1
|
Pimenta EM, Goyal A, Farber ON, Lilley E, Shyn PB, Wang J, Wagner MJ. Epithelioid Hemangioendothelioma: Treatment Landscape and Innovations for an Ultra-Rare Sarcoma. Curr Treat Options Oncol 2025; 26:516-523. [PMID: 40366525 DOI: 10.1007/s11864-025-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
OPINION STATEMENT Epithelioid hemangioendothelioma (EHE) is an ultra-rare sarcoma with a paucity of data on best practices for management. Pathogenic translocations involving the YAP or TAZ genes lead to constitutive activation of TEAD and TEAD-associated pathways. As our understanding of the molecular drivers of EHE has advanced, investigational treatment strategies have shifted away from cytotoxic chemotherapy toward more targeted approaches. This review focuses on the historical context and evolving landscape of systemic therapies for patients with EHE. For newly diagnosed patients, we recommend consultation at a high-volume sarcoma center whenever possible. If the disease is localized and resectable, surgical excision by a sarcoma-focused surgical oncologist is preferred. When the disease is unresectable, we first assess for disease progression to determine whether active surveillance is appropriate. Some patients may experience indolent, asymptomatic disease for years-or even decades-without requiring intervention. In patients with progressive or symptomatic unresectable disease, systemic therapy is warranted. Setting realistic expectations about the goals of treatment is essential, as no current systemic therapies reliably reduce tumor burden. However, molecular profiling and ongoing correlative studies from clinical trials may soon identify more effective therapeutic targets. For this reason, we encourage referral to centers that routinely perform molecular profiling and offer clinical trials with eligibility criteria for EHE, even to be considered as a first-line approach. Outside of a clinical trial, cytotoxic chemotherapy remains the frontline standard of care for patients who require systemic treatment. Importantly, treatment decisions must incorporate patient preferences and recognition that symptomatic improvement alone can be a meaningful outcome for preserving quality of life.
Collapse
Affiliation(s)
- Erica M Pimenta
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anirudh Goyal
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Orly N Farber
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Lilley
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Shyn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiping Wang
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Wagner
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Pakkianathan J, Yamauchi CR, Barseghyan L, Cruz J, Simental AA, Khan S. Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy. J Clin Med 2025; 14:2898. [PMID: 40363930 PMCID: PMC12073012 DOI: 10.3390/jcm14092898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the rarest and most aggressive form of thyroid cancer, marked by a poor prognosis and resistance to conventional treatments. Like many malignancies, ATC has a complex genetic landscape, with numerous mutations driving tumor initiation, progression, and therapeutic resistance. However, recent advances in molecular research have expanded our understanding of these genetic alterations, paving the way for new targeted treatment strategies. Currently, therapies targeting specific genetic mutations, such as BRAF and MEK, show promise, but their effectiveness is limited to patients harboring these mutations. To explore broader therapeutic possibilities, we conducted a comprehensive literature review using the PubMed database and Google to identify studies on key genetic mutations in ATC. By leveraging these molecular insights, we aim to highlight potential therapeutic avenues that could enhance treatment options and improve patient outcomes.
Collapse
Affiliation(s)
- Janice Pakkianathan
- Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (J.P.); (C.R.Y.); (L.B.); (J.C.)
- Center for Health Disparities & Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Celina R. Yamauchi
- Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (J.P.); (C.R.Y.); (L.B.); (J.C.)
- Center for Health Disparities & Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Luiza Barseghyan
- Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (J.P.); (C.R.Y.); (L.B.); (J.C.)
- Center for Health Disparities & Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joseph Cruz
- Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (J.P.); (C.R.Y.); (L.B.); (J.C.)
- Center for Health Disparities & Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alfred A. Simental
- Department of Otolaryngology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Salma Khan
- Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (J.P.); (C.R.Y.); (L.B.); (J.C.)
- Center for Health Disparities & Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Otolaryngology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|
3
|
Khaliq SA, Park SY, Maham S, Cho Y, Lee M, Nam S, Seong JK, Chen J, Choi CS, Yoon MS. ARHGEF3 coordinates adipocyte hypertrophy and differentiation through dual YAP-RhoA and PPARγ activation. J Adv Res 2025:S2090-1232(25)00229-2. [PMID: 40216078 DOI: 10.1016/j.jare.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Obesity presents a significant global health burden, necessitating insights into the molecular drivers of adipogenesis and adipose tissue regulation. OBJECTIVES This study investigates the role of Rho guanine nucleotide exchange factor 3 (ARHGEF3) in adipocyte differentiation and hypertrophy, focusing on its influence on adipogenesis and body weight regulation under high-fat diet conditions. METHODS ARHGEF3-/- mice and littermate controls were subjected to a high-fat diet (HFD) and underwent comprehensive metabolic phenotyping. In vitro studies in C3H10T1/2 cells were conducted to assess ARHGEF3's role in adipogenesis, utilizing quantitative PCR, western blotting, chromatin immunoprecipitation (ChIP), immunoprecipitation (IP), immunostaining, and luciferase reporter assays. RESULTS ARHGEF3 expression increased in white adipose tissue (WAT) of HFD-fed mice and during adipogenic differentiation in C3H10T1/2 cells. ARHGEF3-deficient mice exhibited reduced weight gain and adipocyte size, correlating with decreased RhoA expression and altered cytoskeletal dynamics. Additionally, ARHGEF3 facilitated yes-associated protein (YAP) nuclear translocation and its direct binding to the RhoA promoter, an effect reliant on ARHGEF3. ARHGEF3 also enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ), establishing a reciprocal activation loop to drive adipocyte differentiation and hypertrophy. CONCLUSION ARHGEF3 emerges as a pivotal regulator of adipocyte dynamics by coordinating YAP-RhoA signaling and enhancing PPARγ activity. These findings offer novel therapeutic insights for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Miseon Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheol Soo Choi
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
4
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Wang Y, Zhang Y, Luo H, Wei W, Liu W, Wang W, Wu Y, Peng C, Ji Y, Zhang J, Zhu C, Bai W, Xia L, Lei H, Xu H, Yin L, Weng W, Yang L, Liu L, Zhou A, Wei Y, Zhu Q, Zhu W, Yang Y, Xu Z, Wu Y. Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells. Acta Pharm Sin B 2024; 14:5235-5248. [PMID: 39807309 PMCID: PMC11725127 DOI: 10.1016/j.apsb.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 01/16/2025] Open
Abstract
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity. Inactivation or knockdown of USP2 leads to the degradation of KRAS, resulting in the suppression of MM cell proliferation in vitro and in vivo. Conversely, overexpressing USP2 stabilizes KRAS and partially abrogates GA-induced apoptosis in MM cells. Furthermore, elevated USP2 levels may be associated with poorer prognoses in MM patients. These findings highlight the potential of the USP2/KRAS axis as a therapeutic target in MM, suggesting that strategically inducing KRAS degradation via USP2 inhibition could be a promising approach for treating cancers with KRAS mutations.
Collapse
Affiliation(s)
- Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Luo
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wei Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanting Liu
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Cheng Peng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chujiao Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Bai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leimiao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueyue Wei
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongqing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Xi YY, Chen C, Zheng JJ, Jiang B, Dong XY, Lou SY, Luo JG, Zhang XH, Zhou ZY, Luo QJ, Wang W, Zhou XD. Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation. NPJ Sci Food 2024; 8:93. [PMID: 39537664 PMCID: PMC11561287 DOI: 10.1038/s41538-024-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Liver fibrosis (LF) is a common sequela to diverse chronic liver injuries, leading to rising rates of cirrhosis and hepatocellular carcinoma (HCC). As the medicinal and edible homologous material, traditional teas have exhibited promising applications in the clinical management of liver fibrosis. Here, we generated a liver fibrosis mouse model to explore the potent therapeutic ability of Ampelopsis grossedentata (AG) tea on this condition by multi-omics analysis. The biochemistry results pointed towards mitigated increases of ALT, AST, TBIL, and ALP triggered by BDL in the AG-treated group. Examination using H&E and Sirius Red staining revealed severe liver injuries, inflammation infiltration, amplified fibrosed regions, and the creation of bile ducts, all of which were fallout from BDL. Immunohistochemistry findings also implicated a noteworthy upregulation of the HSC activation marker α-smooth muscle actin (α-SMA) and the fibrosis marker collagen I in the BDL group. However, these symptoms demonstrated a significant improvement in the group treated with 100 mg/kg AG. Findings from the Western Blot test corroborated the prominent elevation of TNF-α, col1a1, α-SMA, and TGF-β, instigated by BDL, while AG treatment meaningfully modulated these proteins. Furthermore, our study underscored the potential involvement of several microbiota, such as Ruminococcaceae UCG-014, Eubacterium Ruminantium, Ruminococcus 1, Christensenellaceae R-7, Acetatifactor, Dubosiella, Parasutterella, Faecalibaculum, and Defluviitaleaceae UCG-011, in the progression of liver fibrosis and the therapeutic efficacy of AG. This investigation shows that during the process of AG ameliorating BDL-induced liver fibrosis, bile acid derivatives such as CDCA, TCDCA, 3-DHC, UCA, DCA, among others, play significant roles. In this study, we identified that several non-bile acid metabolites, such as Deltarasin, Thr-Ile-Arg, etc., are entailed in the process of AG improving liver fibrosis.
Collapse
Affiliation(s)
- Yi-Yuan Xi
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Chen
- School of Electronic and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Ju-Jia Zheng
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Jiang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin-Ya Dong
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shu-Ying Lou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Guo Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiu-Hua Zhang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zi-Ye Zhou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qu-Jing Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Mukherjee A, Huang Y, Elgeti J, Oh S, Abreu J, Neliat AR, Schuttler J, Su D, Dupre C, Benites NC, Liu X, Peshkin L, Barboiu M, Stocker H, Kirschner MW, Basan M. Membrane potential mediates the cellular response to mechanical pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565386. [PMID: 37961564 PMCID: PMC10635089 DOI: 10.1101/2023.11.02.565386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure. We show that mechanical forces acting on the cell change cellular biomass density, which in turn alters membrane potential. Membrane potential then regulates cell number density in epithelia by controlling cell growth, proliferation, and cell elimination. Mechanistically, we show that changes in membrane potential control signaling through the Hippo and MAPK pathways, and potentially other signaling pathways that originate at the cell membrane. While many molecular interactions are known to affect Hippo signaling, the upstream signal that activates the canonical Hippo pathway at the membrane has previously been elusive. Our results establish membrane potential as a central regulator of growth and tissue homeostasis.
Collapse
|
8
|
Zeng Y, Zeng Q, Yang B, Hu Y. Therapeutic strategies to overcome ALK-fusion and BRAF-mutation as acquired resistance mechanism in EGFR-mutated non-small cell lung cancer: two case reports. Front Oncol 2024; 14:1390523. [PMID: 39555453 PMCID: PMC11563980 DOI: 10.3389/fonc.2024.1390523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. EGFR tyrosine inhibitors are the preferred first-line treatment for patients with epidermal growth factor-cell receptor mutant (EGFR mutant) advanced NSCLC. Unfortunately, drug resistance inevitably occurs leading to disease progression. Activation of the ALK and BRAF bypass signaling pathways is a rare cause of acquired drug resistance for EGFR-TKIs.We report two NSCLC-patients with EGFR- mutations, in exon 19, and exon 18, correspondingly, who were treated with EGFR-TKIs. The first case shows acquired BRAF-mutation, and the second case demonstrates acquired ALK-fusion. The overall survival of patients was significantly prolonged by drug-match therapies. As it is well-known that ALK-fusion and BRAF-mutations are described forms of acquired resistance. These two case reports contribute to the previous reports that ALK-fusion and BRAF-mutation are potential underlying mechanisms of EGFR-TKI resistance.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Intensive Care Unit, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Bin Yang
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Hu
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
10
|
Park S, Ryu WJ, Kim TY, Hwang Y, Han HJ, Lee JD, Kim GM, Sohn J, Kim SK, Kim MH, Kim J. Overcoming BRAF and CDK4/6 inhibitor resistance by inhibiting MAP3K3-dependent protection against YAP lysosomal degradation. Exp Mol Med 2024; 56:987-1000. [PMID: 38622197 PMCID: PMC11059244 DOI: 10.1038/s12276-024-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcriptional programs governed by YAP play key roles in conferring resistance to various molecular-targeted anticancer agents. Strategies aimed at inhibiting YAP activity have garnered substantial interest as a means to overcome drug resistance. However, despite extensive research into the canonical Hippo-YAP pathway, few clinical agents are currently available to counteract YAP-associated drug resistance. Here, we present a novel mechanism of YAP stability regulation by MAP3K3 that is independent of Hippo kinases. Furthermore, we identified MAP3K3 as a target for overcoming anticancer drug resistance. Depletion of MAP3K3 led to a substantial reduction in the YAP protein level in melanoma and breast cancer cells. Mass spectrometry analysis revealed that MAP3K3 phosphorylates YAP at serine 405. This MAP3K3-mediated phosphorylation event hindered the binding of the E3 ubiquitin ligase FBXW7 to YAP, thereby preventing its p62-mediated lysosomal degradation. Robust YAP activation was observed in CDK4/6 inhibitor-resistant luminal breast cancer cells. Knockdown or pharmacological inhibition of MAP3K3 effectively suppressed YAP activity and restored CDK4/6 inhibitor sensitivity. Similarly, elevated MAP3K3 expression supported the prosurvival activity of YAP in BRAF inhibitor-resistant melanoma cells. Inhibition of MAP3K3 decreased YAP-dependent cell proliferation and successfully restored BRAF inhibitor sensitivity. In conclusion, our study reveals a previously unrecognized mechanism for the regulation of YAP stability, suggesting MAP3K3 inhibition as a promising strategy for overcoming resistance to CDK4/6 and BRAF inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Sanghyun Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Yeong Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yumi Hwang
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Gun Min Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
11
|
Yang H, Li N, Chen L, Zhou L, Zhou Y, Liu J, Jia W, Chen R, Su J, Yang L, Gong X, Zhan X. Ubiquitinomics revealed disease- and stage-specific patterns relevant for the 3PM approach in human sigmoid colon cancers. EPMA J 2023; 14:503-525. [PMID: 37605648 PMCID: PMC10439878 DOI: 10.1007/s13167-023-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 08/23/2023]
Abstract
Objective The patients with sigmoid colorectal cancer commonly show high mortality and poor prognosis. Increasing evidence has demonstrated that the ubiquitinated proteins and ubiquitination-mediated molecular pathways influence the growth and aggressiveness of colorectal cancer. It emphasizes the scientific merits of quantitative ubiquitinomics in human sigmoid colon cancer. We hypothesize that the ubiquitinome and ubiquitination-mediated pathway networks significantly differ in sigmoid colon cancers compared to controls, which offers the promise for in-depth insight into molecular mechanisms, discovery of effective therapeutic targets, and construction of reliable biomarkers in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods The first ubiquitinome analysis was performed with anti-K-ε-GG antibody beads (PTMScan ubiquitin remnant motif [K-ε-GG])-based label-free quantitative proteomics and bioinformatics to identify and quantify ubiquitination profiling between sigmoid colon cancer tissues and para-carcinoma tissues. A total of 100 human sigmoid colon cancer samples that included complete clinical information and the corresponding gene expression data were obtained from The Cancer Genome Atlas (TCGA). Ubiquitination was the main way of protein degradation; the relationships between differentially ubiquitinated proteins (DUPs) and their differently expressed genes (DEGs) and between DUPs and their differentially expressed proteins (DEPs) were analyzed between cancer tissues and control tissues. The overall survival of those DUPs was obtained with Kaplan-Meier method. Results A total of 1249 ubiquitinated sites within 608 DUPs were identified in human sigmoid colon cancer tissues. KEGG pathway network analysis of these DUPs revealed 35 statistically significant signaling pathways, such as salmonella infection, glycolysis/gluconeogenesis, and ferroptosis. Gene Ontology (GO) analysis of 608 DUPs revealed that protein ubiquitination was involved in 98 biological processes, 64 cellular components, 51 molecule functions, and 26 immune system processes. Protein-protein interaction (PPI) network of 608 DUPs revealed multiple high-combined scores and co-expressed DUPs. The relationship analysis between DUPs and their DEGs found 4 types of relationship models, including DUP-up (increased ubiquitination level) and DEG-up (increased gene expression), DUP-up and DEG-down (decreased gene expression), DUP-down (decreased ubiquitination level) and DEG-up, and DUP-down and DEG-down. The relationship analysis between DUPs and their DEPs found 4 types of relationship models, including DUP-up and DEP-up (increased protein expression), DUP-up and DEP-down (decreased protein expression), DUP-down and DEP-up, and DUP-down and DEP-down. Survival analysis found 46 overall survival-related DUPs in sigmoid colon cancer, and the drug sensitivity of overall survival-related DUPs were identified. Conclusion The study provided the first differentially ubiquitinated proteomic profiling, ubiquitination-involved signaling pathway network changes, and the relationship models between protein ubiquitination and its gene expression and between protein ubiquitination and its protein expression, in human sigmoid colon cancer. It offers the promise for deep insights into molecular mechanisms of sigmoid colon cancer, and discovery of effective therapeutic targets and biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment in the context of 3P medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00328-2.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Lei Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Yuanchen Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Jixiang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Ruofei Chen
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Junwen Su
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
12
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
13
|
Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer 2021; 20:143. [PMID: 34742312 PMCID: PMC8571891 DOI: 10.1186/s12943-021-01441-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease at the cellular and molecular levels. Kirsten rat sarcoma (KRAS) is a commonly mutated oncogene in CRC, with mutations in approximately 40% of all CRC cases; its mutations result in constitutive activation of the KRAS protein, which acts as a molecular switch to persistently stimulate downstream signaling pathways, including cell proliferation and survival, thereby leading to tumorigenesis. Patients whose CRC harbors KRAS mutations have a dismal prognosis. Currently, KRAS mutation testing is a routine clinical practice before treating metastatic cases, and the approaches developed to detect KRAS mutations have exhibited favorable sensitivity and accuracy. Due to the presence of KRAS mutations, this group of CRC patients requires more precise therapies. However, KRAS was historically thought to be an undruggable target until the development of KRASG12C allele-specific inhibitors. These promising inhibitors may provide novel strategies to treat KRAS-mutant CRC. Here, we provide an overview of the role of KRAS in the prognosis, diagnosis and treatment of CRC.
Collapse
|
14
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
15
|
Zhang H, Xu H, Zhang C, Tang Q, Bi F. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov 2021; 7:207. [PMID: 34365464 PMCID: PMC8349355 DOI: 10.1038/s41420-021-00589-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Hippo/YAP pathway plays an important role in the development of cancers. Previous studies have reported that bile acids can activate YAP (Yes Associated Protein) to promote tumorigenesis and tumor progression. Ursodeoxycholic acid (UDCA) is a long-established old drug used for cholestasis treatment. So far, the effect of UDCA on YAP signaling in colorectal cancer (CRC) is not well defined. This study means to explore relationship of UDCA and YAP in CRC. UDCA suppressed YAP signaling by activating the membrane G-protein-coupled bile acid receptor (TGR5). TGR5 mainly regulated cAMP/PKA signaling pathway to inhibit RhoA activity, thereby suppressing YAP signaling. Moreover, the restoration of YAP expression alleviated the inhibitory effect of UDCA on CRC cell proliferation. In AOM/DSS-induced CRC model, UDCA inhibited tumor growth in a concentration-dependent manner and decreased expression of YAP and Ki67. UDCA plays a distinguished role in regulating YAP signaling and CRC growth from the primary bile acids and partial secondary bile acids, demonstrating the importance of maintaining normal intestinal bile acid metabolism in cancer patients. It also presents a potential therapeutic intervention for CRC.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
16
|
Luo Y, Zhou J, Tang J, Zhou F, He Z, Liu T, Liu T. MINDY1 promotes bladder cancer progression by stabilizing YAP. Cancer Cell Int 2021; 21:395. [PMID: 34315490 PMCID: PMC8314533 DOI: 10.1186/s12935-021-02095-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Bladder cancer is one of the most commonly diagnosed urological malignant tumor. The Hippo tumor suppressor pathway is highly conserved in mammals and plays an important role in carcinogenesis. YAP is one of major key effectors of the Hippo pathway. However, the mechanism supporting abnormal YAP expression in bladder cancer remains to be characterized. Methods Western blot was used to measure the expression of MINDY1 and YAP, while the YAP target genes were measured by real-time PCR. CCK8 assay was used to detect the cell viability. The xeno-graft tumor model was used for in vivo study. Protein stability assay was used to detect YAP protein degradation. Immuno-precipitation assay was used to detect the interaction domain between MINDY1 and YAP. The ubiquitin-based Immuno-precipitation assays were used to detect the specific ubiquitination manner happened on YAP. Results In the present study, we identified MINDY1, a DUB enzyme in the motif interacting with ubiquitin-containing novel DUB family, as a bona fide deubiquitylase of YAP in bladder cancer. MINDY1 was shown to interact with, deubiquitylate, and stabilize YAP in a deubiquitylation activity-dependent manner. MINDY1 depletion significantly decreased bladder cancer cell proliferation. The effects induced by MINDY1 depletion could be rescued by further YAP overexpression. Depletion of MINDY1 decreased the YAP protein level and the expression of YAP/TEAD target genes in bladder cancer, including CTGF, ANKRD1 and CYR61. Conclusion In general, our findings establish a previously undocumented catalytic role for MINDY1 as a deubiquitinating enzyme of YAP and provides a possible target for the therapy of bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02095-4.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zhou
- The Interventional Diagnosis and Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianing Tang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fengfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Jia Y, Li HY, Wang Y, Wang J, Zhu JW, Wei YY, Lou L, Chen X, Mo SJ. Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. Int J Biol Sci 2021; 17:2772-2794. [PMID: 34345207 PMCID: PMC8326115 DOI: 10.7150/ijbs.60018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Autophagy and glycolysis are two catabolic processes that manipulate pancreatic ductal adenocarcinoma (PDAC) development in response to hypoxia sensing, yet the underlying mechanism of how they are interlinked remain elusive. Methods: The functional roles of Unc-51 like kinase 1 and 2 (ULK1/2) in pyruvate kinase M2 (PKM2) transcription and glycolysis under hypoxia were assessed by chromatin immunoprecipitation, luciferase reporter, glucose consumption and lactate production assay. Co-immunoprecipitation, cellular ubiquitination, His-pulldown, in vitro protein kinase assay, immunofluorescence, immunohistochemistry, CRISPR technology, in silico studies were adopted to determine the molecular mechanism. Correlation analyses were performed in KPC (Pdx1-Cre; LSL-KrasG12D/+; Trp53fl/+) mice and clinical samples from PDAC patients. Therapeutic potential of ULK1/2 inhibitor and 2-deoxyglucose (2-DG) or 3-bromopyruvate (3-BP) was evaluated in cell-derived xenograft (CDX) and the patient-derived xenograft (PDX) models of nude mice. Results: ULK1/2, but not ULK3, augments hypoxic glycolysis in PDAC cells mediated by PKM2 independent of BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3). Mechanistically, hypoxia stimulates ULK1 to translocate into nucleus, where it interacts with and phosphorylates yes-associated protein (YAP) at Ser227, resulting in YAP stabilization through blockade of ubiquitin-proteasome system (UPS), which in turn facilitates PKM2 transcription, glycolysis, cell proliferation in vitro as well as PDAC growth in mice. ULK1/2 is positively correlated with YAP and PKM2 in tumor tissues from KPC mice and clinical samples from PDAC patients. Pharmacological deactivation of ULK1/2 potentiates the antineoplastic efficacy of 2-DG and 3-BP in CDX and PDX models. Conclusion: Our findings underscore the Ser227 autophosphorylation-dependent nuclear YAP stabilization as a central node that couples ULK1/2-initiated autophagy to hypoxic glycolysis during PDAC development and propose that targeting ULK1/2 combined with 2-DG or 3-BP might be a feasible therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Yu Jia
- Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R.China
| | - Hui-Yan Li
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Ying Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R.China
| | - Jue Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yet-Sen University, Guangzhou 510080, Guangdong, P.R.China
| | - Jing-Wen Zhu
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Yan-Yan Wei
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Lu Lou
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Xing Chen
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Shi-Jing Mo
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| |
Collapse
|
18
|
Ye D, Xu H, Xia H, Zhang C, Tang Q, Bi F. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. J Exp Clin Cancer Res 2021; 40:173. [PMID: 34006301 PMCID: PMC8132442 DOI: 10.1186/s13046-021-01971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Serotonin signaling has been associated with tumorigenesis and tumor progression. Targeting the serotonin transporter to block serotonin cellular uptake confers antineoplastic effects in various tumors, including colon cancer. However, the antineoplastic mechanism of serotonin transporter inhibition and serotonin metabolism alterations in the absence of serotonin transporter have not been elucidated, especially in colon cancer, which might limit anti-tumor effects associating with targeting serotonin transporter. Methods The promotion in the uptake and catabolism of extracellular tryptophan and targeting serotonin transporter was detected by using quantitative reverse-transcription polymerase chain reaction, western blotting and liquid chromatography tandem mass spectrometry. Western blotting Immunoprecipitation and immunofluorescence was utilized to research the serotonylation of mTOR by serotonin and serotonin transporter inhibition. The primary mouse model, homograft model and tissue microarry was used to explore the tryptophan pathway in colon cancer. The cell viability assay, western blotting, xenograft and primary colon cancer mouse model were used to identify whether the combination of sertraline and tryptophan restriction had a synergistic effect. Results Targeting serotonin transporter through genetic ablation or pharmacological inhibition in vitro and in vivo induced a compensatory effect by promoting the uptake and catabolism of extracellular tryptophan in colon cancer. Mechanistically, targeting serotonin transporter suppressed mTOR serotonylation, leading to mTOR inactivation and increased tryptophan uptake. In turn, this process promoted serotonin biosynthesis and oncogenic metabolite kynurenine production through enhanced tryptophan catabolism. Tryptophan deprivation, or blocking its uptake by using trametinib, a MEK inhibitor, can sensitize colon cancer to selective serotonin reuptake inhibitors. Conclusions The present study elucidated a novel feedback mechanism involved in the regulation of serotonin homeostasis and suggested innovative strategies for selective serotonin reuptake inhibitors-based treatment of colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01971-1.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
19
|
Wu N, Xu J, Du WW, Li X, Awan FM, Li F, Misir S, Eshaghi E, Lyu J, Zhou L, Zeng K, Adil A, Wang S, Yang BB. YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization. Mol Ther 2021; 29:1138-1150. [PMID: 33279723 PMCID: PMC7934790 DOI: 10.1016/j.ymthe.2020.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/19/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibrosis is a common pathological feature of cardiac hypertrophy. This study was designed to investigate a novel function of Yes-associated protein (YAP) circular RNA, circYap, in modulating cardiac fibrosis and the underlying mechanisms. By circular RNA sequencing, we found that three out of fifteen reported circYap isoforms were expressed in nine human heart tissues, with the isoform hsa_circ_0002320 being the highest. The levels of this isoform in the hearts of patients with cardiac hypertrophy were found to be significantly decreased. In the pressure overload mouse model, the levels of circYap were reduced in mouse hearts with transverse aortic constriction (TAC). Upon circYap plasmid injection, the cardiac fibrosis was attenuated, and the heart function was improved along with the elevation of cardiac circYap levels in TAC mice. Tropomyosin-4 (TMP4) and gamma-actin (ACTG) were identified to bind with circYap in cardiac cells and mouse heart tissues. Such bindings led to an increased TPM4 interaction with ACTG, resulting in the inhibition of actin polymerization and the following fibrosis. Collectively, our study uncovered a novel molecule that could regulate cardiac remodeling during cardiac fibrosis and implicated a new function of circular RNA. This process may be targeted for future cardio-therapy.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jindong Xu
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, Guangdong Province, China
| | - William W Du
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Feiya Li
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sema Misir
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Esra Eshaghi
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juanjuan Lyu
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Le Zhou
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kaixuan Zeng
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aisha Adil
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, Guangdong Province, China.
| | - Burton B Yang
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
20
|
Chen Z, Huang Y, Hu Z, Zhao M, Li M, Bi G, Zheng Y, Liang J, Lu T, Jiang W, Xu S, Zhan C, Xi J, Wang Q, Tan L. Landscape and dynamics of single tumor and immune cells in early and advanced-stage lung adenocarcinoma. Clin Transl Med 2021; 11:e350. [PMID: 33783985 PMCID: PMC7943914 DOI: 10.1002/ctm2.350] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients with different American Joint Committee on Cancer stages have different overall 5-year survival rates. The tumor microenvironment (TME) and intra-tumor heterogeneity (ITH) have been shown to play a crucial role in the occurrence and development of tumors. However, the TME and ITH in different lesions of LUAD have not been extensively explored. METHODS We present a 204,157-cell catalog of the TME transcriptome in 29 lung samples to systematically explore the TME and ITH in the different stages of LUAD. Traditional RNA sequencing data and complete clinical information were downloaded from publicly available databases. RESULTS Based on these high-quality cells, we constructed a single-cell network underlying cellular and molecular features of normal lung, early LUAD, and advanced LUAD cells. In contrast with early malignant cells, we noticed that advanced malignant cells had a remarkably more complex TME and higher ITH level. We also found that compared with other immune cells, more differences in CD8+/CTL T cells, regulatory T cells, and follicular B cells were evident between early and advanced LUAD. Additionally, cell-cell communication analyses, revealed great diversity between different lesions of LUAD at the single-cell level. Flow cytometry and qRT-PCR were used to validate our results. CONCLUSION Our results revealed the cellular diversity and molecular complexity of cell lineages in different stages of LUAD. We believe our research, which serves as a basic framework and valuable resource, can facilitate exploration of the pathogenesis of LUAD and identify novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiwei Huang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Zhengyang Hu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mengnan Zhao
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ming Li
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Guoshu Bi
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yuansheng Zheng
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Jiaqi Liang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Tao Lu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Wei Jiang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Songtao Xu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Cheng Zhan
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Junjie Xi
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qun Wang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lijie Tan
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
21
|
Xu H, Xia H, Zhou S, Tang Q, Bi F. Cholesterol activates the Wnt/PCP-YAP signaling in SOAT1-targeted treatment of colon cancer. Cell Death Discov 2021; 7:38. [PMID: 33637695 PMCID: PMC7910478 DOI: 10.1038/s41420-021-00421-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Intracellular free cholesterol can be converted to cholesteryl ester and stored as lipid droplets through SOAT1-mediated esterification. Compelling evidence implicate targeting SOAT1 as a promising therapeutic strategy for cancer management. Herein, we demonstrate how targeting SOAT1 promotes YAP expression by elevating cellular cholesterol content in colon cancer cells. Results revealed that cholesterol alleviates the inhibitory effect of LRP6 on the Wnt/PCP pathway by impeding the interaction of LRP6 with FZD7. Subsequently, FZD7-mediated PCP signaling directly elevated YAP expression by activating RhoA. Nystatin-mediated cholesterol sequestration significantly inhibited YAP expression under SOAT1 inhibition. Moreover, nystatin synergized with the SOAT1 inhibitor avasimibe in suppressing the viability of colon cancer cells in vitro and in vivo. The present study provides new mechanistic insights into the functions of cholesterol metabolism on growth signaling pathways and implicates a novel strategy for cholesterol metabolic-targeted treatment of colon cancers.
Collapse
Affiliation(s)
- Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Sheng Zhou
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.
| |
Collapse
|
22
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
23
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
24
|
Ma J, Fan Z, Tang Q, Xia H, Zhang T, Bi F. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis 2020; 11:530. [PMID: 32661222 PMCID: PMC7359325 DOI: 10.1038/s41419-020-2719-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023]
Abstract
The use of aspirin has been associated with reduced breast cancer risk, but it is litter known if aspirin overcomes chemoresistance in triple-negative breast cancer (TNBC). Herein, we demonstrated that changes in the expression of Yes-associated protein (YAP) and β-catenin might be a promising predictive biomarker for neoadjuvant chemotherapy sensitivity in TNBC patients. Inhibition of YAP or β-catenin enhanced the cytotoxicity of the anti-microtubule agents docetaxel and vinorelbine against drug-resistant TNBC cells as well as the sensitivity of these cells to the agents in vitro and in vivo. Interestingly, aspirin not only significantly inhibited the growth of TNBC cells, but also attenuated YAP and β-catenin expression by upregulating the E3 ubiquitin ligase β-TrCP to abolished docetaxel and vinorelbine resistance. The combination of aspirin and docetaxel or vinorelbine remarkably inhibited the growth of drug-resistant TNBC cells in vitro and in vivo. Moreover, TNBC patients with high YAP and/or β-catenin expression had a higher risk of relapse or mortality than patients with low YAP and/or β-catenin expression. Collectively, our study discovered a novel role of aspirin based on its anticancer effect, and put forward some possible mechanisms of chemoresistance in TNBC. The combined use of aspirin and anti-microtubule drugs presented several promising therapeutic approaches for TNBC treatment.
Collapse
Affiliation(s)
- Ji Ma
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou, The Affiliated Hospital of Zunyi Medical College, No. 149, Dalian Road, 573003, Zunyi, Guizhou, China
| | - Qiulin Tang
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Hongwei Xia
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China.
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command, No. 270, Tianhui Road, 610041, Chengdu, Sichuan Province, PR China.
| | - Feng Bi
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, Zhang T, Meng M, Wang X, Zhou Q. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis 2020; 11:387. [PMID: 32439835 PMCID: PMC7242319 DOI: 10.1038/s41419-020-2591-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and the Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
26
|
Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, Du WW, Yang BB. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019; 26:2758-2773. [PMID: 31092884 PMCID: PMC7224378 DOI: 10.1038/s41418-019-0337-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/17/2019] [Accepted: 04/12/2019] [Indexed: 01/04/2023] Open
Abstract
Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5′-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Zhidong Yuan
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kevin Y Du
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ling Fang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,China-Japan Union Hospital of Jilin University, Jilin, China
| | - Juanjuan Lyu
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chao Zhang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Alina He
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Esra Eshaghi
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kaixuan Zeng
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jian Ma
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - William W Du
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|