1
|
Jiang N, Li M, Guo G, Mu Y, Xia X, Xu Z, Xiang X. Flaxseed oligosaccharides-derived conjugates for chlorogenic acid delivery with enhanced stability, antioxidant activity, and bioavailability. J Food Sci 2025; 90:e70165. [PMID: 40183762 DOI: 10.1111/1750-3841.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025]
Abstract
Flaxseed oligosaccharide-chlorogenic acid (FGOS-CGA) conjugates were synthesized by covalently attaching CGA to the FGOS backbone, facilitating the targeted delivery of CGA. The chemical integrity of the conjugates was meticulously verified through nuclear magnetic resonance spectroscopy, the successful ultraviolet-visible spectroscopy, and scanning electron microscopy, which collectively confirmed the successful conjugation between FGOS and CGA. Compared to free CGA, the resulting FGOS-CGA conjugates exhibited markedly enhanced stability across a range of conditions, including variations in pH, thermal fluctuations, ionic strength, and light exposure. Employing both chemical assays and cellular models, the conjugates demonstrated robust antioxidant activity, with DPPH and ABTS radical scavenging efficiencies of 63.74 ± 1.46% and 58.67 ± 0.50%, respectively, at a concentration of 1 mg/mL-surpassing the performance of free CGA (49.73 ± 1.96% and 23.18 ± 1.60%). Furthermore, FGOS-CGA exhibited superior efficacy in scavenging excessive reactive oxygen species in ethanol-induced HepG2 cells. Notably, after a 6-h incubation with Caco-2 cells, the bioavailability of CGA in the FGOS-CGA conjugate increased by an impressive factor of 7.81. These findings underscore the potential of FGOS as a promising delivery vehicle to enhance the antioxidant properties and bioavailability of CGA.
Collapse
Affiliation(s)
- Nanjie Jiang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Min Li
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei, People' s Republic of China
| | - Guangqi Guo
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yujie Mu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoyang Xia
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhenxia Xu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Xiang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Ye L, Yu C, Xia J, Ni K, Zhang Y, Ying X, Xie D, Jin Y, Sun R, Tang R, Fan S, Yao S. Multifunctional nanomaterials via cell cuproptosis and oxidative stress for treating osteosarcoma and OS-induced bone destruction. Mater Today Bio 2024; 25:100996. [PMID: 38420143 PMCID: PMC10900125 DOI: 10.1016/j.mtbio.2024.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Reactive Oxygen Species (ROS) refers to a highly reactive class of oxidizing species that have the potential to induce cellular apoptosis and necrosis. Cuproptosis, a type of cell death, is primarily associated with the effects of copper ions. However, the specific relationship between ROS, cuproptosis, and osteosarcoma (OS) remains relatively unexplored. Additionally, there is limited research on the use of cuproptosis in conjunction with oxidative stress for treating OS and inhibiting tumor-induced bone destruction. To address these gaps, a novel treatment approach has been developed for OS and neoplastic bone destruction. This approach involves the utilization of glutathione (GSH) and pH-responsive organic-inorganic mesoporous silica nanoparticles@Cu2S@oxidized Dextran (short for MCD). The MCD material demonstrates excellent cytocompatibility, osteogenesis, tumor suppression, and the ability to inhibit osteoclast formation. The specific mechanism of action involves the mitochondria of the MCD material inhibiting key proteins in the tricarboxylic acid (TCA) cycle. Simultaneously, the generation of ROS promotes this inhibition and leads to alterations in cellular energy metabolism. Moreover, the MCD biomaterial exhibits promising mild-temperature photothermal therapy in the second near-infrared (NIR-II) range, effectively mitigating tumor growth and OS-induced bone destruction in vivo.
Collapse
Affiliation(s)
- Lin Ye
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Kainan Ni
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, 323600, China
| | - Yejin Zhang
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, 323600, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
3
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Yao Y, Wu T, Pan L, Yan S, Yu S, Chen S. The evaluation of four nano-formulations loaded-Elsinochrome A on characteristics and in vitro cytotoxicity effect. J Biomater Appl 2024; 38:834-847. [PMID: 38154025 DOI: 10.1177/08853282231225559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Elsinochrome A (EA) is a naturally occurring photosensitizer with potential applications in photodynamic therapy (PDT) for various malignancies. Despite its promising therapeutic properties, the poor solubility of EA hampers its effective utilization in clinical settings. To circumvent this limitation, we engineered four distinct nano-formulations: PLGA/EA nanoparticles (NPs), CMC-PLGA/EA NPs, mPEG-PCL/EA nanomicelles (NMs), and LHP-CHOL/EA nanoliposomes (NLs), all designed to enhance the solubility of EA. A comparative evaluation of these formulations, based on metrics such as particle size, Zeta potential, drug loading efficiency, and encapsulation efficiency, identified PLGA/EA NPs and mPEG-PCL/EA NMs as the most efficacious candidates. Subsequent in vitro investigations into the drug release kinetics under varying pH conditions and the impact on cell viability and apoptosis in A549 and MCF-7 cell lines were conducted. Remarkably, the maximum drug release for PLGA/EA NPs and mPEG-PCL/EA NMs was recorded at 62.5% and 70.8% in an acidic environment (pH 5.7), respectively. Upon exposure to 460 nm light, PLGA/EA NPs induced a significant reduction in A549 cell viability to 13.8% and an apoptosis rate of 93.8%, whereas mPEG-PCL/EA NMs elicited a decrease in MCF-7 cell viability to 12.8% and an apoptosis rate of 73.0%.
Collapse
Affiliation(s)
- Yuanyuan Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tianlong Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lili Pan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuzhen Yan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuqin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuanglin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Yang S, Li Z, Pan M, Ma J, Pan Z, Zhang P, Cao W. Repurposing of Antidiarrheal Loperamide for Treating Melanoma by Inducing Cell Apoptosis and Cell Metastasis Suppression In vitro and In vivo. Curr Cancer Drug Targets 2024; 24:1015-1030. [PMID: 38303527 DOI: 10.2174/0115680096283086240116093400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Melanoma is the most common skin tumor worldwide and still lacks effective therapeutic agents in clinical practice. Repurposing of existing drugs for clinical tumor treatment is an attractive and effective strategy. Loperamide is a commonly used anti-diarrheal drug with excellent safety profiles. However, the affection and mechanism of loperamide in melanoma remain unknown. Herein, the potential anti-melanoma effects and mechanism of loperamide were investigated in vitro and in vivo. METHODS In the present study, we demonstrated that loperamide possessed a strong inhibition in cell viability and proliferation in melanoma using MTT, colony formation and EUD incorporation assays. Meanwhile, xenograft tumor models were established to investigate the anti-melanoma activity of loperamide in vivo. Moreover, the effects of loperamide on apoptosis in melanoma cells and potential mechanisms were explored by Annexin V-FITC apoptosis detection, cell cycle, mitochondrial membrane potential assay, reactive oxygen species level detection, and apoptosis-correlation proteins analysis. Furthermore, loperamide-suppressed melanoma metastasis was studied by migration and invasion assays. What's more, immunohistochemical and immunofluorescence staining assays were applied to demonstrate the mechanism of loperamide against melanoma in vivo. Finally, we performed the analysis of routine blood and blood biochemical, as well as hematoxylin- eosin (H&E) staining, in order to investigate the safety properties of loperamide. RESULTS Loperamide could observably inhibit melanoma cell proliferation in vitro and in vivo. Meanwhile, loperamide induced melanoma cell apoptosis by accumulation of the sub-G1 cells population, enhancement of reactive oxygen species level, depletion of mitochondrial membrane potential, and apoptosis-related protein activation in vitro. Of note, apoptosis-inducing effects were also observed in vivo. Subsequently, loperamide markedly restrained melanoma cell migration and invasion in vitro and in vivo. Ultimately, loperamide was witnessed to have an amicable safety profile. CONCLUSION These findings suggested that repurposing of loperamide might have great potential as a novel and safe alternative strategy to cure melanoma via inhibiting proliferation, inducing apoptosis and cell cycle arrest, and suppressing migration and invasion.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, P.R. China
| | - Zeyu Pan
- Shantou University Medical College, Shantou, Guangdong, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 2023; 558:216106. [PMID: 36841418 DOI: 10.1016/j.canlet.2023.216106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tract malignancy that seriously threatens human life and health. Early HCC may be treated by intervention, surgery, and internal radiotherapy, while the choice for late HCC is primarily chemotherapy to prolong patient survival. Lenvatinib (LT) is a Food and Drug Administration (FDA)-approved frontline drug for the treatment of advanced liver cancer and has achieved excellent clinical efficacy. However, its poor solubility and severe side effects cannot be ignored. In this study, a bionic nanodrug delivery platform was successfully constructed. The platform consists of a core of Lenvatinib wrapped with a pH-sensitive polymer, namely, poly(β-amino ester)-polyethylene glycol-amine (PAE-PEG-NH2), and a shell formed by a cancer cell membrane (CCM). The prepared nanodrugs have high drug loading capacity, long-term stability, good biocompatibility, and a long retention time. In addition, the targeting effect of tumor cell membranes and the pH-responsive characteristics of the polymer materials enable them to precisely target tumor cells and achieve responsive release in the tumor microenvironment, which makes them suitable for effective drug delivery. In vivo experiments revealed that the nanodrug showed superior tumor accumulation and therapeutic effects in subcutaneous tumor mice model and could effectively eliminate tumors within 21 days. As a result, it opens up a new way to reduce side effects and improve the specific therapeutic effect of first-line clinical medications to treat tumors.
Collapse
Affiliation(s)
- Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingjing Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Fan Wang
- Experimental Animal Platform in Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Hardiansyah A, Randy A, Dewi RT, Angelina M, Yudasari N, Rahayu S, Ulfah IM, Maryani F, Cheng YW, Liu TY. Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated α-Mangosteen Drugs for Breast Cancer Cells Therapy. Polymers (Basel) 2022; 14:polym14153163. [PMID: 35956678 PMCID: PMC9370913 DOI: 10.3390/polym14153163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, multifunctional chitosan-pluronic F127 with magnetic reduced graphene oxide (MRGO) nanocomposites were developed through the immobilization of chitosan and an amphiphilic polymer (pluronic F127) onto the MRGO. Physicochemical characterizations and in-vitro cytotoxicity of nanocomposites were investigated through field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, particle size analysis, vibrating sample magnetometer, Raman spectroscopy and resazurin-based in-vitro cytotoxicity assay. FESEM observation shows that the magnetic nanoparticles could tethered on the surface of MRGO, promoting the magnetic properties of the nanocomposites. FTIR identification analysis revealed that the chitosan/pluronic F127 were successfully immobilized on the surface of MRGO. Furthermore, α-mangosteen, as a model of natural drug compound, was successfully encapsulated onto the chitosan/pluronic F127@MRGO nanocomposites. According to in-vitro cytotoxicity assay, α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could significantly reduce the proliferation of human breast cancer (MFC-7) cells. Eventually, it would be anticipated that the novel α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could be promoted as a new potential material for magnetically targeting and killing cancer cells.
Collapse
Affiliation(s)
- Andri Hardiansyah
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
- Correspondence: (A.H.); (T.-Y.L.)
| | - Ahmad Randy
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Nurfina Yudasari
- Research Center for Photonics, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia;
| | - Sri Rahayu
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
| | - Ika Maria Ulfah
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
| | - Faiza Maryani
- Research Center for Advanced Chemistry, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia;
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Correspondence: (A.H.); (T.-Y.L.)
| |
Collapse
|
9
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
10
|
Synergetic therapy of glioma mediated by a dual delivery system loading α-mangostin and doxorubicin through cell cycle arrest and apoptotic pathways. Cell Death Dis 2020; 11:928. [PMID: 33116114 PMCID: PMC7595144 DOI: 10.1038/s41419-020-03133-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
Two of the biggest hurdles in the deployment of chemotherapeutics against glioma is a poor drug concentration at the tumor site and serious side effects to normal tissues. Nanocarriers delivering different drugs are considered to be one of the most promising alternatives. In this study, a dual delivery system (methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL)) loaded with α-mangostin (α-m) and doxorubicin (Dox) was decorated and constructed by self-assembly to determine its ability to treat glioma. Molecular dynamics simulations showed that MPEG-PCL could provide ideal interaction positions for both α-m and Dox, indicating that the two drugs could be loaded into MPEG-PCL. Based on the in vitro results, MPEG-PCL loaded with α-m and Dox (α-m-Dox/M) with a size of 25.68 nm and a potential of -1.51 mV was demonstrated to significantly inhibit the growth and promote apoptosis in Gl261, C6 and U87 cells, and the effects of the combination were better than each compound alone. The mechanisms involved in the suppression of glioma cell growth were blockage of the cell cycle in S phase by inhibition of CDK2/cyclin E1 and promotion of apoptosis through the Bcl-2/Bax pathway. The synergetic effects of α-m-Dox/M effectively inhibited tumor growth and prolonged survival time without toxicity in mouse glioma models by inducing glioma apoptosis, inhibiting glioma proliferation and limiting tumor angiogenesis. In conclusion, a codelivery system was synthesized to deliver α-m and Dox to the glioma, thereby suppressing the development of glioma by the mechanisms of cell cycle arrest and cellular apoptosis, which demonstrated the potential of this system to improve the chemotherapy response of glioma.
Collapse
|
11
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
12
|
Wathoni N, Rusdin A, Motoyama K, Joni IM, Lesmana R, Muchtaridi M. Nanoparticle Drug Delivery Systems for α-Mangostin. Nanotechnol Sci Appl 2020; 13:23-36. [PMID: 32280205 PMCID: PMC7132026 DOI: 10.2147/nsa.s243017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
α-Mangostin, a xanthone derivative from the pericarp of Garcinia mangostana L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
- Department of Pharmacy, Faculty of Sports and Health, Universitas Negeri Gorontalo, Gorontalo96128, Indonesia
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - Ronny Lesmana
- Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
| |
Collapse
|