. Additionally, inhibition of miR-361-3p decreased the cell apoptosis caused by AGEs and increased the levels of p-AKT/AKT and p-PI3K/PI3K, whereas CSF1R knockdown reversed the effects of miR-361-3p. In vivo experiments showed that miR-361-3p inhibition promoted wound healing in diabetic mice and regulated PI3K/AKT levels. Conclusions AGEs may regulate macrophage apoptosis via the miR-361-3p/CSF1R axis and PI3K/AKT pathway, thereby influencing DFU wound healing.
Collapse
Affiliation(s)
- Yongzhi Jin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yi Huang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Guang Zeng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Junsheng Hu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Mengfan Li
- Department of General Surgery, LiQun Hospital, Shanghai, 200333, China
| | - Ming Tian
- Shanghai Burn Institute, Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
4
|
Shen ZQ, Chang CY, Yeh CH, Lu CK, Hung HC, Wang TW, Wu KS, Tung CY, Tsai TF. Hesperetin activates CISD2 to attenuate senescence in human keratinocytes from an older person and rejuvenates naturally aged skin in mice. J Biomed Sci 2024; 31:15. [PMID: 38263133 PMCID: PMC10807130 DOI: 10.1186/s12929-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Cheng-Yen Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Kuang Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Hao-Chih Hung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Tai-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Kuan-Sheng Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan.
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
5
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Gurri S, Siegenthaler B, Cangkrama M, Restivo G, Huber M, Saliba J, Dummer R, Blank V, Hohl D, Werner S. NRF3 suppresses squamous carcinogenesis, involving the unfolded protein response regulator HSPA5. EMBO Mol Med 2023; 15:e17761. [PMID: 37807968 PMCID: PMC10630885 DOI: 10.15252/emmm.202317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Epithelial skin cancers are extremely common, but the mechanisms underlying their malignant progression are still poorly defined. Here, we identify the NRF3 transcription factor as a tumor suppressor in the skin. NRF3 protein expression is strongly downregulated or even absent in invasively growing cancer cells of patients with basal and squamous cell carcinomas (BCC and SCC). NRF3 deficiency promoted malignant conversion of chemically induced skin tumors in immunocompetent mice, clonogenic growth and migration of human SCC cells, their invasiveness in 3D cultures, and xenograft tumor formation. Mechanistically, the tumor-suppressive effect of NRF3 involves HSPA5, a key regulator of the unfolded protein response, which we identified as a potential NRF3 interactor. HSPA5 levels increased in the absence of NRF3, thereby promoting cancer cell survival and migration. Pharmacological inhibition or knock-down of HSPA5 rescued the malignant features of NRF3-deficient SCC cells in vitro and in preclinical mouse models. Together with the strong expression of HSPA5 in NRF3-deficient cancer cells of SCC patients, these results suggest HSPA5 inhibition as a treatment strategy for these malignancies in stratified cancer patients.
Collapse
Affiliation(s)
- Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Beat Siegenthaler
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Marcel Huber
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - James Saliba
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Daniel Hohl
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
8
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
9
|
NRF3 Decreases during Melanoma Carcinogenesis and Is an Independent Prognostic Marker in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2240223. [PMID: 35378827 PMCID: PMC8976671 DOI: 10.1155/2022/2240223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
The prognostic significance of the major redox regulator, nuclear factor erythroid-2-related factor 2 (NRF2), is recognized in many cancers, but the role of NRF3 is not studied. Analysis from the Gene Expression Omnibus datasets showed that NRF3 mRNA levels increased from benign to dysplastic naevi (p = 0.04). We characterized the immunohistochemical expression of NRF3 in 81 naevi, 67 primary skin melanomas, and 51 lymph node metastases. The immunohistochemical expression of cytoplasmic NRF3 decreased from benign to dysplastic naevi (p < 0.001) and further to primary melanomas (p < 0.001). High cytoplasmic NRF3 protein expression in pigment cells of the primary melanomas associated with worse melanoma-specific survival in multivariate analysis, specifically in the subgroup of patients with the lymph node metastases at the time of diagnosis (hazard ratio 3.179; 95% confidence interval 1.065-9.493; p = 0.038). Intriguingly, we did not observe associations between NRF3 and the traditional prognostic factors such as Breslow thickness, ulceration, or stage. Together, this data represents the primary description about the role of NRF3 in pigment tumours that is worthy of further explorations.
Collapse
|
10
|
Qian J, Huang C, Zhu Z, He Y, Wang Y, Feng N, He S, Li X, Zhou L, Zhang C, Gong Y. NFE2L3 promotes tumor progression and predicts a poor prognosis of bladder cancer. Carcinogenesis 2022; 43:457-468. [PMID: 35022660 DOI: 10.1093/carcin/bgac006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
The high incidence and vulnerability to recurrence of bladder urothelial carcinoma (BLCA) is a challenge in the clinical. Recent studies have revealed that NFE2L3 plays a vital role in the carcinogenesis and progression of different human tumors. However, the role of NFE2L3 in bladder cancer has not been elucidated. In this study, NFE2L3 expression was significantly increased in bladder cancer samples. Its high expression was associated with advanced clinicopathological characteristics and was an independent prognostic factor for overall survival (OS) and metastasis-free survival (MFS) in 106 patients with BLCA. In vitro and in vivo experiments demonstrated that NFE2L3 knockdown inhibited bladder cancer cells proliferation by inducing the cell cycle arrest and cell apoptosis. Meanwhile, NFE2L3 overexpression promotes BLCA cell migration and invasion in vitro cell lines and in vivo xenografts. Moreover, we identified many genes and pathway alterations associated with tumor progression and metastasis by performing RNA-Seq analysis and functional enrichment of NFE2L3 overexpressing BLCA cells. Mechanistic investigation reveals that overexpression of NFE2L3 promoted epithelial-mesenchymal transition (EMT) in bladder cancer cells with decreased expression of gap junction-associated protein ZO-1 and epithelial marker E-cadherin with the elevation of transcription factors Snail1 and Snail2. Finally, we performed a comprehensive proteomics analysis to explore more potential molecular mechanisms. Our findings revealed that NFE2L3 might serve as a valuable clinical prognostic biomarker and therapeutic target in BLCA.
Collapse
Affiliation(s)
- Jinqin Qian
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Cong Huang
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Yuhui He
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Yang Wang
- Department of Urology, Wuxi People's Hospital Affiliated Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Ninghan Feng
- Department of Urology, Wuxi People's Hospital Affiliated Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing,100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center of China, Beijing, 100034, China
| |
Collapse
|
11
|
Kapetanou M, Athanasopoulou S, Gonos ES. Transcriptional regulatory networks of the proteasome in mammalian systems. IUBMB Life 2021; 74:41-52. [PMID: 34958522 DOI: 10.1002/iub.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
The tight regulation of proteostasis is essential for physiological cellular function. Mammalian cells possess a network of mechanisms that ensure proteome integrity under normal or stress conditions. The proteasome, being the major cellular proteolytic machinery, is central to proteostasis maintenance in response to distinct intracellular and extracellular conditions. The proteasomes are multisubunit protease complexes that selectively catalyze the degradation of short-lived regulatory proteins and damaged peptides. Different forms of the proteasome complexes comprising of different subunits and attached regulators directly affect the substrate selectivity and degradation. Thus, the proteasome participates in the turnover of a multitude of factors that control key processes that affect the cellular state, such as adaptation to environmental cues, growth, development, metabolism, signaling, senescence, pluripotency, differentiation, and immunity. Aberrations on its function are related to normal processes like aging and pathological conditions such as neurodegeneration and cancer. The past few years of research have highlighted that proteasome abundance, activity, assembly, and localization are subject to a dynamic transcriptional control that secures the continuous adaptation of the proteasome to internal or external stimuli. This review focuses on the factors and signaling pathways that are involved in the regulation of the mammalian proteasome at the transcriptional level. A comprehensive understanding of proteasome regulation has critical implications on disease prevention and treatment.
Collapse
Affiliation(s)
- Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Pathophysiological Potentials of NRF3-Regulated Transcriptional Axes in Protein and Lipid Homeostasis. Int J Mol Sci 2021; 22:ijms222312686. [PMID: 34884489 PMCID: PMC8657584 DOI: 10.3390/ijms222312686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress. Dysfunction of each homolog causes several diseases, such as neurodegenerative diseases and cancer development. However, NRF3 target genes and their biological roles remain unknown. This review summarizes our recent reports that showed NRF3-regulated transcriptional axes for protein and lipid homeostasis. NRF3 induces the gene expression of POMP for 20S proteasome assembly and CPEB3 for NRF1 translational repression, inhibiting tumor suppression responses, including cell-cycle arrest and apoptosis, with resistance to a proteasome inhibitor anticancer agent bortezomib. NRF3 also promotes mevalonate biosynthesis by inducing SREBP2 and HMGCR gene expression, and reduces the intracellular levels of neural fatty acids by inducing GGPS1 gene expression. In parallel, NRF3 induces macropinocytosis for cholesterol uptake by inducing RAB5 gene expression. Finally, this review mentions not only the pathophysiological aspects of these NRF3-regulated axes for cancer cell growth and anti-obesity potential but also their possible role in obesity-induced cancer development.
Collapse
|
13
|
NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor. Cell Rep 2020; 29:1469-1481.e9. [PMID: 31693889 DOI: 10.1016/j.celrep.2019.09.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.
Collapse
|
14
|
Chen RY, Lin CJ, Liang ST, Villalobos O, Villaflores OB, Lou B, Lai YH, Hsiao CD. UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish. Animals (Basel) 2020; 10:E1096. [PMID: 32630437 PMCID: PMC7341518 DOI: 10.3390/ani10061096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ultraviolet B (UVB) radiation has drawn more attention over these past few decades since it causes severe DNA damage and induces inflammatory response. Serial gene profiling and high throughput data in UVB-associated phenomenon in human cultured cells or full rack of human skin have been investigated. However, results using different tissue models lead to ambiguity in UVB-induced pathways. In order to systematically understand the UVB-associated reactions, the zebrafish model was used, and whole organism gene profiling was performed to identify a novel biomarker which can be used to generate a new mechanistic approach for further screening on a UVB-related system biology. In this study, detailed morphological assays were performed to address biological response after receiving UVB irradiation at morphological, cellular, and molecular levels. Microarray screening and whole genome profiling revealed that there is an early onset expression of junbb in zebrafish embryos after UVB irradiation. Also, the identified novel biomarker junbb is more sensitive to UVB response than mmps which have been used in mouse models. Moreover, cellular and molecular response chronology after UVB irradiation in zebrafish provide a solid and fundamental mechanism for use in a UV radiation-associated study in the future.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China;
- Marine and Fishery Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Chun-Ju Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (C.-J.L.); (S.-T.L.)
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (C.-J.L.); (S.-T.L.)
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1013, Philippines;
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 198, Hangzhou 310021, China
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (C.-J.L.); (S.-T.L.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
15
|
Tussilagonone Ameliorates Psoriatic Features in Keratinocytes and Imiquimod-Induced Psoriasis-Like Lesions in Mice via NRF2 Activation. J Invest Dermatol 2019; 140:1223-1232.e4. [PMID: 31877316 DOI: 10.1016/j.jid.2019.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Psoriasis is a common inflammatory skin disorder that is characterized by keratinocyte hyperproliferation and abnormal differentiation, resulting in the thickening of the epidermis and stratum corneum. In this study, we investigated in vitro and in vivo pharmacological effects of tussilagonone (TGN), a sesquiterpenoid isolated from Tussilago farfara, on transcription factors relevant for the pathogenesis of psoriasis. TGN inhibited activation of NF-κB and STAT3, leading to the attenuated expression of psoriasis-related inflammatory genes and suppression of keratinocyte hyperproliferation. Mechanistically, we show that the inhibition of NF-κB and STAT3 by TGN is mediated through activation of the cytoprotective transcription factor NRF2. Evaluation of in vivo antipsoriatic effects of topical TGN in the imiquimod-induced psoriasis-like dermatitis mouse model demonstrated amelioration of imiquimod-induced phenotypical changes, lesion severity score, epidermal thickening, and reduction in dermal cellularity. The spleen index also diminished in TGN-treated mice, suggesting anti-inflammatory properties of TGN. Moreover, TGN significantly attenuated the imiquimod-induced mRNA levels of psoriasis-associated inflammatory cytokines and antimicrobial peptides and reduced epidermal hyperproliferation. Taken together, TGN, as a potent NRF2 activator, is a promising therapeutic candidate for the development of antipsoriatic agents derived from medicinal plants.
Collapse
|
16
|
Liang M, Hu K. Involvement of lncRNA-HOTTIP in the Repair of Ultraviolet Light-Induced DNA Damage in Spermatogenic Cells. Mol Cells 2019; 42:794-803. [PMID: 31697875 PMCID: PMC6883981 DOI: 10.14348/molcells.2019.0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet light (UV)-induced cellular response has been studied by numerous investigators for many years. Long noncoding RNAs (lncRNAs) are emerging as new regulators of diverse cellular process; however, little is known about the role of lncRNAs in the cellular response to UV treatment. Here, we demonstrate that levels of lncRNA-HOTTIP significantly increases after UV stimulation and regulates the UV-mediated cellular response to UV through the coordinate activation of its neighboring gene Hoxa13 in GC-1 cells (spermatogonia germ cell line). UV-induced, G2/M-phase arrest and early apoptosis can be regulated by lncRNA-HOTTIP and Hoxa13. Furthermore, lncRNA-HOTTIP can up-regulate γ-H2AX and p53 expression via Hoxa13 in UV-irradiated GC-1 cells. In addition, p53 has the ability to regulate the expression of both lncRNA-HOTTIP and Hoxa13 in vitro and in vivo. Our results provide new data regarding the role lncRNAs play in the UV response in spermatogenic cells.
Collapse
Affiliation(s)
- Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| | - Ke Hu
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| |
Collapse
|
17
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Kodukula K, Zamboni RJ. Epigenetic treatment of dermatologic disorders. Drug Dev Res 2019. [DOI: 10.1002/ddr.21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San Francisco San Francisco California
- ShangPharma Innovation Inc. South San Francisco California
| | - Douglas V. Faller
- Department of MedicineBoston University School of Medicine Boston Massachusetts
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
| | - Ioannis P. Glavas
- Department of OphthalmologyNew York University School of Medicine New York City New York
| | - David N. Harpp
- Department of ChemistryMcGill University Montreal Quebec Canada
| | | | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary MedicineAuburn University Auburn Alabama
| | - Whitney R. Powers
- Department of Health SciencesBoston University Boston Massachusetts
- Department of AnatomyBoston University School of Medicine Boston Massachusetts
| | - Konstantina Sampani
- Beetham Eye InstituteJoslin Diabetes Center Boston Massachusetts
- Department of MedicineHarvard Medical School Boston Massachusetts
| | - Kosta Steliou
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
- PhenoMatriX, Inc. Natick Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis LaboratoryMassachusetts Eye and Ear Infirmary Boston Massachusetts
- Department of OphthalmologyHarvard Medical School Boston Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation Inc. South San Francisco California
- PhenoMatriX, Inc. Natick Massachusetts
| | | |
Collapse
|
18
|
Hiebert P, Werner S. Regulation of Wound Healing by the NRF2 Transcription Factor-More Than Cytoprotection. Int J Mol Sci 2019; 20:ijms20163856. [PMID: 31398789 PMCID: PMC6720615 DOI: 10.3390/ijms20163856] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (NRF2) transcription factor plays a central role in mediating the cellular stress response. Due to their antioxidant properties, compounds activating NRF2 have received much attention as potential medications for disease prevention, or even for therapy. Accumulating evidence suggests that activation of the NRF2 pathway also has a major impact on wound healing and may be beneficial in the treatment of chronic wounds, which remain a considerable health and economic burden. While NRF2 activation indeed shows promise, important considerations need to be made in light of corresponding evidence that also points towards pro-tumorigenic effects of NRF2. In this review, we discuss the evidence to date, highlighting recent advances using gain- and loss-of-function animal models and how these data fit with observations in humans.
Collapse
Affiliation(s)
- Paul Hiebert
- Institute for Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zürich, 8093 Zurich, Switzerland.
| | - Sabine Werner
- Institute for Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
19
|
Yu MM, Feng YH, Zheng L, Zhang J, Luo GH. Short hairpin RNA-mediated knockdown of nuclear factor erythroid 2-like 3 exhibits tumor-suppressing effects in hepatocellular carcinoma cells. World J Gastroenterol 2019; 25:1210-1223. [PMID: 30886504 PMCID: PMC6421239 DOI: 10.3748/wjg.v25.i10.1210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3 (NFE2L3), also known as NRF3, is a member of the cap 'n' collar basic-region leucine zipper family of transcription factors. NFE2L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated. AIM To explore the expression and biological function of NFE2L3 in HCC. METHODS We analyzed the expression of NFE2L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas (TCGA) data portal. Short hairpin RNA (shRNA) interference technology was utilized to knock down NFE2L3 in vitro. Cell apoptosis, clone formation, proliferation, migration, and invasion assays were used to identify the biological effects of NFE2L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition (EMT) markers was examined by Western blot analysis. RESULTS TCGA analysis showed that NFE2L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines. CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2L3 exhibited tumor-suppressing effects in HCC cells.
Collapse
Affiliation(s)
- Miao-Mei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Yue-Hua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
20
|
Zhou D, Sun Y, Bao Z, Liu W, Xian M, Nian R, Xu F. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation. Macromol Biosci 2019; 19:e1800395. [DOI: 10.1002/mabi.201800395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Dongyan Zhou
- College of Life SciencesJilin University No. 2699 Qianjin Street 130012 Changchun China
| | - Yue Sun
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Zixian Bao
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Mo Xian
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Rui Nian
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road 266101 Qingdao China
| | - Fei Xu
- College of Life SciencesJilin University No. 2699 Qianjin Street 130012 Changchun China
| |
Collapse
|