1
|
Tang X, Tao J, Liu Y, Gong D, Shan X, Wang K, Tang N. SLC27A5 inhibits cancer stem cells by inducing alternative polyadenylation of METTL14 in hepatocellular carcinoma. Genes Dis 2025; 12:101488. [PMID: 40290127 PMCID: PMC12033915 DOI: 10.1016/j.gendis.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 11/16/2024] [Indexed: 04/30/2025] Open
Abstract
Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of METTL14 by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the METTL14-3'UTR and the conversion of METTL14-UL to METTL14-US. In contrast to METTL14-UL, METTL14-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. METTL14-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junji Tao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Deao Gong
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xuefeng Shan
- Department of Pharmacy, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Ma Y, Guo J, Xu S, Hou Y, Pan F, Guo Z. Oxidative Stress Regulates CDH3 Expression in Lung Cancer Cells via OGG1-Mediated SP1 Binding. Antioxidants (Basel) 2025; 14:332. [PMID: 40227353 PMCID: PMC11939367 DOI: 10.3390/antiox14030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in tumor development. Tumor cells often experience elevated oxidative stress due to rapid proliferation and unstable metabolism, leading to DNA damage. The enzyme 8-oxoguanine DNA glycosidase (OGG1) is central to repairing oxidative DNA damage, thereby maintaining genomic stability. In addition to its DNA repair function, OGG1 also plays a role in gene expression under oxidative stress. This study examined the expression pattern of cadherin-3 (CDH3), a cell adhesion protein associated with cancer metastasis and poor prognosis, under oxidative stress. Our findings showed that oxidative stress upregulated CDH3 expression, with OGG1 playing a pivotal role. Analysis of the CDH3 promoter revealed SP1 binding sites, and ChIP-qPCR assays confirmed OGG1's involvement in modulating SP1 binding. These results provided new insights into the regulation of CDH3 under oxidative stress and suggested potential therapeutic strategies targeting CDH3 in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China; (Y.M.); (J.G.); (S.X.); (Y.H.)
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China; (Y.M.); (J.G.); (S.X.); (Y.H.)
| |
Collapse
|
3
|
Tao J, Liu Y, Tang X, Nie D, Wu K, Wang K, Tang N. Hypoxia reduces SLC27A5 to promote hepatocellular carcinoma proliferation by repressing HNF4A. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119916. [PMID: 39938688 DOI: 10.1016/j.bbamcr.2025.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality globally, with hypoxia recognized as a key factor in its progression. Solute carrier family 27 member 5 (SLC27A5/FATP5), a pivotal enzyme in hepatic fatty acid transport and bile acid metabolism, is frequently downregulated in hepatocellular carcinoma, resulting in poor prognosis. However, the link between hypoxia and the suppression of SLC27A5 in HCC remains to be elucidated. Here, we investigated the hypoxia-induced downregulation of SLC27A5 and its impact on HCC proliferation via the repression of hepatocyte nuclear factor 4 alpha (HNF4A). Utilizing in vitro and in vivo hepatocellular carcinoma models, we have demonstrated that hypoxic conditions significantly reduce SLC27A5 transcription, which is mediated by the suppression of HNF4A. This reduction leads to the activation of the AKT pathway and an increase in cyclin-dependent kinase 2 (CDK2) and Cyclin E1 (CCNE1) expression, promoting the transition from the G1 to S phase of the cell cycle and driving HCC proliferation. Furthermore, we show that the pharmacological activation of HNF4A using Benfluorex, in combination with the AKT inhibitor MK2206, significantly inhibits tumor growth in a subcutaneous MHCC-97H xenograft model, suggesting a synergistic therapeutic potential. Together, our study provides novel insights into the hypoxia-mediated regulatory mechanisms in HCC and highlights the HNF4A/SLC27A5/AKT axis as a promising target for combination therapy.
Collapse
Affiliation(s)
- Junji Tao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dan Nie
- Department of Gastroenterology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 400011, China
| | - Kang Wu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Park S, Hall MN. Metabolic reprogramming in hepatocellular carcinoma: mechanisms and therapeutic implications. Exp Mol Med 2025; 57:515-523. [PMID: 40025169 PMCID: PMC11958682 DOI: 10.1038/s12276-025-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatocellular carcinoma features extensive metabolic reprogramming. This includes alterations in major biochemical pathways such as glycolysis, the pentose phosphate pathway, amino acid metabolism and fatty acid metabolism. Moreover, there is a complex interplay among these altered pathways, particularly involving acetyl-CoA (coenzyme-A) metabolism and redox homeostasis, which in turn influences reprogramming of other metabolic pathways. Understanding these metabolic changes and their interactions with cellular signaling pathways offers potential strategies for the targeted treatment of hepatocellular carcinoma and improved patient outcomes. This review explores the specific metabolic alterations observed in hepatocellular carcinoma and highlights their roles in the progression of the disease.
Collapse
Affiliation(s)
- Sujin Park
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
| | | |
Collapse
|
5
|
Ning L, Chen D, Han J, Xie G, Sun J. Global research trends and frontiers in ferroptosis in hepatocellular carcinoma: a bibliometric and visualization study. Front Oncol 2024; 14:1474496. [PMID: 39723378 PMCID: PMC11668663 DOI: 10.3389/fonc.2024.1474496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Since the emergence of the hot topic of "ferroptosis," numerous studies have explored its role in hepatocellular carcinoma (HCC), revealing its significance in the disease's pathogenesis, progression, and treatment. However, there remains a significant gap in the quantitative analysis of ferroptosis in HCC. Therefore, this study aims to comprehensively assess the research progress and evolution in this field through bibliometric and citation analysis. Method On June 27, 2024, the author conducted a literature search, extracting relevant publications from the Web of Science Core Collection (WOSCC) Science Citation Index Expanded (SCIE) spanning from January 2010 to December 2023. Subsequently, the compiled documents were subjected to bibliometric evaluation and analysis using visualization tools such as R package "bibliometrix", CiteSpace and VOSviewer. Result The search yielded 576 papers by 3,925 authors, encompassing contributions from 34 countries and 685 institutions, published across 250 journals, including 25,889 co-cited references from 2,600 journals. Notably, China leads with a significant publication count of 481 articles (accounting for 83.5%) and demonstrates the strongest collaboration with the United States. The multifaceted role of ferroptosis in hepatocellular carcinoma (HCC) has garnered considerable attention. In recent years, research into disease prognosis, the tumor microenvironment, and targeted therapies involving immunology has become key themes and emerging frontiers in this field. Conclusion This study meticulously compiled and analyzed the current discourse and emerging perspectives on ferroptosis in HCC. Identifying research trends and hotspots offers valuable guidance for future investigations and provides a basis for the development of novel therapeutic strategies to improve HCC prognosis and treatment outcomes.
Collapse
Affiliation(s)
- Lin Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jie Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Guanyue Xie
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jianguang Sun
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Liu Z, Yuan J, Zeng Q, Wu Z, Han J. UBAP2 contributes to radioresistance by enhancing homologous recombination through SLC27A5 ubiquitination in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167481. [PMID: 39186963 DOI: 10.1016/j.bbadis.2024.167481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Radiotherapy stands as an effective method in the clinical treatment of hepatocellular carcinoma (HCC) patients. However, both primary and acquired radioresistance limit its clinical application in HCC. Therefore, investigating the mechanism of radioresistance may provide other options for treating HCC. Based on single-cell RNA sequencing (scRNA-seq) and HCC transcriptome datasets, 227 feature genes with prognostic value were selected to establish the tSNE score. The tSNE score emerged as an independent prognostic factor for HCC and correlated with cell proliferation and radioresistance-related biological functions. UBAP2 was identified as the most relevant gene with the tSNE score, consistently elevated in human HCC samples, and positively associated with patient prognosis. Functionally, UBAP2 knockdown impeded HCC development and reduced radiation resistance in vitro and in vivo. The ectopic expression of SLC27A5 reversed the effects of UBAP2. Mechanically, we uncovered that UBAP2, through the ubiquitin-proteasome system, decreased the homologous recombination-related gene RAD51, not the non-homologous end-joining (NHEJ)-related gene CTIP, by degrading the antioncogene SLC27A5, thereby generating radioresistance in HCC. The findings recapitulated that UBAP2 promoted HCC progression and radioresistance via SLC27A5 stability mediated by the ubiquitin-proteasome pathway. It was also suggested that targeting the UBAP2/SLC27A5 axis could be a valuable radiosensitization strategy in HCC.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Gorji AE, Ciecierska A, Leontowicz H, Roudbari Z, Sadkowski T. Impact of Kiwifruit Consumption on Cholesterol Metabolism in Rat Liver: A Gene Expression Analysis in Induced Hypercholesterolemia. Nutrients 2024; 16:3999. [PMID: 39683393 DOI: 10.3390/nu16233999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cholesterol is vital in various bodily functions, such as maintaining cell membranes, producing hormones, etc. However, imbalances, like hypercholesterolemia, can lead to diseases such as cancer, kidney disease, non-alcoholic fatty liver disease, and cardiovascular conditions. This study explores the impact of kiwifruit consumption, specifically Actinidia arguta cultivar Geneva and Actinidia deliciosa cultivar Hayward, on cholesterol and lipid metabolism in rat liver. METHODS Rats were divided into groups: a 1% cholesterol control group (Ch), a 5% Geneva kiwifruit-supplemented group (ChGENE), and a 5% Hayward kiwifruit-supplemented group (ChHAYW). Gene expression was analyzed using Gene Spring v.14. Gene ontology, pathway analysis, miRNA, and transcription factor prediction were performed using DAVID, Reactome, and miRNet. In addition, we used Agilent Literature Search software to gain further insights. RESULTS Statistical analysis identified 72 genes in ChGENE-Ch and 2 genes in ChHAYW-Ch comparison. Key genes involved in cholesterol metabolism pathways, including PCSK9, SCD1, SLC27A5, HMGCR, and DHCR24, showed lower expression in the kiwifruit-supplemented groups. The genes mentioned above showed lower expression in the kiwifruit-supplemented group, probably contributing to the liver lipid level reduction. Further analysis identified miRNA-26a, miRNA-29a/b/c, miRNA-33a/b, and miRNA-155 targeting hub genes. CONCLUSIONS Our findings suggest that dietary supplementation with kiwifruit, particularly the Geneva cultivar, reduces fat accumulation in the liver of rats with hypercholesterolemia, likely through downregulation of critical genes involved in cholesterol metabolism. These studies highlight the potential of kiwifruit as a part of a dietary strategy to manage cholesterol levels.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Anna Ciecierska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Hanna Leontowicz
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft 78671-55311, Iran
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Cui Y, Wen J, Fu J, Leng C. Identification of key genes to predict response to chemoradiotherapy and prognosis in esophageal squamous cell carcinoma. Front Mol Biosci 2024; 11:1512715. [PMID: 39633985 PMCID: PMC11614722 DOI: 10.3389/fmolb.2024.1512715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Chemoradiotherapy is a crucial treatment modality for esophageal squamous cell carcinoma (ESCC). This study aimed to identify chemoradiotherapy sensitivity-related genes and analyze their prognostic value and potential associations with the tumor microenvironment in ESCC. Methods Utilizing the Gene Expression Omnibus database, we identified differentially expressed genes between ESCC patients who achieved complete and incomplete pathological responses following chemoradiotherapy. Prognostic genes were then screened, and key genes associated with chemoradiotherapy sensitivity were determined using random survival forest analysis. We examined the relationships between key genes, infiltrating immune cells, and immunoregulatory genes. Additionally, drug sensitivity and enrichment analyses were conducted to assess the impact of key genes on chemotherapy responses and signaling pathways. A prognostic nomogram for ESCC was developed incorporating key genes, and its effectiveness was evaluated. Genome-wide association study data were employed to investigate chromosomal pathogenic regions associated with key genes. Results Three key genes including ATF2, SLC27A5, and ALOXE3 were identified. These genes can predict the sensitivity of ESCC patients to neoadjuvant chemoradiotherapy and hold significant clinical relevance in prognostication. These genes were also found to be significantly correlated with certain immune cells and immunoregulatory genes within the tumor microenvironment and were involved in critical tumor-related signaling pathways, including the epithelial-mesenchymal transition and P53 pathways. A nomogram was established to predict the prognosis of ESCC by integrating key genes with clinical stages, demonstrating favorable predictability and reliability. Conclusion This study identified three key genes that predict chemoradiotherapy sensitivity and prognosis and are involved in multiple tumor-related biological processes in ESCC. These findings provide predictive biomarkers for chemoradiotherapy response and support the development of individualized treatment strategies for ESCC patients.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changsen Leng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Qu X, Zhang Y, Li H, Tan Y. The m 5C/m 6A/m 7G-related non-apoptotic regulatory cell death genes for the prediction of the prognosis and immune infiltration status in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4714-4735. [PMID: 39430855 PMCID: PMC11483456 DOI: 10.21037/tcr-24-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients. Methods We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, drug response, and cell communication between tumor cells and immune cells in high-risk groups. Results We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways. Conclusions We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of immunotherapy and chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yigang Zhang
- Department of Plastic Surgery, Bengbu Third People’s Hospital, Bengbu, China
| | - Haoling Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
10
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
11
|
Liu S, He Y, Gu Z. FATP5 modulates biological activity and lipid metabolism in prostate cancer through the TEAD4-mediated Hippo signaling. Front Oncol 2024; 14:1442911. [PMID: 39224804 PMCID: PMC11366587 DOI: 10.3389/fonc.2024.1442911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Prostate cancer (PCa), one of the most prevalent malignant tumors in the genitourinary system, is characterized by distant metastasis and the development of castration-resistant prostate cancer (CRPC), which are major determinants of poor prognosis. Current treatment approaches for PCa primarily involve surgery and endocrine therapy, but effective strategies for managing distant metastasis and CRPC remain limited. Methods We utilized qPCR, WB, and other methods to measure the expression levels of respective proteins, concurrently assessing lipid metabolism to validate the role of FATP5 in lipid metabolism. Additionally, we employed bioinformatics analysis and WB techniques to explore the corresponding mechanisms. Results In this study, we conducted an analysis of clinical samples and public databases to identify differential expression of FATP5 and further investigated its association with clinical outcomes. Through biochemical and functional experiments, we elucidated the potential underlying mechanisms by which FATP5 facilitates the progression of PCa. Our findings demonstrate that specific upregulation of FATP5 significantly enhances proliferation, migration, and invasion of PCa cell lines, while also modulating lipid metabolism in PCa. Mechanistically, the expression of FATP5 is closely associated with the Hippo signaling pathway, as it promotes the nuclear accumulation of YAP1 by inhibiting AMPK and facilitating the activation of β-catenin and RHOA. Furthermore, the transcription of FATP5 is mediated by TEAD4, and this transcriptional activation requires the involvement of YAP1. Discussion FATP5 is highly expressed in prostate cancer and can enhance the biological activity and lipid metabolism of prostate cancer. We have also elucidated that FATP5 is regulated by the Hippo signaling pathway. This provides a new potential target for the treatment of prostate cancer.
Collapse
Affiliation(s)
| | | | - Zhengqin Gu
- Department of urology, Xinhua Hospital, Shanghaijiaotong University, Shanghai, China
| |
Collapse
|
12
|
Smyth SP, Nixon B, Skerrett-Byrne DA, Burke ND, Bromfield EG. Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate. Antioxid Redox Signal 2024; 41:296-321. [PMID: 38115641 DOI: 10.1089/ars.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Significance: Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Recent Advances: Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects via the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Critical Issues: Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. Future Directions: An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.
Collapse
Affiliation(s)
- Shannon P Smyth
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Nathan D Burke
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth G Bromfield
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Yang C, Yang L, Li D, Tan J, Jia Q, Sun H, Meng Z, Wang Y. Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis. Heliyon 2024; 10:e34291. [PMID: 39816344 PMCID: PMC11734080 DOI: 10.1016/j.heliyon.2024.e34291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 01/18/2025] Open
Abstract
Anaplastic thyroid carcinoma is one of the highly fatal cancers and poses a serious threat to human health. Ferroptosis has been widely studied and proved to have an important role in tumor suppression, providing new avenues for cancer therapy; glutathione peroxidase 4(GPX4) and selenoprotein thioredoxin reductase(TXNRD1) are important regulatory targets in ferroptosis.Warburg effect is one of the important energy sources for cancer hypermetabolism, and pyruvate kinase isoenzyme 2 (PKM2) is a key metabolism enzyme that is important in this effect. Shikonin(SKN) is a Chinese herb that has been extensively studied for its anti-tumor ability. The aim of this study was to investigate the mechanism of anti-tumor effect of SKN in ATC cells and to elucidate the role played by ferroptosis and glycolysis in this inhibitory mechanism. The effects of SKN in ATC cell lines CAL-62 and 8505C cells were detected by flow cytometry, Western blotting,real-time quantitative PCR and a fluorescent probe for reactive oxygen species (ROS) to detect changes in intracellular ROS positivity; glucose and lactate assay kits to detect the levels of the raw material of glucose metabolism, glucose (GLU), and the product of glucose metabolism, lactate (LD); and the establishment of the BALB/C nude mice subcutaneous tumor model to analyse the inhibitory effect of SKN on ATC in vivo. The present study demonstrated that SKN inhibits the expression of NF-κB,GPX4,TXNRD1,PKM2,GLUT1.SKN inhibits ATC cell growth by down-regulating the occurrence of intracellular ferroptosis and inhibiting glycolysis in ATC cells.
Collapse
Affiliation(s)
- Chen Yang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, China
- Department of Radiology, Tianjin NanKai Hospital, Tianjin Medical University, 300102, China
- Cute Abdominal Disease Related Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin Key Laboratory, 300102, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, 300102, China
| | - Lei Yang
- Department of Radiology, Tianjin NanKai Hospital, Tianjin Medical University, 300102, China
- Cute Abdominal Disease Related Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin Key Laboratory, 300102, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, 300102, China
| | - Dihua Li
- Department of Radiology, Tianjin NanKai Hospital, Tianjin Medical University, 300102, China
- Cute Abdominal Disease Related Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin Key Laboratory, 300102, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, 300102, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, China
- Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052, China
| | - Yan Wang
- Chinese Material Medical College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China
- State Key Laboratory of Component- based Chinese Medicine, Jinghai District, 301617, China
| |
Collapse
|
14
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
15
|
Lou Y, Zou L, Shen Z, Zheng J, Lin Y, Zhang Z, Chen X, Pan J, Zhang X. Protective effect of dexmedetomidine against delayed bone healing caused by morphine via PI3K/Akt mediated Nrf2 antioxidant defense system. Front Pharmacol 2024; 15:1396713. [PMID: 38863982 PMCID: PMC11165180 DOI: 10.3389/fphar.2024.1396713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background As a class of analgesics, opioids are frequently used to treat both acute and chronic moderate to severe pain. Patients frequently receive opioid painkillers after orthopedic accidents or surgeries. Evidence suggests that opioid drug users have a 55.1% higher risk of fracture and poor bone repair than non-users of opioid drugs. The key pathogenic alterations in the incidence and progression of poor bone repair are over apoptosis and aging of osteoblasts due to the stress caused by oxidation. Dexmedetomidine (Dex) has been proven to protect against a variety of degenerative illnesses by reducing oxidative stress. However, nothing is known about how it affects bone repair. Methods PI3K/Akt/Nrf2 pathway was detected by immunofluorescence and Western blot. SOD, CAT, JC-1, dihydroethidium and mitosox were used in the Oxidative Stress. Micro-CT, H&E and Masson's staining, immunohistochemically were performed to evaluate the therapeutic effects of DEX on calvarial defects in the morphine-induced rat model. Results We found that morphine-induced an imbalance in the metabolism and catabolism of primary rat Osteoblasts. However, these conditions could be inhibited by DEX treatment. In the meantime, DEX induced the expression of Nrf2-regulated antioxidant enzymes such as NQO1, HO-1, GCLm, GCLc, and TrxR1. DEX-mediated Nrf2 activation is linked to the PI3K/Akt signaling system. Furthermore, it has been established that intravenous DEX enhanced the growth of bone healing in a model of a surgically produced rat cranial lesion. Conclusion This is the first description of the unique DEX mechanism acting as a Nrf2 activator against morphine-mediated oxidative harm, raising the possibility that the substance may be used to prevent bone defects.
Collapse
Affiliation(s)
- Yani Lou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianwei Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - XuanKuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xutong Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Eckhart L, Lenhof K, Rolli LM, Lenhof HP. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction. Brief Bioinform 2024; 25:bbae242. [PMID: 38797968 PMCID: PMC11128483 DOI: 10.1093/bib/bbae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
A major challenge of precision oncology is the identification and prioritization of suitable treatment options based on molecular biomarkers of the considered tumor. In pursuit of this goal, large cancer cell line panels have successfully been studied to elucidate the relationship between cellular features and treatment response. Due to the high dimensionality of these datasets, machine learning (ML) is commonly used for their analysis. However, choosing a suitable algorithm and set of input features can be challenging. We performed a comprehensive benchmarking of ML methods and dimension reduction (DR) techniques for predicting drug response metrics. Using the Genomics of Drug Sensitivity in Cancer cell line panel, we trained random forests, neural networks, boosting trees and elastic nets for 179 anti-cancer compounds with feature sets derived from nine DR approaches. We compare the results regarding statistical performance, runtime and interpretability. Additionally, we provide strategies for assessing model performance compared with a simple baseline model and measuring the trade-off between models of different complexity. Lastly, we show that complex ML models benefit from using an optimized DR strategy, and that standard models-even when using considerably fewer features-can still be superior in performance.
Collapse
Affiliation(s)
- Lea Eckhart
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Lisa-Marie Rolli
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| |
Collapse
|
17
|
Kawade G, Kurata M, Matsuki Y, Fukuda S, Onishi I, Kinowaki Y, Watabe S, Ishibashi S, Ikeda M, Yamamoto M, Ohashi K, Kitagawa M, Yamamoto K. Mediation of Ferroptosis Suppressor Protein 1 Expression via 4-Hydroxy-2-Nonenal Accumulation Contributes to Acquisition of Resistance to Apoptosis and Ferroptosis in Diffuse Large B-Cell Lymphoma. J Transl Med 2024; 104:102027. [PMID: 38311062 DOI: 10.1016/j.labinv.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. New therapeutic strategies are needed for the treatment of refractory DLBCL. 4-Hydroxy-2-nonenal (4-HNE) is a cytotoxic lipid peroxidation marker, which alters intracellular signaling and induces genetic mutations. Lipid peroxidation is associated with nonapoptotic cell death, called ferroptosis. However, the relationship between 4-HNE accumulation and feroptotic regulators in DLBCL has not been fully evaluated. Here, we aimed to evaluate the accumulation of lipid peroxide and the expression of ferroptosis suppressor protein 1 (FSP1) in DLBCL using immunohistochemistry. We found a significant increase in the expression of FSP1 in cases with nuclear 4-HNE accumulation (P = .021). Both nuclear and cytoplasmic 4-HNE accumulation and FSP1 positivity were independent predictors of worse prognosis. In vitro exposure to 4-HNE resulted in its concentration- and time-dependent intracellular accumulation and increased expression of FSP1. Furthermore, short-term (0.25 and 1.0 μM) or long-term (0.25 μM) exposure to 4-HNE induced resistance to not only apoptosis but also ferroptosis. Taken together, regulation of FSP1 through 4-HNE accumulation may attenuate resistance to cell death in treatment-resistant DLBCL and might help develop novel therapeutic strategies for refractory DLBCL.
Collapse
Affiliation(s)
- Genji Kawade
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Matsuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Fukuda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiori Watabe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
18
|
Wang H, Wei X, Liu L, Zhang J, Li H. Suppression of A-to-I RNA-editing enzyme ADAR1 sensitizes hepatocellular carcinoma cells to oxidative stress through regulating Keap1/Nrf2 pathway. Exp Hematol Oncol 2024; 13:30. [PMID: 38468359 DOI: 10.1186/s40164-024-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND A-to-I RNA editing is an abundant post-transcriptional modification event in hepatocellular carcinoma (HCC). Evidence suggests that adenosine deaminases acting on RNA 1 (ADAR1) correlates to oxidative stress that is a crucial factor of HCC pathogenesis. The present study investigated the effect of ADAR1 on survival and oxidative stress of HCC, and underlying mechanisms. METHODS ADAR1 expression was measured in fifty HCC and normal tissues via real-time quantitative PCR, and immunohistochemistry. For stable knockdown or overexpression of ADAR1, adeno-associated virus vectors carrying sh-ADAR1 or ADAR1 overexpression were transfected into HepG2 and SMMC-7721 cells. Transfected cells were exposed to oxidative stress agonist tBHP or sorafenib Bay 43-9006. Cell proliferation, apoptosis, and oxidative stress were measured, and tumor xenograft experiment was implemented. RESULTS ADAR1 was up-regulated in HCC and correlated to unfavorable clinical outcomes. ADAR1 deficiency attenuated proliferation of HCC cells and tumor growth and enhanced apoptosis. Moreover, its loss facilitated intracellular ROS accumulation, and elevated Keap1 and lowered Nrf2 expression. Intracellular GSH content and SOD activity were decreased and MDA content was increased in the absence of ADAR1. The opposite results were observed when ADAR1 was overexpressed. The effects of tBHP and Bay 43-9006 on survival, apoptosis, intracellular ROS accumulation, and Keap1/Nrf2 pathway were further exacerbated by simultaneous inhibition of ADAR1. CONCLUSIONS The current study unveils that ADAR1 is required for survival and oxidative stress of HCC cells, and targeting ADAR1 may sensitize HCC cells to oxidative stress via modulating Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General Surgery, The First Hospital Affiliated to Fuyang Normal University, Fuyang, 236006, Anhui, China
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, Anhui, China
| | - Xiaoyu Wei
- Department of Infectious Diseases, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Lu Liu
- Department of Endocrinology, The Affiliated Nantong Hospital of Shanghai Jiao Tong University, Nantong, 226001, Jiangsu, China.
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, Sichuan, China.
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, 230031, Anhui, China.
| |
Collapse
|
19
|
Hou K, Liu L, Fang ZH, Zong WX, Sun D, Guo Z, Cao L. The role of ferroptosis in cardio-oncology. Arch Toxicol 2024; 98:709-734. [PMID: 38182913 DOI: 10.1007/s00204-023-03665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.
Collapse
Affiliation(s)
- Kai Hou
- Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
- Pu'er People's Hospital, Yunnan, 665000, China.
| | - Lin Liu
- Institute of Natural Sciences, MOE-LSC, School of Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daqiang Sun
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Zhigang Guo
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
20
|
Li M, Deng X, Zhou D, Liu X, Dai J, Liu Q. A Novel Methylation-based Model for Prognostic Prediction in Lung Adenocarcinoma. Curr Genomics 2024; 25:26-40. [PMID: 38544827 PMCID: PMC10964088 DOI: 10.2174/0113892029277397231228062412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 08/25/2024] Open
Abstract
Objectives Specific methylation sites have shown promise in the early diagnosis of lung adenocarcinoma (LUAD). However, their utility in predicting LUAD prognosis remains unclear. This study aimed to construct a reliable methylation-based predictor for accurately predicting the prognosis of LUAD patients. Methods DNA methylation data and survival data from LUAD patients were obtained from the TCGA and a GEO series. A DNA methylation-based signature was developed using univariate least absolute shrinkage and selection operators and multivariate Cox regression models. Results Eight CpG sites were identified and validated as optimal prognostic signatures for the overall survival of LUAD patients. Receiver operating characteristic analysis demonstrated the high predictive ability of the eight-site methylation signature combined with clinical factors for overall survival. Conclusion This research successfully identified a novel eight-site methylation signature for predicting the overall survival of LUAD patients through bioinformatic integrated analysis of gene methylation markers used in the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Manyuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xufeng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jigang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| |
Collapse
|
21
|
Nie D, Tang X, Deng H, Yang X, Tao J, Xu F, Liu Y, Wu K, Wang K, Mei Z, Huang A, Tang N. Metabolic Enzyme SLC27A5 Regulates PIP4K2A pre-mRNA Splicing as a Noncanonical Mechanism to Suppress Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305374. [PMID: 38059827 PMCID: PMC10837360 DOI: 10.1002/advs.202305374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Solute carrier family 27 member 5, a key enzyme in fatty acid transport and bile acid metabolism in the liver, is frequently expressed in low quantities in patients with hepatocellular carcinoma, resulting in poor prognosis. However, it is unclear whether SLC27A5 plays non-canonical functions and regulates HCC progression. Here, an unexpected non-canonical role of SLC27A5 is reported: regulating the alternative splicing of mRNA to inhibit the metastasis of HCC independently of its metabolic enzyme activity. Mechanistically, SLC27A5 interacts with IGF2BP3 to prevent its translocation into the nucleus, thereby inhibiting its binding to target mRNA and modulating PIP4K2A pre-mRNA splicing. Loss of SLC27A5 results in elevated levels of the PIP4K2A-S isoform, thus positively regulating phosphoinositide 3-kinase signaling via enhanced p85 stability in HCC. SLC27A5 restoration by AAV-Slc27a5 or IGF2BP3 RNA decoy oligonucleotides exerts an inhibitory effect on HCC metastasis with reduced expression of the PIP4K2A-S isoform. Therefore, PIP4K2A-S may be a novel target for treating HCC with SLC27A5 deficiency.
Collapse
Affiliation(s)
- Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xiaojun Yang
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Junji Tao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Zhechuan Mei
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
22
|
Huang X, Wang M, Zhang D, Zhang C, Liu P. Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:113-129. [PMID: 38250308 PMCID: PMC10799627 DOI: 10.2147/jhc.s447578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Hepatocellular carcinoma is the prevailing malignant neoplasm affecting the liver, often diagnosed at an advanced stage and associated with an unfavorable overall prognosis. Sorafenib and Lenvatinib have emerged as first-line therapeutic drugs for advanced hepatocellular carcinoma, improving the prognosis for these patients. Nevertheless, the issue of tyrosine kinase inhibitor (TKI) resistance poses a substantial obstacle in the management of advanced hepatocellular carcinoma. The pathogenesis and advancement of hepatocellular carcinoma exhibit a close association with metabolic reprogramming, yet the attention given to lipid metabolism dysregulation in hepatocellular carcinoma development remains relatively restricted. This review summarizes the potential significance and research progress of lipid metabolism dysfunction in Sorafenib and Lenvatinib resistance in hepatocellular carcinoma. Targeting hepatocellular carcinoma lipid metabolism holds promising potential as an effective strategy to overcome hepatocellular carcinoma drug resistance in the future.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Chen Zhang
- Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
23
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [PMID: 37482263 DOI: 10.1016/j.jep.2023.116933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is a classic herbal pair used in many Traditional Chinese Medicine (TCM) formulations in the treatment of endocrine and metabolic deseases. Diabetes mellitus and non-alcoholic steatohepatitis (NASH) are both endocrine and metabolic diseases. Previous studies have shown that SC has anti-diabetic effects. However, the effect and mechanism of SC against NASH remains unclear. AIM OF THE STUDY This study aimed to demonstrate the effect and mechanism of SC against NASH through the nuclear factor-erythroid 2-related factor 2 (Nrf2) and farnesoid X receptor (FXR) dual signaling pathways in vivo and in vitro. MATERIALS AND METHODS The high fat diet-fed rat model, and HepG2 and RAW264.7 cell models were used. Serum biochemical indexes and liver histopathological changes were examined. Metabolomics, transcriptomics, and flow cytometry were performed. RT-qPCR and western blot analysis were performed to provide expression of NRF2 and FXR pathway signal molecules during SC's anti-NASH treatment in vivo and in vitro. RESULTS SC had anti-NASH effects in vivo with significantly improvement of serum NASH biochemical index and hepatopathological structure; meanwhile, SC significantly elevated the expression levels of FXR protein in liver and intestinal tissues, and cholesterol 7a-hydroxylase (CYP7A1) protein in liver. The mRNA expression levels of Takeda G protein receptor 5 (TGR5), CYP7A1, fibroblast growth factor receptor-4 (FGFR4), FXR, small heterodimer partner (SHP), fibroblast growth factor 15/19 (FGF15/19) and glucagon-like peptide-1 (GLP-1) were significantly elevated by SC. SC reduced the levels of NorCA, isoLCA and α-MCA in the feces of NAFLD rats. In vitro, SC-containing serum (SC-CS) was found to significantly reduce intracellular lipid deposition, inhibit ROS production, reduce intracellular Malondialdehyde (MDA) and IL-1β levels, and enhance the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Six differential genes closely related to oxidative stress and Nrf2 were identified by transcriptomic analysis. SC-CS up-regulated the expression of NRF2, and reduced the expression of TXNIP and Caspase-1 genes in RAW264.7 cells. In addition, SC-CS reduced the expression of Keap1 and NF-κB, and up-regulated the expression of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and SOD; SC-CS elevated the protein level of NRF2, and reduced the protein level of TXNIP in HepG2 cells. CONCLUSIONS the mechanisms of SC action against NASH was closely related to the simultaneous activations of both NRF2 and FXR signaling pathways. These findings provide a new insight into the anti-NASH application of SC in clinical settings and demonstrate the potential of SC in the treatment of NASH.
Collapse
Affiliation(s)
- Yanan Xue
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yue Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Lan Cao
- Research Center of Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, PR China
| | - Min Shi
- College of Life Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Junqing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ziwen Cheng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Tao Luo
- First Affiliated Hospital of Nanchang University, 330006, PR China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ailan Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
24
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [DOI: https:/doi.org/10.1016/j.jep.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
25
|
Wu K, Liu Y, Xia J, Liu J, Wang K, Liang H, Xu F, Liu D, Nie D, Tang X, Huang A, Chen C, Tang N. Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304408. [PMID: 37957540 PMCID: PMC10787101 DOI: 10.1002/advs.202304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jiale Liu
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Huijun Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Chang Chen
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
26
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Li X, Wang J, Guo Z, Ma Y, Xu D, Fan D, Dai P, Chen Y, Liu Q, Jiao J, Fan J, Wu N, Li X, Li G. Copper metabolism-related risk score identifies hepatocellular carcinoma subtypes and SLC27A5 as a potential regulator of cuproptosis. Aging (Albany NY) 2023; 15:15084-15113. [PMID: 38157255 PMCID: PMC10781498 DOI: 10.18632/aging.205334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
AIMS Dysregulated copper metabolism has been noticed in many types of cancer including hepatocellular carcinoma (HCC); however, a comprehensive understanding about this dysregulation still remains unclear in HCC. METHODS A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of copper metabolism-related genes. A related risk score, termed as CMscore, was developed via univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression. Pathway enrichment analyses and tumor immune cell infiltration were further investigated in CMscore stratified HCC patients. Weighted correlation network analysis (WGCNA) was used to identify potential regulator of cuproptosis. RESULTS Copper metabolism was dysregulated in HCC. HCC patients in the high-CMscore group showed a significantly lower overall survival (OS) and enriched in most cancer-related pathways. Besides, HCC patients with high CMscore had higher expression of pro-tumor immune infiltrates and immune checkpoints. Moreover, cancer patients with high CMscore from two large cohorts exhibited significantly prolonged survival time after immunotherapy. WGCNA and subsequently correlation analysis revealed that SLC27A5 might be a potential regulator of cuproptosis in HCC. In vitro experiments revealed that SLC27A5 inhibited cell proliferation and migration of HCC cells and could upregulate FDX1, the key regulator of cuproptosis. SIGNIFICANCE The CMscore is helpful in clustering HCC patients with distinct prognosis, gene mutation signatures, and sensitivity to immunotherapy. SLC27A5 might serve as a potential target in the induction of cuproptosis in HCC.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong Ma
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Daguang Fan
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Dai
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yifan Chen
- College of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qiongwen Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinke Jiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinhan Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ningxue Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xin Li
- Department of Geriatric Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, Shannxi, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
29
|
Miao C, He X, Chen G, Kahlert UD, Yao C, Shi W, Su D, Hu L, Zhang Z. Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:15050-15063. [PMID: 38097352 PMCID: PMC10781471 DOI: 10.18632/aging.205330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Predicting the prognosis of hepatocellular carcinoma (HCC) is a major medical challenge and of guiding significance for treatment. This study explored the actual relevance of RNA expression in predicting HCC prognosis. Cox's multiple regression was used to establish a risk score staging classification and to predict the HCC patients' prognosis on the basis of data in the Cancer Genome Atlas (TCGA). We screened seven gene biomarkers related to the prognosis of HCC from the perspective of oxidative stress, including Alpha-Enolase 1(ENO1), N-myc downstream-regulated gene 1 (NDRG1), nucleophosmin (NPM1), metallothionein-3, H2A histone family member X, Thioredoxin reductase 1 (TXNRD1) and interleukin 33 (IL-33). Among them we measured the expression of ENO1, NGDP1, NPM1, TXNRD1 and IL-33 to investigate the reliability of the multi-index prediction. The first four markers' expressions increased successively in the paracellular tissues, the hepatocellular carcinoma samples (from patients with better prognosis) and the hepatocellular carcinoma samples (from patients with poor prognosis), while IL-33 showed the opposite trend. The seven genes increased the sensitivity and specificity of the predictive model, resulting in a significant increase in overall confidence. Compared with the patients with higher-risk scores, the survival rates with lower-risk scores are significantly increased. Risk score is more accurate in predicting the prognosis HCC patients than other clinical factors. In conclusion, we use the Cox regression model to identify seven oxidative stress-related genes, investigate the reliability of the multi-index prediction, and develop a risk staging model for predicting the prognosis of HCC patients and guiding precise treatment strategy.
Collapse
Affiliation(s)
- Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao He
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Chenchen Yao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Cheng D, Long J, Zhao L, Liu J. Hydrogen: A Rising Star in Gas Medicine as a Mitochondria-Targeting Nutrient via Activating Keap1-Nrf2 Antioxidant System. Antioxidants (Basel) 2023; 12:2062. [PMID: 38136182 PMCID: PMC10740752 DOI: 10.3390/antiox12122062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The gas molecules O2, NO, H2S, CO, and CH4, have been increasingly used for medical purposes. Other than these gas molecules, H2 is the smallest diatomic molecule in nature and has become a rising star in gas medicine in the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects on various diseases of the respiratory, cardiovascular, central nervous system, and other systems, but the mechanisms are still unclear and even controversial, especially the mechanism of H2 as a selective radical scavenger. Mitochondria are the main organelles regulating energy metabolism in living organisms as well as the main organelle of reactive oxygen species' generation and targeting. We propose that the protective role of H2 may be mainly dependent on its unique ability to penetrate every aspect of cells to regulate mitochondrial homeostasis by activating the Keap1-Nrf2 phase II antioxidant system rather than its direct free radical scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of H2 as a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models. In addition, we wish to provide a more rational theoretical support for the medical applications of hydrogen.
Collapse
Affiliation(s)
- Danyu Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
31
|
Guo L, Hu C, Yao M, Han G. Mechanism of sorafenib resistance associated with ferroptosis in HCC. Front Pharmacol 2023; 14:1207496. [PMID: 37351514 PMCID: PMC10282186 DOI: 10.3389/fphar.2023.1207496] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most familiar primary hepatic malignancy with a poor prognosis. The incidence of HCC and the associated deaths have risen in recent decades. Sorafenib is the first drug to be approved by the Food and Drug Administration (FDA) for routine use in the first-line therapy of patients with advanced HCC. However, only about 30% of patients with HCC will be benefited from sorafenib therapy, and drug resistance typically develops within 6 months. In recent years, the mechanisms of resistance to sorafenib have gained the attention of a growing number of researchers. A promising field of current studies is ferroptosis, which is a novel form of cell death differing from apoptosis, necroptosis, and autophagy. This process is dependent on the accumulation of intracellular iron and reactive oxygen species (ROS). Furthermore, the increase in intracellular iron levels and ROS can be significantly observed in cells resistant to sorafenib. This article reviews the mechanisms of resistance to sorafenib that are related to ferroptosis, evaluates the relationship between ferroptosis and sorafenib resistance, and explores new therapeutic approaches capable of reversing sorafenib resistance in HCC through the modulation of ferroptosis.
Collapse
|
32
|
Song L, Su X, Lu Y, Hua D, Gao Z. An Inflammation-Associated Prognosis Model for Hepatocellular Carcinoma Based on Adenylate Uridylate- (AU-) Rich Element Genes. Mediators Inflamm 2023; 2023:2613492. [PMID: 37181805 PMCID: PMC10169245 DOI: 10.1155/2023/2613492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic indicator of patients with HCC.
Collapse
Affiliation(s)
- Li Song
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangzheng Su
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dongliang Hua
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ziren Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
33
|
Feng XC, Liu FC, Chen WY, Du J, Liu H. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol 2023; 15:617-631. [PMID: 37123054 PMCID: PMC10134209 DOI: 10.4251/wjgo.v15.i4.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that affecting many people's lives globally. The common risk factors for HCC include being overweight and obese. The liver is the center of lipid metabolism, synthesizing most cholesterol and fatty acids. Abnormal lipid metabolism is a significant feature of metabolic reprogramming in HCC and affects the prognosis of HCC patients by regulating inflammatory responses and changing the immune microenvironment. Targeted therapy and immunotherapy are being explored as the primary treatment strategies for HCC patients with unresectable tumors. Here, we detail the specific changes of lipid metabolism in HCC and its impact on both these therapies for HCC. HCC treatment strategies aimed at targeting lipid metabolism and how to integrate them with targeted therapy or immunotherapy rationally are also presented.
Collapse
Affiliation(s)
- Xiao-Chen Feng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Wu-Yu Chen
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Jin Du
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| |
Collapse
|
34
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Español-Rego M, Fernández-Martos C, Elez E, Foguet C, Pedrosa L, Rodríguez N, Ruiz-Casado A, Pineda E, Cid J, Cabezón R, Oliveres H, Lozano M, Ginés A, García-Criado A, Ayuso JR, Pagés M, Cuatrecasas M, Torres F, Thomson T, Cascante M, Benítez-Ribas D, Maurel J. A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol Immunother 2023; 72:827-840. [PMID: 36083313 PMCID: PMC10025226 DOI: 10.1007/s00262-022-03283-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immune check-point blockade (ICB) has shown clinical benefit in mismatch repair-deficient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-proficient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic effects. METHODS This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor effects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efficacy of the combination. The primary end-point was 40% progression-free survival at 6 months with a 2 Simon Stage. RESULTS A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design first-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1-5.3 months] and overall survival was 12.2 months [3.2-23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted significant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, inflammation and oxidative stress pathways. CONCLUSIONS The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the first-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapy-induced tumor vulnerabilities.
Collapse
Affiliation(s)
| | | | - Elena Elez
- Medical Oncology Department, Vall d’Hebrón Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Foguet
- Department of Biochemistry and Molecular Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Leire Pedrosa
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Nuria Rodríguez
- Medical Oncology Department, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Ruiz-Casado
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Estela Pineda
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Joan Cid
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Raquel Cabezón
- Immunology Department, Hospital Clínic, Barcelona, Spain
| | - Helena Oliveres
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Angels Ginés
- Endoscopic Unit, Gastrointestinal Service, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | | | - Juan Ramon Ayuso
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Mario Pagés
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | - Ferràn Torres
- Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Timothy Thomson
- Barcelona Institute for Molecular Biology, National Science Council (IBMB-CSIC), Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Cascante
- Department of Biochemistry and Molecular Medicine, Universitat de Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | | | - Joan Maurel
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
37
|
Cheng H, Wang P, Wang N, Dong W, Chen Z, Wu M, Wang Z, Yu Z, Guan D, Wang L, Zhao R. Neuroprotection of NRF2 against Ferroptosis after Traumatic Brain Injury in Mice. Antioxidants (Basel) 2023; 12:731. [PMID: 36978979 PMCID: PMC10044792 DOI: 10.3390/antiox12030731] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis and iron-related redox imbalance aggravate traumatic brain injury (TBI) outcomes. NRF2 is the predominant transcription factor regulating oxidative stress and neuroinflammation in TBI, but its role in iron-induced post-TBI damage is unclear. We investigated ferroptotic neuronal damage in the injured cortex and observed neurological deficits post-TBI. These were ameliorated by the iron chelator deferoxamine (DFO) in wild-type mice. In Nrf2-knockout (Nrf2-/-) mice, more sever ferroptosis and neurological deficits were detected. Dimethyl fumarate (DMF)-mediated NRF2 activation alleviated neural dysfunction in TBI mice, partly due to TBI-induced ferroptosis mitigation. Additionally, FTH-FTL and FSP1 protein levels, associated with iron metabolism and the ferroptotic redox balance, were highly NRF2-dependent post-TBI. Thus, NRF2 is neuroprotective against TBI-induced ferroptosis through both the xCT-GPX4- and FTH-FTL-determined free iron level and the FSP1-regulated redox status. This yields insights into the neuroprotective role of NRF2 in TBI-induced neuronal damage and its potential use in TBI treatment.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Pengfei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Ning Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Ziyuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Mingzhe Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Ziwei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Ziqi Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang 110034, China
| |
Collapse
|
38
|
Kuang M, Cai L, Zhao J, Huang L, Ji Y, Lv B, Kuang W. Identification of potential ferroptosis hub genes in acute-on-chronic liver failure based on bioinformatics analysis and experimental verification. BMC Med Genomics 2023; 16:52. [PMID: 36906552 PMCID: PMC10007765 DOI: 10.1186/s12920-023-01480-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Ferroptosis plays an important role in the development of acute-on-chronic liver failure (ACLF). The present project aimed to identify and validate the potential ferroptosis-related genes in ACLF by bioinformatics analysis and experimental verification. MATERIALS AND METHODS The GSE139602 dataset was obtained from the Gene Expression Omnibus database and intersected with ferroptosis genes. Ferroptosis-related differentially expressed genes (DEGs) between the ACLF tissue and healthy group were analyzed using bioinformatics methods. Analysis of enrichment, protein‒protein interactions, and hub genes was conducted. Potential drugs targeting these hub genes were retrieved from the DrugBank database. Finally, we performed real-time quantitative PCR (RT-qPCR) to validate the expression of the hub genes. RESULTS A total of 35 ferroptosis-related DEGs were screened, which were enriched in the biosynthesis of amino acids, peroxisomes, fluid shear stress and atherosclerosis. PPI network analysis indicated five ferroptosis-related hub genes, namely, HRAS, TXNRD1, NQO1, PSAT1, and SQSTM1. The experimental validation indicated that the expression levels of HRAS, TXNRD1, NQO1, and SQSTM1 were lower, while the expression level of PSAT1 was higher in ACLF model rats than in healthy rats. CONCLUSIONS Our findings reveal that PSAT1, TXNRD1, HRAS, SQSTM1 and NQO1 may affect the development of ACLF by regulating ferroptotic events. These results provide a valid reference for potential mechanisms and identification in ACLF.
Collapse
Affiliation(s)
- Meixia Kuang
- 1St School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Longhui Cai
- 1St School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Zhao
- 1St School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liqiao Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 524023, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Bingyao Lv
- 1St School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 524023, China.
| |
Collapse
|
39
|
Liu Z. Antioxidant activity of the thioredoxin system. BIOPHYSICS REPORTS 2023; 9:26-32. [PMID: 37426202 PMCID: PMC10323771 DOI: 10.52601/bpr.2023.230002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 07/11/2023] Open
Abstract
The thioredoxin system is composed of thioredoxin (Trx), thioredoxin reductase (TR) and reduced nicotinamide adenine dinucleotide phosphate. Trx is an important antioxidant molecule that can resist cell death caused by various stresses and plays a prominent role in redox reactions. TR is a protein that contains selenium (selenocysteine), in three main forms, namely, TR1, TR2 and TR3. TR1, TR2 and TR3 are mainly distributed in the cytoplasm, mitochondria, and testes, respectively. TR can regulate cell growth and apoptosis. After a cell becomes cancerous, the expression of TR is increased to promote cell growth and metastasis. The Trx system is closely related to neurodegenerative diseases, parasitic infections, acquired immunodeficiency syndrome, rheumatoid arthritis, hypertension, myocarditis, and so on. In addition, the Trx system can remove the reactive oxygen species in the body and keep the inside and outside of the cell in a balanced state. In summary, the Trx system is an important target for the drug treatment of many diseases.
Collapse
Affiliation(s)
- Zihua Liu
- Department of blood transfusion school of second hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
40
|
Xu FL, Wu XH, Chen C, Wang K, Huang LY, Xia J, Liu Y, Shan XF, Tang N. SLC27A5 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by downregulating glutathione reductase. Cell Death Dis 2023; 14:22. [PMID: 36635256 PMCID: PMC9837139 DOI: 10.1038/s41419-023-05558-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Sorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), shows a favorable anti-tumor effect while resistance is a barrier impeding patients from benefiting from it. Thus, more efforts are needed to lift this restriction. Herein, we first find that solute carrier family 27 member 5 (SLC27A5/FATP5), an enzyme involved in the metabolism of fatty acid and bile acid, is downregulated in sorafenib-resistant HCC. SLC27A5 deficiency facilitates the resistance towards sorafenib in HCC cells, which is mediated by suppressing ferroptosis. Further mechanism studies reveal that the loss of SLC27A5 enhances the glutathione reductase (GSR) expression in a nuclear factor erythroid 2-related factor 2 (NRF2)-dependent manner, which maintains glutathione (GSH) homeostasis and renders insensitive to sorafenib-induced ferroptosis. Notably, SLC27A5 negatively correlates with GSR, and genetic or pharmacological inhibition of GSR strengthens the efficacy of sorafenib through GSH depletion and the accumulation of lipid peroxide products in SLC27A5-knockout and sorafenib-resistant HCC cells. Based on our results, the combination of sorafenib and carmustine (BCNU), a selective inhibitor of GSR, remarkably hamper tumor growth by enhancing ferroptotic cell death in vivo. In conclusion, we describe that SLC27A5 serves as a suppressor in sorafenib resistance and promotes sorafenib-triggered ferroptosis via restraining the NRF2/GSR pathway in HCC, providing a potential therapeutic strategy for overcoming sorafenib resistance.
Collapse
Affiliation(s)
- Feng-Li Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Hong Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu-Yi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xue-Feng Shan
- Department of Pharmacy, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
41
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
42
|
Zhang W, Zhang Y, Wan Y, Liu Q, Zhu X. A bile acid-related prognostic signature in hepatocellular carcinoma. Sci Rep 2022; 12:22355. [PMID: 36572736 PMCID: PMC9792463 DOI: 10.1038/s41598-022-26795-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Due to the high mortality of hepatocellular carcinoma (HCC), its prognostic models are urgently needed. Bile acid (BA) metabolic disturbance participates in hepatocarcinogenesis. We aim to develop a BA-related gene signature for HCC patients. Research data of HCC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) online databases. After least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a BA-related prognostic signature in TCGA cohort based on differentially expressed prognostic BA-related genes. Then, the predictive performance of the signature was evaluated and verified in TCGA and ICGC cohort respectively. We obtained the risk score of each HCC patient according to the model. The differences of immune status and drug sensitivity were compared in patients that were stratified based on risk score. The protein and mRNA levels of the modeling genes were validated in the Human Protein Atlas database and our cell lines, respectively. In TCGA cohort, we selected 4 BA-related genes to construct the first BA-related prognostic signature. The risk signature exhibited good discrimination and predictive ability, which was verified in ICGC cohort. Patients were classified into high- and low-risk groups according to their median scores. The occurrence of death increased with increasing risk score. Low-risk patients owned favorable overall survival. High-risk patients possessed high immune checkpoint expression and low IC50 values for sorafenib, cisplatin and doxorubicin. Real-time quantitative PCR and immunohistochemical results validate expression of modeling genes in the signature. We constructed the first BA-related gene signature, which might help to identify HCC patients with poor prognosis and guide individualized treatment.
Collapse
Affiliation(s)
- Wang Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipeng Wan
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Liu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Shi Y, Huang G, Jiang F, Zhu J, Xu Q, Fang H, Lan S, Pan Z, Jian H, Li L, Zhang Y. Deciphering a mitochondria-related signature to supervise prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2022; 13:1070593. [PMID: 36544763 PMCID: PMC9761315 DOI: 10.3389/fimmu.2022.1070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major public health problem in humans. The imbalance of mitochondrial function has been discovered to be closely related to the development of cancer recently. However, the role of mitochondrial-related genes in HCC remains unclear. Methods The RNA-sequencing profiles and patient information of 365 samples were derived from the Cancer Genome Atlas (TCGA) dataset. The mitochondria-related prognostic model was established by univariate Cox regression analysis and LASSO Cox regression analysis. We further determined the differences in immunity and drug sensitivity between low- and high-risk groups. Validation data were obtained from the International Cancer Genome Consortium (ICGC) dataset of patients with HCC. The protein and mRNA expression of six mitochondria-related genes in tissues and cell lines was verified by immunohistochemistry and qRT-PCR. Results The six mitochondria-related gene signature was constructed for better prognosis forecasting and immunity, based on which patients were divided into high-risk and low-risk groups. The ROC curve, nomogram, and calibration curve exhibited admirable clinical predictive performance of the model. The risk score was associated with clinicopathological characteristics and proved to be an independent prognostic factor in patients with HCC. The above results were verified in the ICGC validation cohort. Compared with normal tissues and cell lines, the protein and mRNA expression of six mitochondria-related genes was upregulated in HCC tissues and cell lines. Conclusion The signature could be an independent factor that supervises the immunotherapy response of HCC patients and possess vital guidance value for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China,Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Qiyang Xu
- Department of General Surgery, the Fifth People’s Hospital of Fuyang City, Fuyang, Anhui, China
| | - Hanlu Fang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Lan
- The Second Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyuan Pan
- Hengyang Hospital affiliated of Hunan University of Chinese Medicine, Hengyang, Hunan, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China,*Correspondence: Li Li, ; Yewei Zhang,
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Li Li, ; Yewei Zhang,
| |
Collapse
|
44
|
Yue Y, Tan M, Luo Y, Deng P, Wang H, Li J, Hao R, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. miR-3614-5p downregulation promotes cadmium-induced breast cancer cell proliferation and metastasis by targeting TXNRD1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114270. [PMID: 36335879 DOI: 10.1016/j.ecoenv.2022.114270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), which is considered an endocrine disruptor, has been linked to the onset of breast cancer (BC). Our recent study demonstrated that Cd-induced BC progression has a strong correlation with miR-374c-5p dysregulation. The aim of our work was to investigate other potential miRNAs involved in Cd-induced BC cell proliferation and metastasis. In our study, the miRNA profiles of Cd-treated T-47D cells (10 μM, 72 h) were analyzed by miRNA-seq, and our results confirmed that miR-3614-5p was the top downregulated miRNA. Moreover, miR-3614-5p mimic transfection significantly decreased the proliferative ability, migration and invasive ability of BC cell lines (T-47D and MCF-7). Furthermore, we analyzed the overlapping genes from our RNA-seq data and predicted targets from the mirDIP database, and twelve genes (ALDH1A3, FBN1, GRIA3, NOS1, PLD5, PTGER4, RASGRF2, RELN, RNF150, SLC17A4, TG, and TXNRD1) were identified as potential binding targets of miR-3614-5p in the current model. Nonetheless, only miR-3614-5p inhibition caused an increase in TXNRD1 expression upon Cd exposure in T-47D and MCF-7 cell lines. Importantly, luciferase reporter assays further verified that miR-3614-5p suppressed the expression of TXNRD1 by directly binding to the 3'-untranslated region (UTR), and TXNRD1 inhibition significantly repressed the proliferation and metastasis capacity of BC cells upon Cd exposure. Together, our findings demonstrated that Cd exposure repressed the expression of miR-3614-5p, thus activating TXNRD1 expression, which promoted the abnormal proliferation and metastasis of BC cells.
Collapse
Affiliation(s)
- Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Miduo Tan
- Surgery Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya Shool of Medicine, Central South University, Zhuzhou 412000, Hunan, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
45
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
46
|
Screening for Lipid-Metabolism-Related Genes and Identifying the Diagnostic Potential of ANGPTL6 for HBV-Related Early-Stage Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12111700. [DOI: 10.3390/biom12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression related to lipid metabolism in HCC and explored the clinical value of these genes. We screened differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography–Tandem Mass Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid metabolic processes. The potential clinical values of these genes were explored by bioinformatics online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of HBV-related HCC.
Collapse
|
47
|
Multi-omics profiling reveals Chitinase-3-like protein 1 as a key mediator in the crosstalk between sarcopenia and liver cancer. Redox Biol 2022; 58:102538. [PMID: 36417796 PMCID: PMC9682348 DOI: 10.1016/j.redox.2022.102538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sarcopenia is prevalent in patients with hepatocellular carcinoma (HCC), and can adversely affect their outcomes. This study aims to explore the key mechanisms in the crosstalk between sarcopenia and HCC based on multi-omics profiling. A total of 136 male patients with HCC were enrolled. Sarcopenia was an independent risk factor for poor outcomes after liver transplantation (p < 0.05). Inflammatory cytokine and metabolomic profiling on these patients identified elevated plasma sTNF-R1/CHI3L1 and dysregulated lipid metabolism as related to sarcopenia and tumor recurrence risk concurrently (p < 0.05). Integrated analysis revealed close relationship between CHI3L1 and fatty acid metabolism. In mouse cachectic models by intraperitoneal injection of H22 cells, CHI3L1 was significantly elevated in the atrophic muscle tissue, as well as in circulation. In-vitro, CHI3L1 was up-regulated in muscle cells to protect itself from inflammatory damage through TNF-α/TNF-R1 signaling. CHI3L1 secreted by the muscle cells promoted the invasion of co-cultured HCC cells. Tumor tissue transcriptome data for 73 out of the 136 patients revealed that CHI3L1 may regulate fatty acid metabolism and oxidative stress. In vitro, CHI3L1 caused ROS and lipid accumulation. Targeted lipid profiling further proved that CHI3L1 was able to activate arachidonic acid metabolism, leading to lipid peroxide (LPO) accumulation. Meanwhile, LPO inhibition could compromise the remarkable pro-cancerous effects of CHI3L1. In conclusion, sarcopenia adversely affects the outcomes of liver transplantation for HCC. In sarcopenic patients, CHI3L1 was up-regulated and secreted by the skeletal muscle to protect itself through TNF-α/TNF-R1 signaling, which, in turn, can promote HCC tumor progression by inducing LPO accumulation.
Collapse
|
48
|
Maimaitizunong R, Wang K, Li H. Ferroptosis and its emerging role in esophageal cancer. Front Mol Biosci 2022; 9:1027912. [PMID: 36237575 PMCID: PMC9551460 DOI: 10.3389/fmolb.2022.1027912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence and development of tumors involve a series of life activities of cells, among which cell death has always been a crucial part in the research of tumor mechanisms and treatment methods. Ferroptosis is a non-apoptotic form of cell death, which is characterized by lipid peroxidation accumulation and further cell membrane rupture caused by excessive production of intracellular oxygen free radicals dependent on iron ions. Esophageal cancer is one of the common digestive tract tumors. Patients in the early stage are mainly treated with surgery, and the curative effect is awe-inspiring. However, surgery is far from enough for terminal patients, and it is the best choice to combine radiotherapy and chemotherapy before the operation or during the perioperative period. Although the treatment plan for patients with advanced esophageal cancer is constantly being optimized, we are disappointed at the still meager 5-year survival rate of patients and the poor quality of life. A series of complex problems, such as increased chemotherapy drug resistance and decreased radiotherapy sensitivity of esophageal cancer cells, are waiting for us to tackle. Perhaps ferroptosis can provide practical and feasible solutions and bring new hope to patients with advanced esophageal cancer. The occurrence of ferroptosis is related to the dysregulation of iron metabolism, lipid metabolism, and glutamate metabolism. Therefore, these dysregulated metabolic participant proteins and signaling pathways are essential entry points for using cellular ferroptosis to resist the occurrence and development of cancer cells. This review first introduced the main regulatory mechanisms of ferroptosis. It then summarized the current research status of ferroptosis in esophageal cancer, expecting to provide ideas for the research related to ferroptosis in esophageal cancer.
Collapse
Affiliation(s)
- Rezeye Maimaitizunong
- Department of Biochemistry and Molecular Biology, Basic Medicine School, Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, China
- *Correspondence: Hui Li,
| |
Collapse
|
49
|
Ammonium tetrathiomolybdate triggers autophagy-dependent NRF2 activation in vascular endothelial cells. Cell Death Dis 2022; 13:733. [PMID: 36008391 PMCID: PMC9411162 DOI: 10.1038/s41419-022-05183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ammonium tetrathiomolybdate (TTM) is a copper chelator in clinical trials for treatment of Wilson's disease, tumors and other diseases. In the current study, we innovatively discovered that TTM is a novel NRF2 activator and illustrated that autophagy contributed to TTM-induced NRF2 activation. We showed that TTM treatment promoted NRF2 nuclear translocation and upregulated transcription level of NRF2 target genes including HMOX1, GCLM, and SLC7A11 in vascular endothelial cells (HUVECs). Moreover, NRF2 deficiency directly hindered TTM-mediated antioxidative effects. Followingly, we revealed that overexpression of KEAP1, a negative regulator of NRF2, significantly repressed NRF2 activation induced by TTM. Further mutation analysis revealed that KEAP1 Cys151 is a major sensor responsible for TTM-initiated NRF2 signaling, suggesting that KEAP1 is involved in TTM-mediated NRF2 activation. Notably, we found that TTM can trigger autophagy as evidenced by accumulation of autophagosomes, elevation of LC3BI-II/I, increase of LC3 puncta and activation of AMPK/mTOR/ULK1 pathway. Autophagic flux assay indicated that TTM significantly enhanced autophagic flux in HUVECs. Inhibition of autophagy with knockout of autophagy key gene ATG5 resulted in suppression of TTM-induced NRF2 activation. TTM also induced phosphorylation of autophagy receptor SQSTM1 at Ser349, while SQSTM1-deficiency inhibited KEAP1 degradation and blocked NRF2 signaling pathway, suggesting that TTM-induced NRF2 activation is autophagy dependent. As the novel NRF2 activator, TTM protected against sodium arsenite (NaAsO2)-induced oxidative stress and cell death, while NRF2 deficiency weakened TTM antioxidative effects. Finally, we showed that autophagy-dependent NRF2 activation contributed to the protective effects of TTM against NaAsO2-induced oxidative injury, because of ATG5 or SQSTM1 knockout aggravated NaAsO2-induced elevation of HMOX1, cleaved PARP and γH2AX. Taken together, our findings highlight copper chelator TTM is a novel autophagy-dependent NRF2 activator and shed a new light on the cure for oxidative damage-related diseases.
Collapse
|
50
|
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:925618. [PMID: 35898502 PMCID: PMC9311491 DOI: 10.3389/fimmu.2022.925618] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Cuproptosis is a recently identified form of programmed cell death; however, its role in hepatocellular carcinoma (HCC) remains unclear. Methods A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of ferredoxin 1 (FDX1), the key regulator of cuproptosis. A cuproptosis-related risk score (CRRS) was developed via correlation analyses, least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox regression. The metabolic features, mutation signatures, and immune profile of CRRS-classified HCC patients were investigated, and the role of CRRS in therapy guidance was analyzed. Results FDX1 was significantly downregulated in HCC, and its high expression was associated with longer survival time. HCC patients in the high-CRRS group showed a significantly lower overall survival (OS) and enriched in cancer-related pathways. Mutation analyses revealed that the high-CRRS HCC patients had a high mutational frequency of some tumor suppressors such as tumor protein P53 (TP53) and Breast-cancer susceptibility gene 1 (BRCA1)-associated protein 1 (BAP1) and a low frequency of catenin beta 1 (CTNNB1). Besides, HCC patients with high CRRS showed an increase of protumor immune infiltrates and a high expression of immune checkpoints. Moreover, the area under the curve (AUC) values of CRRS in predicting the efficiency of sorafenib and the non-responsiveness to transcatheter arterial chemoembolization (TACE) in HCC patients reached 0.877 and 0.764, respectively. Significance The cuproptosis-related signature is helpful in prognostic prediction and in guiding treatment for HCC patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangyang Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yinghua Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Zewen Song,
| |
Collapse
|