1
|
Yuan J, Xu B, Su Y, Zhang P, Zhang X, Gong P. Identification of USP39 as a prognostic and predictive biomarker for determining the response to immunotherapy in pancreatic cancer. BMC Cancer 2025; 25:758. [PMID: 40264098 PMCID: PMC12016207 DOI: 10.1186/s12885-025-14096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Ubiquitin-Specific Protease 39 (USP39) has been implicated in numerous malignancies, however, its pathogenic mechanisms and impact on the tumor immune microenvironment (TIME) remain incompletely characterized. Based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, we investigated the diagnostic and prognostic values of USP39 across various cancer types. Additionally, we examined the correlation between USP39 expression and immune-related gene signature, immune cell infiltration pattern, tumor microsatellite instability (MSI), and tumor mutation burden (TMB). This study specifically focused on exploring the clinical relevance and molecular functions of USP39 in pancreatic adenocarcinoma (PAAD), with particularly emphasis on its role in shaping the TIME and modulating responses to immunotherapy. The results demonstrated that evaluated USP39 expression significantly correlated with advanced tumor stage and unfavorable clinical outcomes across multiple cancer types, most notably in PAAD. Functional enrichment analysis indicated that USP39 potentially promotes tumor progression through multiple oncogenic signaling cascades. In vitro experimental validation confirmed that USP39 knockdown inhibited migration and proliferation of pancreatic cancer cells while inducing apoptosis. Additionally, we identified significant positive correlations between USP39 expression and immune checkpoint molecules, particularly prominent in PAAD. Furthermore, we observed associations between USP39 expression and TMB in 16 cancer types and MSI in 11 cancer types, suggesting that heightened USP39 expression may enhance responsiveness to immunotherapeutic interventions. Collectively, our findings establish USP39 as a valuable immune-related biomarker with both diagnostic and prognostic utility across multiple cancer types, especially PAAD, underscoring its potential as a promising therapeutic target for cancer immunotherapy. Clinical trial number Not applicable.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Huimin W, Xin W, Shan Y, Junwang Z, Jing W, Yuan W, Qingtong L, Xiaohui L, Jia Y, Lili Y. Lactate promotes the epithelial-mesenchymal transition of liver cancer cells via TWIST1 lactylation. Exp Cell Res 2025; 447:114474. [PMID: 39993459 DOI: 10.1016/j.yexcr.2025.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Elevated lactate levels increase the risk of liver cancer progression. However, the mechanisms by which lactate promotes liver cancer progression remain poorly understood. Epithelial-mesenchymal transition (EMT), characterized by the loss of epithelial cells polarity and cell-cell adhesion, leading to the acquisition of mesenchymal-like phenotypes, is widely recognized as a key contributor to liver cancer progression. TWIST1 (Twist Family BHLH Transcription Factor 1) plays a central role in inducing EMT. Here, we investigated the role of lactate in promoting EMT in liver cancer and the underlying regulatory mechanisms. High levels of lactate significantly promoted EMT progression in liver cancer cells. Mechanistically, lactate-induced lactylation of TWIST1 in vivo and in vitro. Mutation assay confirmed that Lysine 33 (K33) is the major site of TWIST1 lactylation. Moreover, cell fractionation & luciferase reporter assay results identified that TWIST1-K33R mutant impaired the EMT process via inhibiting nuclear import and the transcriptional activity. Thus, our findings provide novel insights into the regulatory role of lactate in EMT in liver cancer pathogenesis. Additionally, targeting of lactate-driven lactylation of TWIST1 may boost the therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Wang Huimin
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wu Xin
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Yu Shan
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Zhang Junwang
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wen Jing
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wang Yuan
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Liu Qingtong
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Li Xiaohui
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Yao Jia
- Department of Gastroenterology, Shanxi Bethune Hospital, No.99 Longcheng Road, Taiyuan, 030032, China
| | - Yuan Lili
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Zhang X, Zhuang M, Zhang H, Zhu Y, Yang J, Wu X, Yu X, Tao J, Liu X. Melatonin-mediated cGAS-STING signal in senescent macrophages promote TNBC chemotherapy resistance and drive the SASP. J Biol Chem 2025; 301:108438. [PMID: 40127867 DOI: 10.1016/j.jbc.2025.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
The build-up of senescent cells in tissues is a key indicator of aging, associated with negative prognosis and therapy resistance. Despite immune dysfunction related to aging, also known as immunosenescence, is recognized as a factor in this process, the exact mechanisms are still unclear. In this study, we reported that melatonin deficiency accelerated macrophage senescence in triple-negative breast cancer, whereas melatonin could defend macrophages against senescence through the Nfatc1-Trim26-cgas-Sting pathway. Mechanistically, melatonin enhanced the nuclear translocation of Nfatc1 and elevated Trim26 transcription levels. Trim26, functioning as an E3 ligase, ubiquitinates cgas, thereby inhibiting the activation of the cgas-Sing pathway and consequently preventing cell senescence. Conversely, melatonin deficiency induced cgas-Sting pathway activation to promote macrophage aging. Our results show that melatonin inhibited macrophage senescence and improved chemotherapy responsiveness, with further enhancement when combined with the cgas inhibitor (G150). Overall, our findings indicated that melatonin protects macrophages from immunosenescence, suggesting its therapeutic potential for enhancing chemotherapy response.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Minyu Zhuang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Hongfei Zhang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yanhui Zhu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Junzhe Yang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xian Wu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiafei Yu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoan Liu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Wei R, Shi X, Qiu W, Yang M, Chen Y, Song S, Yang H, Liu J. ATXN3 deubiquitinates ZEB1 and facilitates epithelial-mesenchymal transition in glioblastoma. Sci Rep 2025; 15:7868. [PMID: 40050358 PMCID: PMC11885642 DOI: 10.1038/s41598-025-92317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The activation of epithelial-mesenchymal transition (EMT) promotes glioblastoma (GBM) invasion, thereby enhancing its malignancy. Elucidating the underlying mechanisms that regulate EMT is essential for the development of effective treatments for GBM. In this study, we found that GBM tissues and cells exhibit significantly elevated expression levels of ataxin 3 (ATXN3). Functional experiments demonstrated that ATXN3 promotes the invasion, migration, and tumor growth of GBM cells by activating EMT. Mechanistically, ATXN3 was identified as a bona fide deubiquitinase for ZEB1, a key EMT-inducing transcription factor, in GBM cells. ATXN3 interacts directly with ZEB1, cleaves ubiquitin moieties from conjugated substrates and maintains the stability of ZEB1. Ectopic expression of ZEB1 significantly mitigates the inhibitory effects of ATXN3 depletion on the invasion, migration, and tumor growth of GBM cells. Furthermore, ATXN3 exhibits a positive correlation with ZEB1 expression levels and serves as a predictor of poor prognosis in human GBM specimens. Collectively, our study elucidates a critical ATXN3-ZEB1 signaling axis in EMT and invasion, thereby providing a rationale for potential therapeutic interventions against GBM.
Collapse
Affiliation(s)
- Ruting Wei
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xueping Shi
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ming Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jian Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
6
|
Qi H, Wang J, Cao L. TRIM44 facilitates aggressive behaviors in multiple myeloma through promoting ZEB1 deubiquitination. Discov Oncol 2025; 16:248. [PMID: 40014271 PMCID: PMC11867989 DOI: 10.1007/s12672-025-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 44 (TRIM44) involves in various tumor development. This study investigated role of TRIM44 in multiple myeloma (MM). MATERIALS AND METHODS TRIM44 levels in bone marrow tissues and MM cell lines was detected by quantitative reverse transcription PCR (RT-qPCR). Cell viability, migration, and invasion of MM cells were evaluated under the interference of TRIM44 expression. The role of TRIM44 on regulating tumor growth in vivo was also investigated in subcutaneous tumor xenograft models. The protein interact between TRIM44 and Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was also studied according IP followed by western blotting assay. RESULTS TRIM44 was all highly expressed in collected bone marrow tissues and MM cell lines. Cell viability, migration, and invasion of MM cells with low expression of TRIM44 was significantly inhibited. Over-expression of TRIM44 can down-regulate the ZEB1 ubiquitination to enhance the protein stability. CONCLUSIONS TRIM44 exerts as an oncogenic factor to induce the oncogenesis of MM by stabilizing ZEB1.
Collapse
Affiliation(s)
- Hui Qi
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Jing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Lixia Cao
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China.
| |
Collapse
|
7
|
Tan Z, Ko HM, Naji P, Zhu R, Wang J, Huang S, Zhang Y, Zeng SX, Lu H. Tripartite motif-containing protein 26 promotes colorectal cancer growth by inactivating p53. Cell Death Differ 2025:10.1038/s41418-025-01463-1. [PMID: 39994352 DOI: 10.1038/s41418-025-01463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Tripartite motif-containing protein 26 (TRIM26) is an E3 ubiquitin ligase that exhibits divergent roles in various cancer types (oncogenic and anti-oncogenic). This study investigates the interaction of TRIM26 with the tumor suppressor protein p53 in colorectal cancer (CRC) cells by performing a comprehensive set of biochemical, cell-based assays, and xenograft experiments. As a result, we found that overexpression of TRIM26 significantly enhances CRC cell proliferation and colony formation, while knockdown of TRIM26 suppresses these processes. Xenograft experiments further validated the tumor-promoting role of TRIM26 in CRC. Supporting this is that TRIM26 is highly expressed in human CRC tissues as revealed by our analysis of the TCGA database. Biochemically, TRIM26 directly bound to the C-terminus of p53 and facilitated its ubiquitination, resulting in proteolytic degradation and attenuated p53 activity independently of MDM2. Also, TRIM26 increased the MDM2-mediated ubiquitination of p53 by binding to MDM2's C-terminus. This study uncovers the oncogenic potential of TRIM26 in CRC by inhibiting p53 function. Through its ubiquitin ligase activity, TRIM26 destabilizes p53, consequently promoting CRC cell proliferation and tumor growth. These findings shed light on the complex involvement of TRIM26 in cancer and identify this ubiquitin ligase as a potential therapeutic target for future development of CRC treatment.
Collapse
Affiliation(s)
- Zhihui Tan
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Gynecology, Xiang-Ya Hospital, Central South University, Changsha, 410008, China
| | - Hyun Min Ko
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Parnian Naji
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Rong Zhu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Jieqiong Wang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shibo Huang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- The Research Center for Clinical Trials, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yiwei Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Cheng S, Qiu Z, Zhang Z, Li Y, Zhu Y, Zhou Y, Yang Y, Zhang Y, Yang D, Zhang Y, Liu H, Dai Z, Sun SL, Liu S. USP39 phase separates into the nucleolus and drives lung adenocarcinoma progression by promoting GLI1 expression. Cell Commun Signal 2025; 23:56. [PMID: 39885503 PMCID: PMC11783868 DOI: 10.1186/s12964-025-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers. However, the nucleolar phase separation of DUBs and association with lung cancer development have remained incompletely investigated till now. METHODS GFP-USP39 fusion proteins were analyzed for LLPS properties using immunofluorescence, fluorescence recovery after photobleaching (FRAP) and in vitro LLPS assays. Intrinsically-disordered regions of USP39 were analyzed by PhaSepDB database. Transcriptomic profiling, Western blot, RT-PCR and luciferase reporter assays were conducted to identify targets regulated by USP39. The effects of USP39 depletion on tumor progression were tested using doxycycline-inducible USP39 knockdown and rescue lung adenocarcinoma cells both in vitro and in vivo by performing MTT, colony formation, EdU staining, transwell and tumor xenograft model experiments. RESULTS USP39 phase separates into nucleoli depending upon its N-terminal disordered region with amino acid residues 1-103. Lung cancer cell growth and migration were dramatically inhibited by USP39 knockdown, which was rescued by exogenous USP39 complementation. Moreover, knockdown of USP39 reduced oncogenic transcription effector GLI1 levels. Finally, USP39 downregulation restricted the formation of lung cancer xenografts in nude mice. CONCLUSIONS USP39 undergoes LLPS in the nucleolus and promotes tumor progression by regulating GLI1 expression. Downregulation of USP39 effectively suppressed lung cancer growth, and therefore targeting USP39 provides novel therapeutic strategy to treat lung cancer.
Collapse
Affiliation(s)
- Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyuan Qiu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ziyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxuan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yaowen Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhaoxia Dai
- The Second Department of Thoracic Medical Oncology, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital, Cancer Hospital of China Medical University, Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
9
|
Wang X, Zhang P, Xie J, Zuo X. USP39 promotes retinal pathological angiogenesis in retinopathy of prematurity by stabilizing SIRT2 expression through deubiquitination. Int Ophthalmol 2025; 45:39. [PMID: 39853525 DOI: 10.1007/s10792-025-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis. Here, this study aimed to investigate the effects of USP39 on ROP and its associated mechanism. METHODS Hypoxia-induced human retinal microvascular endothelial cells (hRMECs) were adopted for functional analyses. Detection of mRNA and protein was conducted using quantitative real-time PCR and western blotting. Cell migration, invasion and angiogenesis were evaluated using transwell and tube formation assays. Protein interaction was determined by immunoprecipitation assay. Oxygen-induced retinopathy (OIR) mouse models were used for in vivo analysis. RESULTS USP39 level was higher in hypoxia-induced hRMECs, functionally, USP39 silencing reversed hypoxia-induced migration, invasion and angiogenesis in hRMECs. In further mechanism analysis, we found that USP39 stabilized SIRT2 protein expression in hRMECs by inducing SIRT2 deubiquitination. Moreover, SIRT2 up-regulation abated hypoxia-evoked migration, invasion and angiogenesis in hRMECs. Besides that, the inhibitory effects of USP39 silencing on hypoxia-induced metastatic and angiogenic behaviors were abolished after SIRT2 overexpression. In addition, USP39 silencing blocked the activation of phosphoinositide 3-kinase (PI3K)/protein kinase B pathway (AKT) by regulating SIRT2. In vivo assay showed that levels of USP39, SIRT2, matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9 and Vascular endothelial growth factor A (VEGFA) were increased in the retinas of OIR mice, while intravitreal injection of USP39 short hairpin RNA (shRNA) could reduce their expression. CONCLUSION USP39 stabilized SIRT2 expression by deubiquitination and promoted hypoxia-induced metastatic and angiogenic behaviors of RMECs in vitro, as well as retinal angiogenesis in vivo.
Collapse
Affiliation(s)
- Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Peicheng Zhang
- Department of Ophthalmology, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Medical Research Center for Ocular Diseases, Hebei Eye Hospital, No.399, Quanbei East Road, Xingtai, 054001, Hebei, China.
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
10
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
11
|
Huang S, Qin X, Fu S, Hu J, Jiang Z, Hu M, Zhang B, Liu J, Chen Y, Wang M, Liu X, Chen Z, Wang L. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405083. [PMID: 39527690 PMCID: PMC11714167 DOI: 10.1002/advs.202405083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is recognized as an immunogenic tumor, and immunotherapy is incorporated into its treatment landscape for decades. The acquisition of a tumor mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT) is associated with immune evasion and can contribute to immunotherapy resistance. Here, the involvement of STAM Binding Protein Like 1 (STAMBPL1) is reported in the development of mesenchymal and immune evasion phenotypes in KIRC cells. Mechanistically, STAMBPL1 elevated protein abundance and surface accumulation of TAM Receptor AXL through diminishing the TRIM21-mediated K63-linked ubiquitination and subsequent lysosomal degradation of AXL, thereby enhancing the expression of mesenchymal genes while suppressing chemokines CXCL9/10 and HLA/B/C. In addition, STAMBPL1 enhanced PD-L1 transcription via facilitating nuclear translocation of p65, and knockdown (KD) of STAMBPL1 augmented antitumor effects of PD-1 blockade. Furthermore, STAMBPL1 silencing and the tyrosine kinase inhibitor (TKI) sunitinib also exhibited a synergistic effect on the suppression of KIRC. Collectively, targeting the STAMBPL1/TRIM21/AXL axis can decrease mesenchymal phenotype and potentiate anti-tumor efficacy of cancer therapy.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xuke Qin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhengyu Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Hubei Key Laboratory of Digestive System DiseaseWuhan430060China
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Minghui Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
12
|
Sirera J, Sarlak S, Teisseire M, Carminati A, Nicolini VJ, Savy C, Brest P, Juel T, Bontoux C, Deckert M, Ohanna M, Giuliano S, Dufies M, Pages G, Luciano F. Disrupting USP39 deubiquitinase function impairs the survival and migration of multiple myeloma cells through ZEB1 degradation. J Exp Clin Cancer Res 2024; 43:335. [PMID: 39736693 DOI: 10.1186/s13046-024-03241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease. Deubiquitinases (DUBs), which regulate protein stability, interactions, and localization by removing ubiquitin modifications, have emerged as promising therapeutic targets in various cancers, including MM. METHODS Through a comprehensive loss-of-function screen, we identified USP39 as a critical survival factor for MM cells. Gene Set Enrichment Analysis (GSEA) was employed to correlate USP39 mRNA levels with clinical outcomes in MM patients. USP39 protein expression was evaluated via immunohistochemistry (IHC) on bone marrow samples from MM patients and healthy controls. The impact of USP39 knockdown via SiRNA was assessed through in vitro assays measuring cellular metabolism, clonogenic capacity, cell cycle progression, apoptosis, and sensitivity to BTZ. Co-immunoprecipitation and deubiquitination assays were conducted to elucidate the interaction and regulation of ZEB1 by USP39. Finally, in vitro and in vivo zebrafish experiments were used to characterize the biological consequences of ZEB1 regulation by USP39. RESULTS Our study found that elevated USP39 mRNA levels are directly associated with shorter survival in MM patients. USP39 protein expression is significantly higher in MM patient plasmocytes compared to healthy individuals. USP39 knockdown inhibits clonogenic capacity, induces cell cycle arrest, triggers apoptosis, and overcomes BTZ resistance. Gain-of-function assays revealed that USP39 stabilizes the transcription factor ZEB1, enhancing the proliferation and the trans-migratory potential of MM cells. CONCLUSIONS Our findings highlight the critical role of the deubiquitinase USP39, suggesting that the USP39/ZEB1 axis could serve as a potential diagnostic marker and therapeutic target in MM.
Collapse
Affiliation(s)
- Jessy Sirera
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Saharnaz Sarlak
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Manon Teisseire
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Alexandrine Carminati
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Victoria J Nicolini
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Coline Savy
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Patrick Brest
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Thierry Juel
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, Pasteur Hospital, Hospital-integrated Biobank (BB-0033-00025), FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Nice, 06001, France
- Department of Pathology, University Hospital of Toulouse, Cancer Biobank, Cancer University Institute of Toulouse-Oncopole, Toulouse, 31059, France
| | - Marcel Deckert
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Mickael Ohanna
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Sandy Giuliano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Maeva Dufies
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Gilles Pages
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Frederic Luciano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France.
| |
Collapse
|
13
|
Becirovic T, Zhang B, Vakifahmetoglu-Norberg H, Kaminskyy VO, Kochetkova E, Norberg E. USP39 regulates pyruvate handling in non-small cell lung cancer. Cell Death Discov 2024; 10:502. [PMID: 39695108 DOI: 10.1038/s41420-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
The ubiquitin-specific peptidase 39 (USP39) belongs to the USP family of cysteine proteases representing the largest group of human deubiquitinases (DUBs). While the oncogenic function of USP39 has been investigated in various cancer types, its roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by applying a gene set enrichment analysis (GSEA) on lung adenocarcinoma tissues and metabolite set enrichment analysis (MSEA) on NSCLC cells depleted of USP39, we identified a previously unknown link between USP39 and the metabolism in NSCLC cells. Mechanistically, we uncovered a component of the pyruvate dehydrogenase (PDH) complex, pyruvate dehydrogenase E1 subunit alpha (PDHA), as a target of USP39. We further present that USP39 silencing caused an elevation in Lys63 ubiquitination on PDHA and a reduction in the PDH complex activity, the levels of TCA cycle intermediates, mitochondrial respiration, cell proliferation in vitro, and of tumor growth in vivo. Consistently, citrate supplementation restored mitochondrial respiration and cell growth in USP39-depleted cells. Our study elucidates and describes how USP39 regulates pyruvate metabolism through a deubiquitylation process that affects NSCLC tumor growth.
Collapse
Affiliation(s)
- Tina Becirovic
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
14
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
15
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Cao J, Wu S, Zhao S, Wang L, Wu Y, Song L, Sun C, Liu Y, Liu Z, Zhu R, Liang R, Wang W, Sun Y. USP24 promotes autophagy-dependent ferroptosis in hepatocellular carcinoma by reducing the K48-linked ubiquitination of Beclin1. Commun Biol 2024; 7:1279. [PMID: 39379617 PMCID: PMC11461744 DOI: 10.1038/s42003-024-06999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Ubiquitination is a post-translational modification (PTM), which is critical to maintain cell homeostasis. Ubiquitin-specific protease 24 (USP24) plays roles in various diseases, the mechanisms by which USP24 regulates hepatocellular carcinoma (HCC) remain poorly understood. In this study, USP24 is found to be significantly downregulated in HCC. Knocking down USP24 promotes HCC proliferation and migration, whereas USP24 overexpression inhibits HCC in vitro and in vivo. The endogenous interaction between USP24 and Beclin1 is confirmed. Mechanically, USP24 delays Beclin1 degradation by reducing its K48-linked ubiquitination, the effects of overexpressing USP24 on HCC proliferation can be partially reversed by silencing Beclin1. We find that increased autophagy is accompanied by ferroptosis in USP24 overexpressed HCC cells and USP24 increases the susceptibility of HCC to sorafenib. Collectively, this study highlights the critical role of USP24 in regulating autophagy-dependent ferroptosis by decreasing Beclin1 ubiquitination, suggesting that targeting USP24 may be a strategy for treating HCC.
Collapse
Affiliation(s)
- Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liming Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhipu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China.
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Makwana SH, Sharma T, Mahapatra MK, Kumari M, Jain A, Shrivastava SK, Mandal CC. Targeting TRIM26: Unveiling an Oncogene and Identification of Plant Metabolites as a Potential Therapeutics for Breast Cancer. J Cell Biochem 2024; 125:e30644. [PMID: 39286999 DOI: 10.1002/jcb.30644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer is the major cause of cancer-related mortality and frequent malignancies among women worldwide. The TRIM (Tripartite Motif) protein family is a broad and diverse set of proteins that contain a conserved structural motif known as the tripartite motif, which comprises of three different domains, B-box domain, Coiled-coil domain and RBR (Ring-finger, B-box, and coiled-coil) domain. TRIM proteins are involved in regulating cancer growth and metastasis. However, TRIM proteins are still unexplored in cancer cell regulation. In this study, by using a cancer database expression of all TRIM proteins was determined in breast cancer. Out of 77 TRIM genes, 16 genes were upregulated in breast cancer. Here, the upregulated TRIM26 gene's role is not yet explored in breast cancer. Indeed, TRIM26 is upregulated in 21 cancer types out of 33 cancer types. To investigate the role of TRIM26 in breast cancer, siRNA-mediated gene silencing was carried out in MCF-7 and MDA-MB 231 breast cancer cells. Reduced expression of TRIM 26 decreased cancer cell proliferation, migration and invasion with simultaneous reduction of various proliferative, cell cycle and mesenchymal markers and upregulation of epithelial markers. Further, docking studies found potential novel plant metabolites. Thus, targeting TRIM26 may provide a novel therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Sweta H Makwana
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tannavi Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Manas K Mahapatra
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Monika Kumari
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Akshat Jain
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd, Jaipur, Rajasthan, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
18
|
Lu C, Cai Y, Wu S, Wang Y, Li JB, Xu G, Ma J. Deubiquitinating enzyme USP39 promotes the growth and metastasis of gastric cancer cells by modulating the degradation of RNA-binding protein RBM39. J Biol Chem 2024; 300:107751. [PMID: 39260689 PMCID: PMC11490714 DOI: 10.1016/j.jbc.2024.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
It has been revealed recently that the RNA-binding motif protein RBM39 is highly expressed in several cancers, which results in poor patient survival. However, how RBM39 is regulated in gastric cancer cells is unknown. Here, affinity purification-mass spectrometry and a biochemical screening are employed to identify the RBM39-interacting proteins and the deubiquitinating enzymes that regulate the RBM39 protein level. Integration of the data obtained from these two approaches uncovers USP39 as the potential deubiquitinating enzyme that regulates RBM39 stability. Bioinformatic analysis discloses that USP39 is increased in gastric cancer tissues and its elevation shortens the duration of overall survival for gastric cancer patients. Biochemical experiments verify that USP39 and RBM39 interact with each other and highly colocalize in the nucleus. Expression of USP39 elevates while USP39 knockdown attenuates the RBM39 protein level and their interaction regulates this modulation and their colocalization. Mechanistic studies reveal that USP39 reduces the K48-linked polyubiquitin chains on RBM39, thus enhancing its stability and increasing the protein level by preventing its proteasomal degradation. USP39 overexpression promotes while its knockdown attenuates the growth, colony formation, migration, and invasion of gastric cancer cells. Interestingly, overexpression of RBM39 partially restores the impact of USP39 depletion, while RBM39 knockdown partially abolishes the effect of USP39 overexpression on the growth, colony formation, migration, and invasion of gastric cancer cells. Collectively, this work identifies the first DUB for RBM39 and elucidates the regulatory functions and the underlying mechanism, providing a possible alternative approach to suppressing RBM39 by inhibiting USP39 in cancer therapy.
Collapse
Affiliation(s)
- Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yunxin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shenglong Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
19
|
Yin W, Rajvanshi PK, Rogers HM, Yoshida T, Kopp JB, An X, Gassmann M, Noguchi CT. Erythropoietin regulates energy metabolism through EPO-EpoR-RUNX1 axis. Nat Commun 2024; 15:8114. [PMID: 39284834 PMCID: PMC11405798 DOI: 10.1038/s41467-024-52352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Erythropoietin (EPO) plays a key role in energy metabolism, with EPO receptor (EpoR) expression in white adipose tissue (WAT) mediating its metabolic activity. Here, we show that male mice lacking EpoR in adipose tissue exhibit increased fat mass and susceptibility to diet-induced obesity. Our findings indicate that EpoR is present in WAT, brown adipose tissue, and skeletal muscle. Elevated EPO in male mice improves glucose tolerance and insulin sensitivity while reducing expression of lipogenic-associated genes in WAT, which is linked to an increase in transcription factor RUNX1 that directly inhibits lipogenic genes expression. EPO treatment in wild-type male mice decreases fat mass and lipogenic gene expression and increase in RUNX1 protein in adipose tissue which is not observed in adipose tissue EpoR ablation mice. EPO treatment decreases WAT ubiquitin ligase FBXW7 expression and increases RUNX1 stability, providing evidence that EPO regulates energy metabolism in male mice through the EPO-EpoR-RUNX1 axis.
Collapse
Affiliation(s)
- Weiqin Yin
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Heather M Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Teruhiko Yoshida
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Li T, Zhong W, Li M, Shao Z, Zhang G, Wang W, Gao Z, Tan X, Xu Z, Luo F, Song G. TRIM26 deficiency enhancing liver regeneration through macrophage polarization and β-catenin pathway activation. Cell Death Dis 2024; 15:453. [PMID: 38926362 PMCID: PMC11208526 DOI: 10.1038/s41419-024-06798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Liver regeneration is a complex process involving the crosstalk between parenchymal and non-parenchymal cells, especially macrophages. However, the underlying mechanisms remain incompletely understood. Here, we identify the E3 ubiquitin ligase TRIM26 as a crucial regulator of liver regeneration. Following partial hepatectomy or acute liver injury induced by carbon tetrachloride, Trim26 knockout mice exhibit enhanced hepatocyte proliferation compared to wild-type controls, while adeno-associated virus (AAV)-mediated overexpression of Trim26 reverses the promotional effects. Mechanistically, Trim26 deficiency promotes the recruitment of macrophages to the liver and their polarization towards pro-inflammatory M1 phenotype. These M1 macrophages secrete Wnts, including Wnt2, which subsequently stimulate hepatocyte proliferation through the activation of Wnt/β-catenin signaling. In hepatocytes, Trim26 knockdown reduces the ubiquitination and degradation of β-catenin, thereby further enhancing Wnt/β-catenin signaling. Pharmacological inhibition of Wnt/β-catenin pathway by ICG-001 or depletion of macrophages by clodronate liposomes diminishes the pro-regenerative effects of Trim26 deficiency. Moreover, bone marrow transplantation experiments provide evidence that Trim26 knockout in myeloid cells alone can also promote liver regeneration, highlighting the critical role of macrophage Trim26 in this process. Taken together, our study uncovers TRIM26 as a negative regulator of liver regeneration by modulating macrophage polarization and Wnt/β-catenin signaling in hepatocytes, providing a potential therapeutic target for promoting liver regeneration in clinical settings.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zile Shao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixing Gao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei Tan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ziyi Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Miao Y, Wang S, Zhang J, Liu H, Zhang C, Jin S, Bai D. Strategic advancement of E3 ubiquitin ligase in the management of hepatocellular carcinoma. Med Oncol 2024; 41:178. [PMID: 38888684 DOI: 10.1007/s12032-024-02411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its high incidence, poor prognosis, and limited treatment options. As a pivotal regulator of protein stability, E3 ubiquitin ligase plays a crucial role in tumorigenesis and development. This review provides an overview of the latest research on the involvement of E3 ubiquitin ligase in hepatocellular carcinoma and elucidates its significance in hepatocellular carcinoma cell proliferation, invasion, and evasion from immune surveillance. Special attention is given to the functions of RING, HECT, and RBR E3 ubiquitin ligases and their association with hepatocellular carcinoma progression. By dissecting the molecular mechanisms and regulatory networks governed by E3 ubiquitin ligase, several potential therapeutic strategies are proposed: including the development of specific inhibitors targeting E3 ligases; augmentation of their tumor suppressor activity through drug or gene therapy; utilization of E3 ubiquitin ligase to modulate immune checkpoint proteins for improved efficacy of immunotherapy; combination strategies integrating traditional therapies with E3 ubiquitin ligase inhibitors; as well as biomarker development based on E3 ubiquitin ligase activity. Furthermore, this review discusses the prospect of overcoming drug resistance in hepatocellular carcinoma treatment through these novel approaches. Overall, this review establishes a theoretical foundation and offers fresh insights into harnessing the potential of E3 ubiquitin ligase for treating hepatocellular carcinoma while highlighting future research directions that pave the way for clinical translation studies and new drug discoveries.
Collapse
Affiliation(s)
- Yangyang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Jiahao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
- Dalian Medical University, Dalian, 116000, China
| | - Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
22
|
Zheng D, Ning J, Deng H, Ruan Y, Cheng F. TRIM26 inhibits clear cell renal cell carcinoma progression through destabilizing ETK and thus inactivation of AKT/mTOR signaling. J Transl Med 2024; 22:481. [PMID: 38773612 PMCID: PMC11110379 DOI: 10.1186/s12967-024-05273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Di Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Hao Deng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
23
|
Huang Q, Zheng S, Gu H, Yang Z, Lu Y, Yu X, Guo G. The deubiquitinase BRCC3 increases the stability of ZEB1 and promotes the proliferation and metastasis of triple-negative breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:564-575. [PMID: 38449391 DOI: 10.3724/abbs.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Triple negative breast cancer (TNBC) has a high recurrence rate, metastasis rate and mortality rate. The aim of this study is to identify new targets for the treatment of TNBC. Clinical samples are used for screening deubiquitinating enzymes (DUBs). MDA-MB-231 cells and a TNBC mouse model are used for in vitro and in vivo experiments, respectively. Western blot analysis is used to detect the protein expressions of DUBs, zinc finger E-box binding homeobox 1 (ZEB1), and epithelial-mesenchymal transition (EMT)-related markers. Colony formation and transwell assays are used to detect the proliferation, migration and invasion of TNBC cells. Wound healing assay is used to detect the mobility of TNBC cells. Immunoprecipitation assay is used to detect the interaction between breast cancer susceptibility gene 1/2-containing complex subunit 3 (BRCC3) and ZEB1. ZEB1 ubiquitination levels, protein stability, and protein degradation are also examined. Pathological changes in the lung tissues are detected via HE staining. Our results show a significant positive correlation between the expressions of BRCC3 and ZEB1 in clinical TNBC tissues. Interference with BRCC3 inhibits TNBC cell proliferation, migration, invasion and EMT. BRCC3 interacts with ZEB1 and interferes with BRCC3 to inhibit ZEB1 expression by increasing ZEB1 ubiquitination. Interference with BRCC3 inhibits TNBC cell tumorigenesis and lung metastasis in vivo. In all, this study demonstrates that BRCC3 can increase the stability of ZEB1, upregulate ZEB1 expression, and promote the proliferation, migration, invasion, EMT, and metastasis of TNBC cells, providing a new direction for cancer therapy.
Collapse
Affiliation(s)
- Qidi Huang
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shurong Zheng
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huayan Gu
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhi Yang
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yiqiao Lu
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xia Yu
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guilong Guo
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
24
|
Yuan J, Zhu Z, Zhang P, Ashrafizadeh M, Abd El-Aty AM, Hacımüftüoğlu A, Linnebacher CS, Linnebacher M, Sethi G, Gong P, Zhang X. SKP2 promotes the metastasis of pancreatic ductal adenocarcinoma by suppressing TRIM21-mediated PSPC1 degradation. Cancer Lett 2024; 587:216733. [PMID: 38360141 DOI: 10.1016/j.canlet.2024.216733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - Zeyao Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Christina Susanne Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
25
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
26
|
Wang Z, Zhang Y, Shen Y, Zhou H, Gao Y, Zhu C, Qin X. Unlocking hepatocellular carcinoma aggression: STAMBPL1-mediated TRAF2 deubiquitination activates WNT/PI3K/NF-kb signaling pathway. Biol Direct 2024; 19:18. [PMID: 38419066 PMCID: PMC10903047 DOI: 10.1186/s13062-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
STAM Binding Protein Like 1 (STAMBPL1), functions as a deubiquitinase (DUB) and plays a significant role in various types of cancers. However, its effect as a DUB participating in the HCC tumorigenesis and progression still unknown. In the study, the upregulation and strong prognosis value of STAMBPL1 were identified in HCC patients. Functionally, STAMBPL1 significantly promoted HCC cells proliferation and metastasis, and it interacts with TRAF2 and stabilize it via the deubiquitination at the K63 residue. The TRAF2 upregulation stabilized by STAMBPL1 overexpression transfers of P65 protein into the nucleus and activates the WNT/PI3K/ NF-kb signaling pathway. The 251-436 sites of STAMBPL1 particularly interact with the 294-496 sites of TRAF2, thereby exerting the function of DUB and removing the ubiquitin molecules attached to TRAF2. Our research unveiled a new function of STAMBPL1 in mediating TRAF2 deubiquitination and stabilization, thereby activating the WNT/PI3K/NF-kb signaling pathway, suggesting its potential as a novel biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhihuai Wang
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yinjie Zhang
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yuhang Shen
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Haiyang Zhou
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yuan Gao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chunfu Zhu
- Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Xihu Qin
- Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
27
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Zhang M, Wei T, Guo D. The role of abnormal ubiquitination in hepatocellular carcinoma pathology. Cell Signal 2024; 114:110994. [PMID: 38036196 DOI: 10.1016/j.cellsig.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Primary liver cancer is known for its high incidence and fatality rate. Over the years, therapeutic strategies for primary liver cancer have advanced significantly. Nonetheless, a substantial number of patients have not benefited from these methods, underscoring the pressing need for new and effective treatments for primary liver cancer. Ubiquitination is a critical post-translational modification that enables proteins to fulfill their normal biological functions and maintain their expression stability within cells. Importantly, increasing evidence suggests that the progression of liver cancer cells is often accompanied by disruptions in protein ubiquitination and deubiquitination processes. In this comprehensive review, we have compiled pertinent research about dysregulated ubiquitination in hepatocellular carcinoma (HCC) to broaden our understanding in this field. We elucidate the connections between the ubiquitination proteasome system, deubiquitination, and HCC. Furthermore, we shed light on the role of ubiquitination in cells situated within the tumor microenvironment of HCC including its involvement in mediating the activation of oncogenic pathways, reprogramming metabolic processes, and perturbing normal cellular functions. In conclusion, targeting the dysregulation of ubiquitination in HCC holds promise as a prospective and complementary therapeutic approach to existing treatments.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
29
|
Gong DA, Zhou P, Chang WY, Yang JY, Zhang YL, Huang AL, Tang N, Wang K. SPOP promotes CREB5 ubiquitination to inhibit MET signaling in liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119642. [PMID: 37996058 DOI: 10.1016/j.bbamcr.2023.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.
Collapse
Affiliation(s)
- De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Yao Yang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Lai Zhang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
30
|
Zhu M, Rovella V, Scimeca M, Mauriello A, Shi Y, Bischof J, Woodsmith J, Anselmo A, Melino G, Tisone G, Agostini M. Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype. Discov Oncol 2024; 15:10. [PMID: 38228856 DOI: 10.1007/s12672-023-00850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Mengting Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Alessandro Anselmo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
31
|
Lu H, Tan Z, Ko H, Naji P, Zhu R, Wang J, Huang S, Zhang YW, Zeng S. Tripartite motif-containing protein 26 promotes colorectal cancer growth by inactivating p53. RESEARCH SQUARE 2024:rs.3.rs-3782833. [PMID: 38260302 PMCID: PMC10802717 DOI: 10.21203/rs.3.rs-3782833/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tripartite motif-containing protein 26 (TRIM26) is an E3 ubiquitin ligase that exhibits divergent roles in various cancer types (oncogenic and anti-oncogenic). This study investigates the interaction of TRIM26 with the tumor suppressor protein p53 in colorectal cancer (CRC) cells by performing a comprehensive set of biochemical, cell-based assays, and xenograft experiments. As a result, we found that overexpression of TRIM26 significantly enhances CRC cell proliferation and colony formation, while knockdown of TRIM26 suppresses these processes. Xenograft experiments further validated the tumor-promoting role of TRIM26 in CRC. Supporting this is that TRIM26 is highly expressed in human CRC tissues as revealed by our analysis of the TCGA database. Biochemically, TRIM26 directly bound to the C-terminus of p53 and facilitated its ubiquitination, resulting in proteolytic degradation and attenuated p53 activity independently of MDM2. Also, TRIM26 increased the MDM2-mediated ubiquitination of p53 by binding to MDM2's C-terminus. This study uncovers the oncogenic potential of TRIM26 in CRC by inhibiting p53 function. Through its ubiquitin ligase activity, TRIM26 destabilizes p53, consequently promoting CRC cell proliferation and tumor growth. These findings shed light on the complex involvement of TRIM26 in cancer and identify this ubiquitin ligase as a potential therapeutic target for future development of CRC treatment.
Collapse
|
32
|
Hu Y, Wang Y, Hu W, Hu C, Wang B, Liu C, Deng A, Shen B, Wu K, Liu Y. USP39 Promotes the Viability and Migration of Head and Neck Squamous Cell Carcinoma Cell by Regulating STAT1. Technol Cancer Res Treat 2024; 23:15330338241250298. [PMID: 38706215 PMCID: PMC11072062 DOI: 10.1177/15330338241250298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.
Collapse
Affiliation(s)
- Yu Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Yang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Wenrui Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chenrui Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Bin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Congli Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Anqi Deng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Zou J, Niu K, Lu T, Kan J, Cheng H, Xu L. The Multifunction of TRIM26: From Immune Regulation to Oncology. Protein Pept Lett 2024; 31:424-436. [PMID: 38956921 PMCID: PMC11475100 DOI: 10.2174/0109298665311516240621114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.
Collapse
Affiliation(s)
- Jialai Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kaiyi Niu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Tao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jianxun Kan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Hao Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
34
|
Chen X, Tian L, Zhang L, Gao W, Yu M, Li Z, Zhang W. Deubiquitinase USP39 promotes SARS-CoV-2 replication by deubiquitinating and stabilizing the envelope protein. Antiviral Res 2024; 221:105790. [PMID: 38158131 DOI: 10.1016/j.antiviral.2023.105790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The SARS-CoV-2 envelope (E) protein is highly conserved among different viral variants and important for viral assembly and production. Our recent study found that the E protein is ubiquitinated and degraded by the E3 ligase RNF5 through the proteasome pathway. However, whether E ubiquitination can be reversed by host deubiquitinase has not yet been determined. Here, we identify by mass spectrum analysis that the deubiquitinases USP14 and USP39 specifically interact with E, while USP39 potently reverses E polyubiquitination. USP39 interacts with E via the arginine-rich motif (AR) and deubiquitinates E polyubiquitination via the inactive ubiquitin-specific protease domain. Therefore, USP39 protects E from RNF5-mediated degradation, resulting in the enhancement of E stability and E-induced cytokine storms. Moreover, loss-and-gain assays demonstrated that USP39 promotes the replication of various SARS-CoV-2 strains by stabilizing protein level of E that can be ubiquitinated but not other viral proteins. Our findings provide useful targets for the development of novel anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Li Tian
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Linran Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenying Gao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Miao Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, Jilin, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, Jilin, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
35
|
Su Y, Wang F, Lei Z, Li J, Ma M, Yan Y, Zhang W, Chen X, Xu B, Hu T. An Integrated Multi-Omics Analysis Identifying Immune Subtypes of Pancreatic Cancer. Int J Mol Sci 2023; 25:142. [PMID: 38203311 PMCID: PMC10779306 DOI: 10.3390/ijms25010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Limited studies have explored novel pancreatic cancer (PC) subtypes or prognostic biomarkers based on the altered activity of relevant signaling pathway gene sets. Here, we employed non-negative matrix factorization (NMF) to identify three immune subtypes of PC based on C7 immunologic signature gene set activity in PC and normal samples. Cluster 1, the immune-inflamed subtype, showed a higher response rate to immune checkpoint blockade (ICB) and had the lowest tumor immune dysfunction and exclusion (TIDE) scores. Cluster 2, the immune-excluded subtype, exhibited strong associations with stromal activation, characterized by elevated expression levels of transforming growth factor (TGF)-β, cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT) related genes. Cluster 3, the immune-desert subtype, displayed limited immune activity. For prognostic prediction, we developed an immune-related prognostic risk model (IRPM) based on four immune-related prognostic genes in pancreatic cancer, RHOF, CEP250, TSC1, and KIF20B. The IRPM demonstrated excellent prognostic efficacy and successful validation in an external cohort. Notably, the key gene in the prognostic model, RHOF, exerted significant influence on the proliferation, migration, and invasion of pancreatic cancer cells through in vitro experiments. Furthermore, we conducted a comprehensive analysis of somatic mutational landscapes and immune landscapes in PC patients with different IRPM risk scores. Our findings accurately stratified patients based on their immune microenvironment and predicted immunotherapy responses, offering valuable insights for clinicians in developing more targeted clinical strategies.
Collapse
Affiliation(s)
- Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Fen Wang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Jiangquan Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Ying Yan
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Xiaolei Chen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
36
|
Shukri AH, Lukinović V, Charih F, Biggar KK. Unraveling the battle for lysine: A review of the competition among post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194990. [PMID: 37748678 DOI: 10.1016/j.bbagrm.2023.194990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression, and cellular proliferation. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.
Collapse
Affiliation(s)
- Ali H Shukri
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Valentina Lukinović
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - François Charih
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
37
|
Cui D, Wang Z, Dang Q, Wang J, Qin J, Song J, Zhai X, Zhou Y, Zhao L, Lu G, Liu H, Liu G, Liu R, Shao C, Zhang X, Liu Z. Spliceosome component Usp39 contributes to hepatic lipid homeostasis through the regulation of autophagy. Nat Commun 2023; 14:7032. [PMID: 37923718 PMCID: PMC10624899 DOI: 10.1038/s41467-023-42461-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023] Open
Abstract
Regulation of alternative splicing (AS) enables a single transcript to yield multiple isoforms that increase transcriptome and proteome diversity. Here, we report that spliceosome component Usp39 plays a role in the regulation of hepatocyte lipid homeostasis. We demonstrate that Usp39 expression is downregulated in hepatic tissues of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) subjects. Hepatocyte-specific Usp39 deletion in mice leads to increased lipid accumulation, spontaneous steatosis and impaired autophagy. Combined analysis of RNA immunoprecipitation (RIP-seq) and bulk RNA sequencing (RNA-seq) data reveals that Usp39 regulates AS of several autophagy-related genes. In particular, deletion of Usp39 results in alternative 5' splice site selection of exon 6 in Heat shock transcription factor 1 (Hsf1) and consequently its reduced expression. Importantly, overexpression of Hsf1 could attenuate lipid accumulation caused by Usp39 deficiency. Taken together, our findings indicate that Usp39-mediated AS is required for sustaining autophagy and lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jianping Song
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Xiangyu Zhai
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Yachao Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
38
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
39
|
Wang Z, Xia Y, Wang Y, Zhu R, Li H, Liu Y, Shen N. The E3 ligase TRIM26 suppresses ferroptosis through catalyzing K63-linked ubiquitination of GPX4 in glioma. Cell Death Dis 2023; 14:695. [PMID: 37872147 PMCID: PMC10593845 DOI: 10.1038/s41419-023-06222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
The selenium-containing enzyme GPX4 moonlights as a central regulator of ferroptosis, an iron-dependent, nonapoptotic form of regulated cell death caused by lipid peroxidation. Yet, little is known about the mechanisms underlying the regulation of its post-transcriptional modifications. Here, we identify the tripartite motif-containing protein TRIM26 as an E3 ubiquitin ligase of GPX4. TRIM26 directly interacts with GPX4 through its Ring domain and catalyzes the ubiquitination of GPX4 at K107 and K117, which promotes the switch in polyubiquitination of GPX4 from K48 to K63, thus enhancing GPX4 protein stability. Moreover, PLK1-mediated S127 phosphorylation of TRIM26 enhances the interaction between TRIM26 and GPX4. Inhibition of TRIM26 phosphorylation causes a reduction in GPX4 K63-linked polyubiquitination and diminishes GPX4 protein levels in tumor cells. Further investigation revealed that TRIM26 is overexpressed in glioma cells. TRIM26 silencing dramatically impedes ferroptosis resistance and tumorigenesis in glioma in vivo and in vitro. Clinically, TRIM26 expression shows a direct correlation with GPX4 and PLK1 levels in glioma samples and is associated with poor outcome in patients with glioma. Collectively, these findings define the role of GPX4 K63-linked polyubiquitination in ferroptosis and suggest a potential strategy for glioma treatment.
Collapse
Affiliation(s)
- Zhangjie Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Hematology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Yang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ruiqiu Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hongbo Li
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yu Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Na Shen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
40
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
41
|
Xu M, Tan J, Liu X, Han L, Ge C, Zhang Y, Luo F, Wang Z, Xue X, Xiong L, Wang X, Zhang Q, Wang X, Tian Q, Zhang S, Meng Q, Dai X, Kuang Q, Li Q, Lou D, Hu L, Liu X, Kuang G, Luo J, Chang C, Wang B, Chai J, Shi S, Han L. Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation. Nat Commun 2023; 14:6384. [PMID: 37821436 PMCID: PMC10567751 DOI: 10.1038/s41467-023-42040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
| | - Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Li Han
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Yujie Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Fufang Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Zhongqin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoqin Xue
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Liangyin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qinqin Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoxin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qin Tian
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Qingkun Meng
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Chunxiao Chang
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Jie Chai
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Shengbin Shi
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003, Nanjing, P. R. China.
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, 315211, Shanghai, China.
| |
Collapse
|
42
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Xia K, Zheng D, Wei Z, Liu W, Guo W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis 2023; 14:529. [PMID: 37591850 PMCID: PMC10435491 DOI: 10.1038/s41419-023-06048-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly aggressive malignant tumor that is common in the pediatric population and has a high rate of disability and mortality. Recent studies have suggested that the tripartite motif-containing family genes (TRIMs) play critical roles in oncogenesis in several cancers. TRIM26, one of the TRIMs family genes, was more frequently reported to exert a tumor-suppressive role, while its detailed functional roles in the osteosarcoma progression were still unknown and require further investigation. Herein, we found that TRIM26 was markedly downregulated in osteosarcoma tissues and cells. Survival analysis revealed that higher expression of TRIM26 was associated with better prognosis and its expression was an independent protective factor in osteosarcoma. Functional analysis demonstrated that overexpression of TRIM26 inhibited osteosarcoma cell proliferation and invasion via inhibiting the EMT process and MEK/ERK signaling. In contrast, the silence of TRIM26 caused the opposite effect. RACK1, a member of the Trp-Asp repeat protein family, was identified as a novel target of TRIM26. TRIM26 could interact with RACK1 and accelerate the degradation of RACK1, thus inactivation of MEK/ERK signaling. Overexpression of RACK1 could attenuate the inhibitory effect of TRIM26 overexpression on p-MEK1/2 and p-ERK1/2, and silence of RACK1 could partly impair the effect of TRIM26 knockdown-induced upregulation of p-MEK1/2 and p-ERK1/2. Further, a series of gain- and loss-of-function experiments showed that decreased malignant behaviors including cell proliferation and invasion in TRIM26-upregulated cells were reversed when RACK1 was overexpressed, whereas RACK1 knockdown diminished the increased malignant phenotypes in TRIM26-silenced osteosarcoma cells. In conclusion, our study indicated that TRIM26 inhibited osteosarcoma progression via promoting proteasomal degradation of RACK1, thereby resulting in inactivation of MEK/ERK signaling, and impeding the EMT process.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
44
|
Wu Y, Duan Y, Han W, Cao J, Ye B, Chen P, Li H, Wang Y, Liu J, Fang Y, Yue K, Wu Y, Wang X, Jing C. Deubiquitinase YOD1 suppresses tumor progression by stabilizing E3 ligase TRIM33 in head and neck squamous cell carcinoma. Cell Death Dis 2023; 14:517. [PMID: 37573347 PMCID: PMC10423255 DOI: 10.1038/s41419-023-06035-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Ubiquitination is a reversible process that not only controls protein synthesis and degradation, but also is essential for protein transport, localization and biological activity. Deubiquitinating enzyme (DUB) dysfunction leads to various diseases, including cancer. In this study, we aimed to explore the functions and mechanisms of crucial DUBs in head and neck squamous cell carcinoma (HNSCC). Based on bioinformatic analysis and immunohistochemistry detection, YOD1 was identified to be significantly downregulated in HNSCC specimens compared with adjacent normal tissues. Further analysis revealed that reduced YOD1 expression was associated with the malignant progression of HNSCC and indicated poor prognosis. The results of the in vitro and in vivo experiments verified that YOD1 depletion significantly promoted growth, invasion, and epithelial-mesenchymal transition in HNSCC. Mechanistically, YOD1 inhibited the activation of the ERK/β-catenin pathway by suppressing the ubiquitination and degradation of TRIM33, leading to the constriction of HNSCC progression. Overall, our findings reveal the molecular mechanism underlying the role of YOD1 in tumor progression and provide a novel potential therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Han
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
45
|
Liu ZY, Lin XT, Zhang YJ, Gu YP, Yu HQ, Fang L, Li CM, Wu D, Zhang LD, Xie CM. FBXW10-S6K1 promotes ANXA2 polyubiquitination and KRAS activation to drive hepatocellular carcinoma development in males. Cancer Lett 2023; 566:216257. [PMID: 37277019 DOI: 10.1016/j.canlet.2023.216257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The incidence rate of human hepatocellular carcinoma (HCC) is approximately three times higher in males than in females. A better understanding of the mechanisms underlying HCC development in males could lead to more effective therapies for HCC. Our previous study found that FBXW10 played a critical role in promoting HCC development in male mice and patients, but the mechanism remains unknown. Here, we found that FBXW10 promoted K63-linked ANXA2 polyubiquitination and activation in HCC tissues from males, and this process was required for S6K1-mediated phosphorylation. Activated ANXA2 further translocated from the cytoplasm to the cell membrane to bind KRAS and then activated the MEK/ERK pathway, leading to HCC proliferation and lung metastasis. Interfering with ANXA2 significantly blocked FBXW10-driven HCC growth and lung metastasis in vitro and in vivo. Notably, membrane ANXA2 was upregulated and positively correlated with FBXW10 expression in male HCC patients. These findings offer new insights into the regulation and function of FBXW10 signaling in HCC tumorigenesis and metastasis and suggest that the FBXW10-S6K1-ANXA2-KRAS-ERK axis may serve as a potential biomarker and therapeutic target in male HCC patients with high FBXW10 expression.
Collapse
Affiliation(s)
- Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong-Peng Gu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chun-Ming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
46
|
Li Q, Tan G, Wu F. The functions and roles of C2H2 zinc finger proteins in hepatocellular carcinoma. Front Physiol 2023; 14:1129889. [PMID: 37457025 PMCID: PMC10339807 DOI: 10.3389/fphys.2023.1129889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
C2H2 zinc finger (C2H2-ZF) proteins are the majority group of human transcription factors and they have many different molecular functions through different combinations of zinc finger domains. Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the main reason for cancer-related deaths worldwide. More and more findings support the abnormal expression of C2H2-ZF protein in the onset and progression of HCC. The C2H2-ZF proteins are involved in various biological functions in HCC, such as EMT, stemness maintenance, metabolic reprogramming, cell proliferation and growth, apoptosis, and genomic integrity. The study of anti-tumor drug resistance also highlights the pivotal roles of C2H2-ZF proteins at the intersection of biological functions (EMT, stemness maintenance, autophagy)and chemoresistance in HCC. The involvement of C2H2-ZF protein found recently in regulating different molecules, signal pathways and pathophysiological activities indicate these proteins as the possible therapeutic targets, and diagnostic or prognostic biomarkers for HCC.
Collapse
|
47
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
48
|
Xiao Y, Chen X, Hu W, Ma W, Di Q, Tang H, Zhao X, Huang G, Chen W. USP39-mediated deubiquitination of Cyclin B1 promotes tumor cell proliferation and glioma progression. Transl Oncol 2023; 34:101713. [PMID: 37302347 DOI: 10.1016/j.tranon.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND The elevated Cyclin B1 expression contributes to various tumorigenesis and poor prognosis. Cyclin B1 expression could be regulated by ubiquitination and deubiquitination. However, the mechanism of how Cyclin B1 is deubiquitinated and its roles in human glioma remain unclear. METHODS Co-immunoprecipitation and other assays were performed to detect the interacting of Cyclin B1 and USP39. A series of in vitro and in vivo experiments were performed to investigate the effect of USP39 on the tumorigenicity of tumor cells. RESULTS USP39 interacts with Cyclin B1 and stabilizes its expression by deubiquitinating Cyclin B1. Notably, USP39 cleaves the K29-linked polyubiquitin chain on Cyclin B1 at Lys242. Additionally, overexpression of Cyclin B1 rescues the arrested cell cycle at G2/M transition and the suppressed proliferation of glioma cells caused by USP39 knockdown in vitro. Furthermore, USP39 promotes the growth of glioma xenograft in subcutaneous and in situ of nude mice. Finally, in human tumor specimens, the expression levels of USP39 and Cyclin B1 are positively relevant. CONCLUSION Our data support the evidence that USP39 acts a novel deubiquitinating enzyme of Cyclin B1 and promoted tumor cell proliferation at least in part through Cyclin B1 stabilization, represents a promising therapeutic strategy for tumor patients.
Collapse
Affiliation(s)
- Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xinyi Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Weiwei Hu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjing Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Guodong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Neurosurgery, Shenzhen Second People's Hospital, The first Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen 518055, China; Institute of Biological Therapy, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
49
|
Sun Y, Lin P, Zhou X, Ren Y, He Y, Liang J, Zhu Z, Xu X, Mao X. TRIM26 promotes non-small cell lung cancer survival by inducing PBX1 degradation. Int J Biol Sci 2023; 19:2803-2816. [PMID: 37324936 PMCID: PMC10266081 DOI: 10.7150/ijbs.81726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
The transcription factor PBX1 is regarded as an oncogene in various cancers, but its role in non-small cell lung cancer (NSCLC) and the detailed mechanism is not known. In the present study, we found that PBX1 is downregulated in NSCLC tissues and inhibits NSCLC cell proliferation and migration. Subsequently, we performed an affinity purification-coupled tandem mass spectrometry (MS/MS) and found the ubiquitin ligase TRIM26 in the PBX1 immunoprecipitates. Moreover, TRIM26 binds to and mediates PBX1 for K48-linked polyubiquitination and proteasomal degradation. Noticeably, TRIM26 activity depends on its C-terminal RING domain when it is deleted TRIM26 loses its function towards PBX1. TRIM26 further inhibits PBX1 transcriptional activity and downregulates the PBX1 downstream genes, such as RNF6. Moreover, we found that overexpression of TRIM26 significantly promotes NSCLC proliferation, colony formation, and migration in contradiction to PBX1. TRIM26 is highly expressed in NSCLC tissues and predicts poor prognosis. Lastly, the growth NSCLC xenografts is promoted by overexpression of TRIM26 but is suppressed by TRIM26 knockout. In conclusion, TRIM26 is a ubiquitin ligase of PBX1 and it promotes while PBX1 inhibits NSCLC tumor growth. TRIM26 might be a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuening Sun
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Peng Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiumin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuanming He
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jingpei Liang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Xiaofeng Xu
- Department of Urology, Jinling Hospital of Nanjing University, Nanjing, 210093, P. R. China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Department of Biology, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation, Guangzhou Medical University, 511436, P. R. China
| |
Collapse
|
50
|
Li Y, Huang X, Jin J, Zhang H, Yang K, Han J, Lv Y, Sun Y, Yao C, Lin T, Zhu C, Liu H. Interaction of TAGLN and USP1 promotes ZEB1 ubiquitination degradation in UV-induced skin photoaging. Cell Biosci 2023; 13:80. [PMID: 37149635 PMCID: PMC10163745 DOI: 10.1186/s13578-023-01029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Ultraviolet A (UVA) irradiation can lead to skin damage and premature skin aging known as photoaging. This work found that UVA irradiation caused an imbalance between dermal matrix synthesis and degradation through the aberrant upregulation of transgelin (TAGLN) and studied the underlying molecular mechanism. RESULTS Co-immunoprecipitation and proximal ligation assay results showed that TAGLN can interact with USP1. USP1 can be retained in the cytoplasm by TAGLN in UVA-induced cells, which inhibits the interaction between USP1/zinc finger E-box binding homeobox 1 (ZEB1), promote the ubiquitination degradation of ZEB1, and lead to photoaging. TAGLN knockdown can release USP1 retention and help human skin fibroblasts (HSFs) resist UVA-induced damage. The interactive interface inhibitors of TAGLN/USP1 were screened via virtual docking to search for small molecules that inhibit photoaging. Zerumbone (Zer), a natural product isolated from Zingiber zerumbet (L.) Smith, was screened out. Zer can competitively bind TAGLN to reduce the retention of USP1 in the cytoplasm and the degradation of ZEB1 ubiquitination in UV-induced HSFs. The poor solubility and permeability of Zer can be improved by preparing it as a nanoemulsion, which can effectively prevent skin photoaging caused by UVA in wild-type (WT) mice. Zer cannot effectively resist the photoaging caused by UVA in Tagln-/- mice because of target loss. CONCLUSIONS The present results showed that the interaction of TAGLN and USP1 can promote ZEB1 ubiquitination degradation in UV-induced skin photoaging, and Zer can be used as an interactive interface inhibitor of TAGLN/USP1 to prevent photoaging.
Collapse
Affiliation(s)
- Yinan Li
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiu Huang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Haohao Zhang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Jingxia Han
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tingting Lin
- Medical plastic and cosmetic center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Huijuan Liu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|