1
|
Modares NF, Hendrikse LD, Smith LK, Paul MS, Haight J, Luo P, Liu S, Fortin J, Tong FK, Wakeham AC, Jafari SM, Zheng C, Buckland M, Flick R, Silvester J, Berger T, Ketela T, Helke S, Foffi E, Niavarani R, Mcwilliam R, Saunders ME, Colonna I, David BA, Rastogi T, Lee WY, Kubes P, Mak TW. B cell-derived acetylcholine promotes liver regeneration by regulating Kupffer cell and hepatic CD8 + T cell function. Immunity 2025; 58:1201-1216.e7. [PMID: 40286791 DOI: 10.1016/j.immuni.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Liver regeneration (LR) is essential for recovery from acute trauma, cancer surgery, or transplantation. Neurotransmitters such as acetylcholine (ACh) play a role in LR by stimulating immune cells and augmenting hepatocyte proliferation, but the source of this ACh remains unclear. Here, we demonstrated that B cells expressing choline acetyltransferase (ChAT), which synthesizes ACh, were required for LR. Mice lacking ChAT+ B cells subjected to partial hepatectomy (PHX) displayed greater mortality due to failed LR. Kupffer cells and hepatic CD8+ T cells expressed the α7 nicotinic ACh receptor (nAChR), and LR was disrupted in mice lacking α7 nAChR. Mechanistically, B cell-derived ACh signaled through α7 nAChR to positively regulate the function of regenerative Kupffer cells and to control the activation of hepatic CD8+ T cells to curtail harmful interferon-gamma (IFNγ) production. Our work offers insights into LR mechanisms that may point to therapies for liver damage.
Collapse
Affiliation(s)
| | - Liam D Hendrikse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Logan K Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Frances K Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Chunxing Zheng
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Mackenzie Buckland
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Flick
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Simone Helke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Erica Foffi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Raheleh Niavarani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ryan Mcwilliam
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Isabelle Colonna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bruna Araujo David
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tashi Rastogi
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Woo-Yong Lee
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Paul Kubes
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biomedical and Molecular Science, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zheng C, Liu S, Fazel Modares N, St Paul M, Mak TW. Cholinergic T cells revitalize the tumor immune microenvironment: TIME to ChAT. Nat Immunol 2025; 26:665-677. [PMID: 40307453 DOI: 10.1038/s41590-025-02144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/06/2025] [Indexed: 05/02/2025]
Abstract
Crosstalk between the nervous system and the immune system shapes the tumor microenvironment. Cholinergic T cells, a unique population of T cell antigen receptor-induced acetylcholine-producing T cells, have emerged as an integrative interface between these two fundamental body systems. Here we review the distinct characteristics and functions of cholinergic T cells in cancer settings. We first outline the expression of choline acetyltransferase and the cholinergic machinery in T cells. We then describe the dysfunctional state of choline acetyltransferase-expressing T cells in cancer and delve into their modulatory effects on T cells, cancer cells and the tumor microenvironment, including its populations of immune cells, its vasculature and its nerves. We also discuss the clinical implications of harnessing the potential of cholinergic T cells and future directions for increasing our understanding of their importance and possible exploitation.
Collapse
Affiliation(s)
- Chunxing Zheng
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tak W Mak
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Fey RM, Billo A, Clister T, Doan KL, Berry EG, Tibbitts DC, Kulkarni RP. Personalization of Cancer Treatment: Exploring the Role of Chronotherapy in Immune Checkpoint Inhibitor Efficacy. Cancers (Basel) 2025; 17:732. [PMID: 40075580 PMCID: PMC11899640 DOI: 10.3390/cancers17050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/01/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
In the era of precision medicine, mounting evidence suggests that the time of therapy administration, or chronotherapy, has a great impact on treatment outcomes. Chronotherapy involves planning treatment timing by considering circadian rhythms, which are 24 h oscillations in behavior and physiology driven by synchronized molecular clocks throughout the body. The value of chronotherapy in cancer treatment is currently under investigation, notably in the effects of treatment timing on efficacy and side effects. Immune checkpoint inhibitor (ICI) therapy is a promising cancer treatment. However, many patients still experience disease progression or need to stop the therapy early due to side effects. There is accumulating evidence that the time of day at which ICI therapy is administered can have a substantial effect on ICI efficacy. Thus, it is important to investigate the intersections of circadian rhythms, chronotherapy, and ICI efficacy. In this review, we provide a brief overview of circadian rhythms in the context of immunity and cancer. Additionally, we outline current applications of chronotherapy for cancer treatment. We synthesize the 29 studies conducted to date that examine the impact of time-of-day administration on the efficacy of ICI therapy, its associated side effects, and sex differences in both efficacy and side effects. We also discuss potential mechanisms underlying these observed results. Finally, we highlight the challenges in this area and future directions for research, including the potential for a chronotherapeutic personalized medicine approach that tailors the time of ICI administration to individual patients' circadian rhythms.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Avery Billo
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Khanh L. Doan
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Elizabeth G. Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Deanne C. Tibbitts
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
4
|
Li Y, Zhu M, Yang P, Chen D, Zhou D, Ren Y, Zhang Z, Ruan C, Da Y, Zhang R. Sp3 ameliorated experimental autoimmune encephalomyelitis by triggering Socs3 in Th17 cells. J Adv Res 2025:S2090-1232(25)00070-0. [PMID: 39884649 DOI: 10.1016/j.jare.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
INTRODUCTION Although it is believed that chronic inflammatory and degenerative diseases of the central nervous system are mediated by autoimmune Th17 cells, the underlying mechanisms remain largely unexplored. Recent studies and our research have revealed that Sp3 was blocked in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE). However, it remained unclear why it is silent and how it regulates Th17 cell differentiation in MS. OBJECTIVES This study aimed to explore the impact of Sp3 on Th17 cell-mediated EAE and the underlying mechanism. METHODS The effect of Sp3 on the clinical symptoms of EAE was evaluated by scoring, histochemistry, and fast blue (FB) techniques, scRNA-seq data analysis, flow cytometry, ELISA, PCR, WB, immunofluorescence and reporter gene techniques were used to explore the molecular mechanism of Sp3 regulating Th17 cell differentiation. RESULTS Injection of overexpression Sp3 lentivirus could significantly ameliorate the EAE progress and clinical symptoms and prevent the polarization of Th1 and Th17 cells both in vivo and in vitro. We confirmed the occurrence of EAE in Sp3+/+CD4Cre mice and Sp3+/- knockout mice. Furthermore, we identified Sp3 as a target of miR-223, which is found to be upregulated in the blood of MS patients, as well as in EAE and Th17 cells. Moreover, knockdown of miR-223 led to a marked improvement in EAE symptoms and a suppression of Th1 and Th17 cell polarization in vivo and in vitro. Mechanistically, Sp3 significantly suppressed RORγt expression and the phosphorylation of Stat3 and Smad2/3 by directly upregulating Socs3. Interestingly, Socs3 was found to regulate Sp3 expression in response to TGF-β1 via a feedback loop. Moreover, Socs3 modulated phospho-Smad2/3 by binding to and degrading the transforming growth factor-β receptor II (TβRII). CONCLUSION Thus, our study suggests a novel mechanism involving miR-223/Sp3/Socs3/TGF-β signaling as a potential therapeutic strategy for targeting Th17 cells in immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Mengyi Zhu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Penghui Yang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Daoyang Chen
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongmei Zhou
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yinghui Ren
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Zimu Zhang
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Da
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Reilly NA, Sonnet F, Dekkers KF, Kwekkeboom JC, Sinke L, Hilt S, Suleiman HM, Hoeksema MA, Mei H, van Zwet EW, Everts B, Ioan-Facsinay A, Jukema JW, Heijmans BT. Oleic acid triggers metabolic rewiring of T cells poising them for T helper 9 differentiation. iScience 2024; 27:109496. [PMID: 38558932 PMCID: PMC10981094 DOI: 10.1016/j.isci.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are the most common immune cells in atherosclerotic plaques, and the function of T cells can be altered by fatty acids. Here, we show that pre-exposure of CD4+ T cells to oleic acid, an abundant fatty acid linked to cardiovascular events, upregulates core metabolic pathways and promotes differentiation into interleukin-9 (IL-9)-producing cells upon activation. RNA sequencing of non-activated T cells reveals that oleic acid upregulates genes encoding key enzymes responsible for cholesterol and fatty acid biosynthesis. Transcription footprint analysis links these expression changes to the differentiation toward TH9 cells, a pro-atherogenic subset. Spectral flow cytometry shows that pre-exposure to oleic acid results in a skew toward IL-9+-producing T cells upon activation. Importantly, pharmacological inhibition of either cholesterol or fatty acid biosynthesis abolishes this effect, suggesting a beneficial role for statins beyond cholesterol lowering. Taken together, oleic acid may affect inflammatory diseases like atherosclerosis by rewiring T cell metabolism.
Collapse
Affiliation(s)
- Nathalie A. Reilly
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases (LUCID), Leiden, the Netherlands
| | - Koen F. Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | | | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Stan Hilt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Hayat M. Suleiman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Marten A. Hoeksema
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Erik W. van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Bart Everts
- Leiden University Center for Infectious Diseases (LUCID), Leiden, the Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology Leiden University Medical Center, Leiden, the Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| |
Collapse
|
6
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
7
|
Balmas E, Chen J, Hu AK, DeBerg HA, Rosasco MG, Gersuk VH, Serti E, Speake C, Greenbaum CJ, Nepom GT, Linsley PS, Cerosaletti K. Islet-autoreactive CD4+ T cells are linked with response to alefacept in type 1 diabetes. JCI Insight 2023; 8:e167881. [PMID: 37751304 PMCID: PMC10721267 DOI: 10.1172/jci.insight.167881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Variation in the preservation of β cell function in clinical trials in type 1 diabetes (T1D) has emphasized the need to define biomarkers to predict treatment response. The T1DAL trial targeted T cells with alefacept (LFA-3-Ig) and demonstrated C-peptide preservation in approximately 30% of new-onset T1D individuals. We analyzed islet antigen-reactive (IAR) CD4+ T cells in PBMC samples collected prior to treatment from alefacept- and placebo-treated individuals using flow cytometry and single-cell RNA sequencing. IAR CD4+ T cells at baseline had heterogeneous phenotypes. Transcript profiles formed phenotypic clusters of cells along a trajectory based on increasing maturation and activation, and T cell receptor (TCR) chains showed clonal expansion. Notably, the frequency of IAR CD4+ T cells with a memory phenotype and a unique transcript profile (cluster 3) were inversely correlated with C-peptide preservation in alefacept-treated, but not placebo-treated, individuals. Cluster 3 cells had a proinflammatory phenotype characterized by expression of the transcription factor BHLHE40 and the cytokines GM-CSF and TNF-α, and shared TCR chains with effector memory-like clusters. Our results suggest IAR CD4+ T cells as a potential baseline biomarker of response to therapies targeting the CD2 pathway and warrant investigation for other T cell-related therapies.
Collapse
Affiliation(s)
| | | | - Alex K. Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Mario G. Rosasco
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Vivian H. Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | | - Cate Speake
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | - Peter S. Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | |
Collapse
|
8
|
Zheng C, Snow BE, Elia AJ, Nechanitzky R, Dominguez-Brauer C, Liu S, Tong Y, Cox MA, Focaccia E, Wakeham AC, Haight J, Tobin C, Hodgson K, Gill KT, Ma W, Berger T, Heikenwälder M, Saunders ME, Fortin J, Leung SY, Mak TW. Tumor-specific cholinergic CD4 + T lymphocytes guide immunosurveillance of hepatocellular carcinoma. NATURE CANCER 2023; 4:1437-1454. [PMID: 37640929 PMCID: PMC10597839 DOI: 10.1038/s43018-023-00624-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.
Collapse
Affiliation(s)
- Chunxing Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew J Elia
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Tong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Maureen A Cox
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kyle T Gill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Ma
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty Tübingen, Tübingen, Germany
| | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suet Yi Leung
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Cox MA. Acetylcholine-producing CD4 T cells regulate vasculature in humans. Proc Natl Acad Sci U S A 2023; 120:e2303525120. [PMID: 37036991 PMCID: PMC10120021 DOI: 10.1073/pnas.2303525120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Affiliation(s)
- Maureen A. Cox
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Stephenson Cancer Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|