1
|
Sha Z, Dong S, Nie M, Liu T, Wu C, Lv C, Liu M, Jiang W, Yuan J, Qian Y, Piao X, Jiang R, Gao C. Genetic deletion of G protein-coupled receptor 56 aggravates traumatic brain injury through the microglial CCL3/4/5 upregulation targeted to CCR5. Cell Death Dis 2025; 16:175. [PMID: 40089481 PMCID: PMC11910551 DOI: 10.1038/s41419-025-07501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Traumatic brain injury (TBI) is a significant global health concern that often results in death or disability, and effective pharmacological treatments are lacking. G protein-coupled receptor 56 (GPR56), a potential drug target, is crucial for neuronal and glial cell function and therefore plays important roles in various neurological diseases. Here, we investigated the potential role and mechanism of GPR56 in TBI-related damage to gain new insights into the pharmacological treatment of TBI. Our study revealed that TBI caused a significant decrease in GPR56 expression and that the deletion of Gpr56 exacerbated neurological function deficits and blood‒brain barrier (BBB) damage following TBI. Additionally, Gpr56 deletion led to increased microgliosis, increased infiltration of peripheral T cells and macrophages, and increased release of cerebral inflammatory cytokines and chemokines after TBI. Furthermore, Gpr56 deletion induced neuronal apoptosis, impaired autophagy, and exacerbated neurological function deficits through microglial-to-neuronal CCR5 signaling after TBI. Overall, these results indicate that Gpr56 knockout exacerbates neurological deficits, neuroinflammation and neuronal apoptosis following TBI through microglial CCL3/4/5 upregulation targeted to CCR5, which indicates that GRP56 may be a potential new pharmacological target for TBI.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/pathology
- Brain Injuries, Traumatic/metabolism
- Microglia/metabolism
- Microglia/pathology
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Mice
- Up-Regulation
- Chemokine CCL3/metabolism
- Chemokine CCL3/genetics
- Mice, Knockout
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Mice, Inbred C57BL
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Chemokine CCL4/metabolism
- Chemokine CCL4/genetics
- Male
- Gene Deletion
- Neurons/metabolism
- Neurons/pathology
- Apoptosis
- Signal Transduction
Collapse
Affiliation(s)
- Zhuang Sha
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xianhua Piao
- Weill Institute for Neuroscience, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Rongcai Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- State Key Laboratory of Experimental Hematology, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.
| |
Collapse
|
2
|
Fleming A, Lopez A, Rob M, Ramakrishna S, Park SJ, Li X, Rubinsztein DC. How does autophagy impact neurological function? Neuroscientist 2025:10738584251324459. [PMID: 40079405 DOI: 10.1177/10738584251324459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Autophagies describe a set of processes in which cells degrade their cytoplasmic contents via various routes that terminate with the lysosome. In macroautophagy (the focus of this review, henceforth autophagy), cytoplasmic contents, including misfolded proteins, protein complexes, dysfunctional organelles, and various pathogens, are captured within double membranes called autophagosomes, which ultimately fuse with lysosomes, after which their contents are degraded. Autophagy is important in maintaining neuronal and glial function; consequently, disrupted autophagy is associated with various neurologic diseases. This review provides a broad perspective on the roles of autophagy in the CNS, highlighting recent literature that furthers our understanding of the multifaceted role of autophagy in maintaining a healthy nervous system.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Matea Rob
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Sarayu Ramakrishna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - So Jung Park
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Xinyi Li
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
3
|
Qin C, Xu F, Yue B, Zhong J, Chai Z, Wang H. SRSF3 and hnRNP A1-mediated m6A-modified circCDK14 regulates intramuscular fat deposition by acting as miR-4492-z sponge. Cell Mol Biol Lett 2025; 30:26. [PMID: 40038607 PMCID: PMC11881307 DOI: 10.1186/s11658-025-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The intramuscular fat (IMF) content of yak beef is critical for determining its quality. Circular RNAs (circRNAs) are a group of endogenous non-coding RNAs that have emerged as important factors in the regulation of IMF deposition. However, the molecular mechanisms through which circRNAs regulate IMF deposition, particularly in yaks, remain unclear. In the present study, a novel circRNA, circCDK14 (originating from the yak's CDK14 gene), was identified by sequencing and RNase R treatment. In our previous study, we successfully established a ceRNA network map and identified miR-4492-z, which interacts with circCDK14. Furthermore, using methylation prediction software, we predicted two genes, SRSF3 and hnRNP A1, that have a strong binding relationship with circCDK14; existing research has confirmed their close association with m6A methylation modifications. On the basis of these findings, we comprehensively evaluated the effects of circCDK14, miR-4492-z, SRSF3 and hnRNP A1 on the proliferation and differentiation of yak intramuscular pre-adipocytes using EdU, CCK-8, BODIPY, Oil Red O and qRT-PCR analyses. Mechanistically, the interaction between circCDK14 and miR-4492-z was validated using a dual-luciferase reporter gene assay and rescue experiments. RIP assays revealed the binding interaction of circCDK14 with SRSF3 and hnRNP A1. The MeRIP experiments showed modification of circCDK14 methylation, with SRSF3 and hnRNP A1 promoting the methylation and translocation of circCDK14 from the nucleus to the cytoplasm. In summary, our results suggest that m6A-modified circCDK14 plays a crucial role as an miR-4492-z sponge in regulating IMF deposition in yaks and that the nuclear export of circCDK14 correlates with the expression levels of SRSF3 and hnRNP A1. This study provides a theoretical basis for the improvement of yak meat quality and promotes the development of molecular yak breeding.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Fang Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
4
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
5
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
6
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Park SJ, Son SM, Barbosa AD, Wrobel L, Stamatakou E, Squitieri F, Balmus G, Rubinsztein DC. Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise. Nat Cell Biol 2024; 26:1691-1699. [PMID: 39209961 PMCID: PMC11469956 DOI: 10.1038/s41556-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Autophagy is a conserved pathway where cytoplasmic contents are engulfed by autophagosomes, which then fuse with lysosomes enabling their degradation. Mutations in core autophagy genes cause neurological conditions, and autophagy defects are seen in neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Thus, we have sought to understand the cellular pathway perturbations that autophagy-perturbed cells are vulnerable to by seeking negative genetic interactions such as synthetic lethality in autophagy-null human cells using available data from yeast screens. These revealed that loss of proteasome and nuclear pore complex components cause synergistic viability changes akin to synthetic fitness loss in autophagy-null cells. This can be attributed to the cytoplasm-to-nuclear transport of proteins during autophagy deficiency and subsequent degradation of these erstwhile cytoplasmic proteins by nuclear proteasomes. As both autophagy and cytoplasm-to-nuclear transport are defective in Huntington's disease, such cells are more vulnerable to perturbations of proteostasis due to these synthetic interactions.
Collapse
Affiliation(s)
- So Jung Park
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Antonio Daniel Barbosa
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Lidia Wrobel
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - David C Rubinsztein
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
9
|
Qin C, Wang H, Peng W, Yue B, Fu C, Shu S, Zhong J, Wang H. Circular RNA mapping reveals CircCWC22 as a MiR-3059-x sponge in yak fat deposition by regulating HMGCL. Int J Biol Macromol 2024; 257:128531. [PMID: 38042314 DOI: 10.1016/j.ijbiomac.2023.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
The regulatory mechanisms and functions of circular RNAs (circRNAs) in yak intramuscular fat (IMF) deposition remain unclear. This study aimed to investigate yak circRNAs with high and low IMF content using high-throughput sequencing. A total of 270 differentially expressed circRNAs were identified, of which 129 were upregulated and 141 were downregulated. Among these circRNAs, circCWC22, derived from the yak CWC22 gene, was further studied to understand its functions and regulatory mechanisms. Sequencing and RNase R processing confirmed the circular nature of circCWC22. By constructing a circRNA-miRNA-mRNA co-expression network, the potential regulatory pathway of circCWC22/miR-3059-x/HMGCL was identified. To investigate the roles of circCWC22, miR-3059-x, and HMGCL in the deposition of yak intramuscular preadipocytes (YIMAs), CCK-8, EdU, BODIPY, triglyceride content, and qRT-PCR analyses were performed. The results demonstrated that circCWC22, miR-3059-x, and HMGCL promoted the differentiation and inhibited the proliferation of YIMAs. Using the dual-luciferase reporter system and qRT-PCR, we confirmed that circCWC22 adsorbed miR-3059-x, and HMGCL was identified as a target gene of miR-3059-x. In conclusion, this study uncovered a large number of potential circRNAs involved in IMF deposition and highlighted the significant role of circCWC22 in yak IMF deposition via the circCWC22/miR-3059-x/HMGCL axis.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
10
|
Festa BP, Siddiqi FH, Jimenez-Sanchez M, Won H, Rob M, Djajadikerta A, Stamatakou E, Rubinsztein DC. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 2023; 111:2021-2037.e12. [PMID: 37105172 DOI: 10.1016/j.neuron.2023.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
In neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases. We found that the microglial-derived CCL-3/-4/-5 bind and activate neuronal CCR5, which in turn promotes mTORC1 activation and disrupts autophagy and aggregate-prone protein clearance. CCR5 and its cognate chemokines are upregulated in the brains of pre-manifesting mouse models for Huntington's disease (HD) and tauopathy, suggesting a pathological role of this microglia-neuronal axis in the early phases of these diseases. CCR5 upregulation is self-sustaining, as CCL5-CCR5 autophagy inhibition impairs CCR5 degradation itself. Finally, pharmacological or genetic inhibition of CCR5 rescues mTORC1 hyperactivation and autophagy dysfunction, which ameliorates HD and tau pathologies in mouse models.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Farah H Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Hyeran Won
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Matea Rob
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Alvin Djajadikerta
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK.
| |
Collapse
|
11
|
Park SJ, Frake RA, Rubinsztein DC. Increased SORBS3 expression in brain ageing contributes to autophagic decline via YAP1-WWTR1/TAZ signaling. Autophagy 2023; 19:943-944. [PMID: 35822241 PMCID: PMC9980698 DOI: 10.1080/15548627.2022.2100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Impaired autophagosome formation and reduced flux through the macroautophagy/autophagy pathway occurs outside the brain as part of normal aging in various species. We recently identified autophagic decline in mouse brain tissue dependent on aging. This sits alongside significantly increased expression of the Sorbs3/SORBS3/vinexin (sorbin and SH3 domain containing 3) gene in older mouse and human brains. We found that SORBS3 negatively regulates autophagy in several cell lines, including mouse primary neurons. SORBS3 depletion increases F-actin structures, which compete with YAP1-WWTR1/TAZ to bind AMOT (angiomotin) proteins in the cytosol. Unbound YAP1-WWTR1/TAZ is free to move into the nucleus and upregulate YAP1-WWTR1/TAZ target gene expression. This upregulates autophagosome formation, in part through increased expression of myosin- and actin-related genes. Moreover, we have shown these YAP1-WWTR1/TAZ target genes are downregulated in older mouse and human brains. Taken together, our findings suggest that increased SORBS3 expression contributes to autophagic decline in normal brain aging across species.
Collapse
Affiliation(s)
- So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK.,UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Cambridge, UK
| | - Rebecca A Frake
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK.,UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
12
|
Bao X, Liu X, Wu Q, Ye F, Shi Z, Xu D, Zhang J, Dou Z, Huang G, Zhang H, Sun C. Mitochondrial-Targeted Antioxidant MitoQ-Mediated Autophagy: A Novel Strategy for Precise Radiation Protection. Antioxidants (Basel) 2023; 12:antiox12020453. [PMID: 36830013 PMCID: PMC9952602 DOI: 10.3390/antiox12020453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is one of the most effective cancer treatments. However, successful radiation protection for normal tissue is a clinical challenge. Our previous study observed that MitoQ, a mitochondria-targeted antioxidant, was adsorbed to the inner mitochondrial membrane and remained the cationic moiety in the intermembrane space. The positive charges in MitoQ restrained the activity of respiratory chain complexes and decreased proton production. Therefore, a pseudo-mitochondrial membrane potential (PMMP) was developed via maintenance of exogenous positive charges. This study identified that PMMP constructed by MitoQ could effectively inhibit mitochondrial respiration within normal cells, disrupt energy metabolism, and activate adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling to induce autophagy. As such, it could not lead to starvation-induced autophagy among tumor cells due to the different energy phenotypes between normal and tumor cells (normal cells depend on mitochondrial respiration for energy supply, while tumor cells rely on aerobic glycolysis). Therefore, we successfully protected the normal cells from radiation-induced damage without affecting the tumor-killing efficacy of radiation by utilizing selective autophagy. MitoQ-constructed PMMP provides a new therapeutic strategy for specific radiation protection.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qingfeng Wu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fei Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Shi
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dan Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| |
Collapse
|
13
|
Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int J Mol Sci 2022; 23:ijms23137067. [PMID: 35806070 PMCID: PMC9266666 DOI: 10.3390/ijms23137067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The default mode network (DMN) plays an outstanding role in psychiatric disorders. Still, gene expressional changes in its major component, the dorsomedial prefrontal cortex (DMPFC), have not been characterized. We used RNA sequencing in postmortem DMPFC samples to investigate suicide victims compared to control subjects. 1400 genes differed using log2FC > ±1 and adjusted p-value < 0.05 criteria between groups. Genes associated with depressive disorder, schizophrenia and impaired cognition were strongly overexpressed in top differentially expressed genes. Protein−protein interaction and co-expressional networks coupled with gene set enrichment analysis revealed that pathways related to cytokine receptor signaling were enriched in downregulated, while glutamatergic synaptic signaling upregulated genes in suicidal individuals. A validated differentially expressed gene, which is known to be associated with mGluR5, was the N-terminal EF-hand calcium-binding protein 2 (NECAB2). In situ hybridization histochemistry and immunohistochemistry proved that NECAB2 is expressed in two different types of inhibitory neurons located in layers II-IV and VI, respectively. Our results imply extensive gene expressional alterations in the DMPFC related to suicidal behavior. Some of these genes may contribute to the altered mental state and behavior of suicide victims.
Collapse
|
14
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|