1
|
Monteleone G, Cameli P, Bonella F. The role of heat shock protein 90 in idiopathic pulmonary fibrosis: state of the art. Eur Respir Rev 2025; 34:240147. [PMID: 40107664 PMCID: PMC11920893 DOI: 10.1183/16000617.0147-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular matrix (ECM) remodelling, myofibroblast differentiation and apoptosis, HSP 90 has been investigated as a key player in the pathogenesis of lung fibrosis. Idiopathic pulmonary fibrosis (IPF) is the most common and deadly interstitial lung disease, due to the progressive distortion of lung parenchyma related to the overproduction and deposition of altered ECM, driven by transforming growth factor-β (TGF-β) dependent and independent pathways. The inhibition or induction of HSP 90 is associated with a reduced or increased expression of TGF-β receptors, respectively, suggesting a role for HSP 90 as a biomarker and therapeutic target in IPF. Experimental drugs such as geldanamycin and its derivatives 17-AAG (17-N-allylamino-17-demethoxygeldanamicin) and 17-DMAG (17-dimethylaminoethylamino-17-demethoxigeldanamycin), along with AUY-922, 1G6-D7, AT-13387, TAS-116 and myricetin, have been found to reduce lung fibrosis in both in vivo and in vitro models, supporting the role of this emerging target. This review aims to illustrate the structure and biological function of HSP 90 in the context of IPF pathobiology, as well as perspective application of this molecule as a biomarker and therapeutic target for IPF.
Collapse
Affiliation(s)
- Giorgio Monteleone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Jiang J, Shao X, Liu W, Wang M, Li Q, Wang M, Xiao Y, Li K, Liang H, Wang N, Xu X, Wu Y, Gao X, Xie Q, Xiang X, Liu W, Wu W, Yang L, Gu ZZ, Chen J, Lei M. The mechano-chemical circuit in fibroblasts and dendritic cells drives basal cell proliferation in psoriasis. Cell Rep 2024; 43:114513. [PMID: 39003736 DOI: 10.1016/j.celrep.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Quayum ST, Esha NJI, Siraji S, Abbad SSA, Alsunaidi ZH, Almatarneh MH, Rahman S, Alodhayb AN, Alibrahim KA, Kawsar SM, Uddin KM. Exploring the effectiveness of flavone derivatives for treating liver diseases: Utilizing DFT, molecular docking, and molecular dynamics techniques. MethodsX 2024; 12:102537. [PMID: 38299040 PMCID: PMC10828815 DOI: 10.1016/j.mex.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing in silico methodologies, we focus on flavone and its analogs (1-14) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties. The study further assesses these flavonoids' binding effectiveness and locations through molecular docking studies against six target proteins associated with human cancer. Tropoflavin and taxifolin served as reference drugs. The structurally modified flavone analogs (1-14) displayed a broad range of binding affinities, ranging from -7.0 to -9.4 kcal mol⁻¹, surpassing the reference drugs. Notably, flavonoid (7) exhibited significantly higher binding affinities with proteins Nrf2 (PDB:1 × 2 J) and DCK (PDB:1 × 2 J) (-9.4 and -8.1 kcal mol⁻¹) compared to tropoflavin (-9.3 and -8.0 kcal mol⁻¹) and taxifolin (-9.4 and -7.1 kcal mol⁻¹), respectively. Molecular dynamics (MD) simulations revealed that the docked complexes had a root mean square deviation (RMSD) value ranging from 0.05 to 0.2 nm and a root mean square fluctuation (RMSF) value between 0.35 and 1.3 nm during perturbation. The study concludes that 5,7-dihydroxyflavone (7) shows substantial promise as a potential therapeutic agent for liver-related conditions. However, further validation through in vitro and in vivo studies is necessary. Key insights from this study include:•Screening of flavanols and their derivatives to determine pharmacological and bioactive properties using ADMET, molinspiration, and pass prediction analysis.•Docking of shortlisted flavone derivatives with proteins having essential functions.•Analysis of the best protein-flavonoid docked complexes using molecular dynamics simulation to determine the flavonoid's efficiency and stability within a system.
Collapse
Affiliation(s)
- Syeda Tasnim Quayum
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Nusrat Jahan Ikbal Esha
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Siam Siraji
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Sanaa S. Al Abbad
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zainab H.A. Alsunaidi
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N. Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department of Chemistry, Princess Nora bint Abdulrahman University, College of Science, Riyadh, Al Riyadh, 11671, Saudi Arabia
| | - Sarkar M.A. Kawsar
- Lab of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| |
Collapse
|
4
|
Wen D, Gao Y, Liu Y, Ho C, Sun J, Huang L, Liu Y, Li Q, Zhang Y. Matrix stiffness-induced α-tubulin acetylation is required for skin fibrosis formation through activation of Yes-associated protein. MedComm (Beijing) 2023; 4:e319. [PMID: 37457658 PMCID: PMC10338853 DOI: 10.1002/mco2.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Skin fibrosis, a pathological process featured by fibroblast activation and extracellular matrix (ECM) deposition, makes a significant contribution to morbidity. Studies have identified biomechanics as the central element in the complex network of fibrogenesis that drives the profibrotic feedback loop. In this study, we found that the acetylation of α-tubulin at lysine 40 (K40) was augmented in fibrotic skin tissues. Further analysis showed that α-tubulin acetylation is required for fibroblast activation, including contraction, migration, and ECM deposition. More importantly, we revealed that biomechanics-induced upregulation of K40 acetylation promotes fibrosis by mediating mechanosensitive Yes-associated protein S127 dephosphorylation and its cytoplasm nucleus shuttle. Furthermore, we demonstrated that the knockdown of α-tubulin acetyltransferase 1 could rescue the K40 acetylation upregulation caused by increased matrix rigidity and ameliorate skin fibrosis both in vivo and in vitro. Herein, we highlight the critical role of α-tubulin acetylation in matrix stiffness-induced skin fibrosis and clarify a possible molecular mechanism. Our research suggests α-tubulin acetylation as a potential target for drug design and therapeutic intervention.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Lee S, Choi YJ, Huo C, Alishir A, Kang KS, Park IH, Jang T, Kim KH. Laricitrin 3-Rutinoside from Ginkgo biloba Fruits Prevents Damage in TNF-α-Stimulated Normal Human Dermal Fibroblasts. Antioxidants (Basel) 2023; 12:1432. [PMID: 37507970 PMCID: PMC10376084 DOI: 10.3390/antiox12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human skin comprises the epidermis and dermis, which perform interactive functional activities with each other in order to maintain the skin's tensile strength. In particular, the dermal layer is crucial for skin protection. However, skin aging destroys collagen and elastin fibers, causing wrinkles, pigments, and sagging. Skin aging-related factors, such as tumor necrosis factor-α (TNF-α), promote the generation of intercellular reactive oxygen species (ROS). These are known to stimulate the hypersecretion of matrix metalloproteinase-1 (MMP-1), which degrades collagen and inhibits collagen synthesis. In this study, as part of our ongoing discovery of natural products, we investigated potential natural products derived from ginkgo fruit (Ginkgo biloba fruit) with protective effects against TNF-α-induced skin aging. Phytochemical investigation of the MeOH extract of G. biloba fruits, aided by liquid chromatography-mass spectrometry, led to the isolation of 14 compounds (1-14) from the n-butanol-soluble fraction. These were structurally determined to be: (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-β-D-glucopyranoside (3), vanillic acid 4-O-β-D-glucopyranoside (4), glucosyringic acid (5), (E)-ferulic acid 4-O-β-D-glucoside (6), (E)-sinapic acid 4-O-β-D-glucopyranoside (7), ginkgotoxin-5-glucoside (8), ginkgopanoside (9), (Z)-4-coumaric acid 4-O-β-D-glucopyranoside (10), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-β-D-glucopyranoside (11), eucomic acid (12), rutin (13), and laricitrin 3-rutinoside (L3R) (14). Biological evaluation of the isolated compounds for their effects on intracellular ROS generation showed that, of these 14 compounds, L3R (14) inhibited TNF-α-stimulated ROS generation (p < 0.001 at 100 μM). Inhibition of ROS generation by L3R led to the suppression of MMP-1 secretion and protection against collagen degradation. The inhibitory effect of L3R was mediated by the inhibition of extracellular signal regulated kinase (ERK) phosphorylation. Furthermore, L3R diminished the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8). Based on these experimental results, L3R is a potential bioactive natural product that can be used to protect against skin damage, including aging, in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Taesu Jang
- Health Administration, Dankook University, Cheonan 31116, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Frazier EA, Patil RP, Mane CB, Sanaei D, Asiri F, Seo SS, Sharifan H. Environmental exposure and nanotoxicity of titanium dioxide nanoparticles in irrigation water with the flavonoid luteolin. RSC Adv 2023; 13:14110-14118. [PMID: 37179991 PMCID: PMC10170238 DOI: 10.1039/d3ra01712e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.
Collapse
Affiliation(s)
| | - Rajendra P Patil
- Department of Chemistry, M. H. Shinde Mahavidyalaya Tisangi-416206 MH India
| | - Chandrakant B Mane
- Department of Chemistry, Shri Vijaysinha Yadav College of Arts and Science Peth Vadgaon MH India
| | - Daryoush Sanaei
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences Tehran Iran
| | - Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Seong S Seo
- Department of Natural Sciences, Albany State University Albany GA USA
| | | |
Collapse
|
7
|
Salvianolic Acid B Attenuates Hypertrophic Scar Formation In Vivo and In Vitro. Aesthetic Plast Surg 2023:10.1007/s00266-023-03279-1. [PMID: 36810832 DOI: 10.1007/s00266-023-03279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Hypertrophic scars (HTSs) are a fibroproliferative disorder that occur following skin injuries. Salvianolic acid B (Sal-B) is an extractant from Salvia miltiorrhiza that has been reported to ameliorate fibrosis in multiple organs. However, the antifibrotic effect on HTSs remains unclear. This study aimed to determine the antifibrotic effect of Sal-B in vitro and in vivo. METHODS In vitro, hypertrophic scar-derived fibroblasts (HSFs) were isolated from human HTSs and cultured. HSFs were treated with (0, 10, 50, 100 μmol/L) Sal-B. Cell proliferation and migration were evaluated by EdU, wound healing, and transwell assays. The protein and mRNA levels of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 were detected by Western blots and real-time PCR. In vivo, tension stretching devices were fixed on incisions for HTS formation. The induced scars were treated with 100 μL of Sal-B/PBS per day according to the concentration of the group and followed up for 7 or 14 days. The scar condition, collagen deposition, and α-SMA expression were analyzed by gross visual examination, H&E, Masson, picrosirius red staining, and immunofluorescence. RESULTS In vitro, Sal-B inhibited HSF proliferation, migration, and downregulated the expression of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 in HSFs. In vivo, 50 and 100 μmol/L Sal-B significantly reduced scar size in gross and cross-sectional observations, with decreased α-SMA expression and collagen deposition in the tension-induced HTS model. CONCLUSIONS Our study demonstrated that Sal-B inhibits HSFs proliferation, migration, fibrotic marker expression and attenuates HTS formation in a tension-induced HTS model in vivo. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
8
|
Tang L, Gao J, Li X, Cao X, Zhou B. Molecular Mechanisms of Luteolin Against Atopic Dermatitis Based on Network Pharmacology and in vivo Experimental Validation. Drug Des Devel Ther 2022; 16:4205-4221. [PMID: 36530790 PMCID: PMC9748122 DOI: 10.2147/dddt.s387893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/26/2022] [Indexed: 08/03/2023] Open
Abstract
PURPOSE To undercover the underlying mechanisms of luteolin against atopic dermatitis (AD), clinically characterized by recurrent eczematous lesions and intense itching, based on network pharmacology, molecular docking and in vivo experimental validation. METHODS TCMSP, STITCH and SwissTargetPrediction databases were utilized to screen the corresponding targets of luteolin. Targets related to AD were collected from DisGeNET, GeneCards and TTD databases. PPI network of intersection targets was constructed through STRING 11.0 database and Cytoscape 3.9.0 software. GO and KEGG enrichment analysis were performed to investigate the critical pathways of luteolin against AD. Further, the therapeutic effects and candidate targets/signaling pathways predicted from network pharmacology analysis were experimentally validated in a mouse model of AD induced by 2, 4-dinitrofluorobenzene (DNFB). RESULTS A total of 31 intersection targets were obtained by matching 151 targets of luteolin with 553 targets of AD. Among all, 20 core targets were identified by PPI network topology analysis, including IL-6, TNF, IL-10, VEGFA, IL-4, etc., and molecular docking indicated that luteolin binds strongly to these core targets. KEGG pathway enrichment analysis suggested that the intersected targets were significantly enriched in IL-17 signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation, JAK/STAT signaling pathway, etc. The in vivo experiment validated that luteolin could alleviate AD-like skin symptoms, as evidenced by the lower SCORAD score, the reduced infiltration of mast cells and the recovery of skin barrier function. Furthermore, luteolin restored immune balance by regulating the production of Th1/Th2/Th17-mediated cytokines, which were both the predicted core targets. Moreover, luteolin inhibited the phosphorylation of JAK2 and STAT3 in the lesional skin. CONCLUSION Together, the present study systematically clarifies the ameliorative effects and possible molecular mechanisms of luteolin against AD through the combination of network pharmacology and experimental validation, shedding light on the future development and clinical application of luteolin.
Collapse
Affiliation(s)
- Liu Tang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jiefang Gao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xiaolei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xiaoqin Cao
- School of Medicine, Jianghan University, Wuhan, People’s Republic of China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing. Front Med (Lausanne) 2022; 9:978120. [PMID: 36262272 PMCID: PMC9573991 DOI: 10.3389/fmed.2022.978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Scars are pathological marks left after an injury heals that inflict physical and psychological harm, especially the great threat to development and aesthetics posed by oral and maxillofacial scars. The differential expression of genes such as transforming growth factor-β, local adherent plaque kinase, and yes-related transcriptional regulators at infancy or the oral mucosa is thought to be the reason of scarless regenerative capacity after tissue defects. Currently, tissue engineering products for defect repair frequently overlook the management of postoperative scars, and inhibitors of important genes alone have negative consequences for the organism. Natural flavonoids have hemostatic, anti-inflammatory, antioxidant, and antibacterial properties, which promote wound healing and have anti-scar properties by interfering with the transmission of key signaling pathways involved in scar formation. The combination of flavonoid-rich drug dressings provides a platform for clinical translation of compounds that aid in drug disintegration, prolonged release, and targeted delivery. Therefore, we present a review of the mechanisms and effects of flavonoids in promoting scar-free regeneration and the application of flavonoid-laden dressings.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaohang Chen
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jing Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,Jing Zhao,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Xing Wang,
| |
Collapse
|
10
|
Alpinumisoflavone ameliorates choroidal neovascularisation and fibrosis in age-related macular degeneration in in vitro and in vivo models. Sci Rep 2022; 12:14316. [PMID: 35995845 PMCID: PMC9395367 DOI: 10.1038/s41598-022-18531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of vision loss in the elderly population. Anti-vascular endothelial growth factor (VEGF) antibody therapy is applicable to neovascularisation of AMD; however, the prevention of fibrosis after anti-VEGF monotherapy is an unmet medical need. Subretinal fibrosis causes vision loss in neovascular age-related macular degeneration (nAMD) even with anti-VEGF therapy. We report the anti-fibrotic and anti-neovascularisation effects of alpinumisoflavone (AIF), an isoflavonoid derived from unripe Maclura tricuspidata fruit, in in vitro and in vivo models. For in vitro study, we treated H2O2 or THP-1 conditioned media (TCM) following activation with phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS) in a human retinal pigment epithelial cell line (ARPE-19). Choroidal neovascularisation (CNV) was induced by laser photocoagulation in mice, immediately followed by intravitreal administration of 25 μg AIF. CNV area and fibrosis were measured 7 days after laser photocoagulation. AIF showed anti-fibrosis and anti-neovascularisation effects in both the models. The laser induced CNV area was reduced upon AIF administration in nAMD mouse model. Additionally, AIF decreased the levels of the cleaved form of crystallin alpha B (CRYAB), a chaperone associated with VEGF stabilisation and fibrosis. Our results demonstrate a novel therapeutic application of AIF against neovascularisation and fibrosis in nAMD.
Collapse
|
11
|
Deng Z, Chen G, Shi Y, Lin Y, Ou J, Zhu H, Wu J, Li G, Lv L. Curcumin and its nano-formulations: Defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification. Front Pharmacol 2022; 13:920514. [PMID: 36003508 PMCID: PMC9393234 DOI: 10.3389/fphar.2022.920514] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Curcumin (CUR) displays the capability of suppressing the proliferation and metastasis of various cancer cells. However, the effects and underline mechanisms of CUR to treat triple-negative breast cancer (TNBC) have not been systematically elucidated with an appropriate method. Methods: In the present research, a combination method of network pharmacology, molecular docking, and in vitro bio-experiment was used to investigate the pharmacological actions and underline mechanisms of CUR against TNBC. First, common targets of CUR and TNBC were screened via Venny 2.1.0 after potential CUR-related targets and targets of TNBC were got from several public databases. Then, the Gene Ontology (GO) function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed on the Metascape website, and the network of compound-targets-pathways was constructed via Cytoscape software. Moreover, the network of protein-protein interaction was constructed by the STRING database to screen potential targets. Moreover, molecular docking was applied to affirm the interaction of CUR with the screened top 10 potential targets. Finally, in vitro experiments were used to further verify the effects and mechanisms of CUR and its nano-formulation (CUR-NPs) against TNBC. Results: Forty potential targets of CUR against TNBC were obtained. STAT3, AKT1, TNF, PTGS2, MMP9, EGFR, PPARG, NFE2L2, EP300, and GSK3B were identified as the top 10 targets of CUR against TNBC. In vitro experiment verified that CUR and CUR-NPs could not only restrain the invasion, migration, and proliferation of MDA-MB-231 cells but also induce their apoptosis. In addition, molecular docking demonstrated that CUR could bind spontaneously with the screened top 10 targeted proteins, and a real-time PCR experiment demonstrated that both CUR and CUR-NPs could downregulate the genetic expression levels of the 10 targets. Moreover, according to the CUR-targets-pathways network, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance, JAK-STAT, Foxo, and HIF-1 signaling pathways were identified as the important pathways of CUR effects on TNBC. Among them, the inhibiting effects of CUR and CUR-NPs on the JAK-STAT signaling pathway were further verified by the western blot analysis. Conclusion: Taken together, the present research demonstrates that CUR and CUR-NPs have pharmacological effects against TNBC via a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Zhicheng Deng
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Lin
- Department of Pharmacy, Zengcheng District People’s Hospital of Guangzhou, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiebin Ou
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Zhu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| | - Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| |
Collapse
|
12
|
Fan Gaskin JC, Kong RCK, Shah MH, Edgley AJ, Peshavariya HM, Chan EC. Inhibitory Effects of 3',4'-Dihydroxyflavonol in a Mouse Model of Glaucoma Filtration Surgery and TGFβ1-Induced Responses in Human Tenon's Fibroblasts. Transl Vis Sci Technol 2022; 11:18. [PMID: 35980669 PMCID: PMC9404366 DOI: 10.1167/tvst.11.8.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Cytotoxic agents such as mitomycin C (MMC) are part of the mainstay treatment for limiting subconjunctival scarring following glaucoma filtration surgery (GFS). However, a safer antifibrotic therapy is clinically needed. The anti-scarring properties of 3′,4′-dihydroxyflavonol (DiOHF) were evaluated in a mouse model of GFS and in cultured human Tenon's fibroblasts (HTFs). Methods GFS was performed in C57BL/6 mice receiving daily intraperitoneal injections of DiOHF or vehicle or a single intraoperative injection of MMC. Eyes were harvested on day 14 for assessment of collagen deposition, expression of alpha-smooth muscle actin (α-SMA), cluster of differentiation 31 (CD31), and 4-hydroxy-2-nonenal (4HNE) in the conjunctiva/Tenon's layer. The inhibitory effects of DiOHF on transforming growth factor β (TGFβ)-induced responses were also assessed in HTFs. Results Treatment with DiOHF demonstrated a reduction in collagen deposition at the GFS site compared to vehicle-treated mice. The degree of 4HNE-positive fluorescence was significantly reduced in DiOHF-treated eyes compared to the other groups, indicating a decrease in oxidative stress. A reduction in expression of α-SMA and CD31 was seen in DiOHF-treated conjunctiva compared to those treated with vehicle. Concordant results were demonstrated in cultured HTFs in vitro. Furthermore, treatment of cultured HTFs with DiOHF also displayed a reduction in the proliferation, migration, and contractility of HTFs. Conclusions Treatment with DiOHF reduces scarring and angiogenesis in the conjunctiva of mice with GFS at a level comparable to MMC. The reduction in oxidative stress suggests that DiOHF may suppress scarring via different mechanisms from MMC. Translational Relevance DiOHF may be a safer and superior wound modulating agent than conventional antifibrotic therapy in GFS.
Collapse
Affiliation(s)
- Jennifer C Fan Gaskin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Roy C K Kong
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Amanda J Edgley
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|
14
|
Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021; 14:nu14010067. [PMID: 35010945 PMCID: PMC8746507 DOI: 10.3390/nu14010067] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization plays essential and diverse roles in most diseases, such as atherosclerosis, adipose tissue inflammation, and insulin resistance. Homeostasis dysfunction in M1/M2 macrophage polarization causes pathological conditions and inflammation. Neuroinflammation is characterized by microglial activation and the concomitant production of pro-inflammatory cytokines, leading to numerous neurodegenerative diseases and psychiatric disorders. Decreased neuroinflammation can be obtained by using natural compounds, including flavonoids, which are known to ameliorate inflammatory responses. Among flavonoids, quercetin possesses multiple pharmacological applications and regulates several biological activities. In the present study, we found that quercetin effectively inhibited the expression of lipocalin-2 in both macrophages and microglial cells stimulated by lipopolysaccharides (LPS). The production of nitric oxide (NO) and expression levels of the pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were also attenuated by quercetin treatment. Our results also showed that quercetin significantly reduced the expression levels of the M1 markers, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, in the macrophages and microglia. The M1 polarization-associated chemokines, C–C motif chemokine ligand (CCL)-2 and C-X-C motif chemokine ligand (CXCL)-10, were also effectively reduced by the quercetin treatment. In addition, quercetin markedly reduced the production of various reactive oxygen species (ROS) in the microglia. The microglial phagocytic ability induced by the LPS was also effectively reduced by the quercetin treatment. Importantly, the quercetin increased the expression levels of the M2 marker, IL-10, and the endogenous antioxidants, heme oxygenase (HO)-1, glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1). The enhancement of the M2 markers and endogenous antioxidants by quercetin was activated by the AMP-activated protein kinase (AMPK) and Akt signaling pathways. Together, our study reported that the quercetin inhibited the effects of M1 polarization, including neuroinflammatory responses, ROS production, and phagocytosis. Moreover, the quercetin enhanced the M2 macrophage polarization and endogenous antioxidant expression in both macrophages and microglia. Our findings provide valuable information that quercetin may act as a potential drug for the treatment of diseases related to inflammatory disorders in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| | - Guan-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Photonics and Communication Engineering, Asia University, Taichung 413305, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
- Biomedical Technology R&D Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 404328, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| |
Collapse
|
15
|
Chen G, Xu H, Wu Y, Han X, Xie L, Zhang G, Liu B, Zhou Y. Myricetin suppresses the proliferation and migration of vascular smooth muscle cells and inhibits neointimal hyperplasia via suppressing TGFBR1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153719. [PMID: 34500301 DOI: 10.1016/j.phymed.2021.153719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neointimal formation, mediated by the proliferation and migration of vascular smooth muscle cells (VSMCs), is a common pathological basis for atherosclerosis and restenosis. Myricetin, a natural flavonoid, reportedly exerts anti-atherosclerotic effects. However, the effect and mechanism of myricetin on VSMCs proliferation and migration and neointimal hyperplasia (NIH) remain unknown. PURPOSE We investigated myricetin's effect on NIH, as well as the potential involvement of transforming growth factor-beta receptor 1 (TGFBR1) signaling in mediating myricetin's anti-atherosclerotic and anti-restenotic actions. METHODS Myricetin's effects on the proliferation and migration of HASMCs and A7R5 cells were determined by CCK-8, EdU assays, wound healing, Transwell assays, and western blotting (WB).Molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance (SPR) and TGFBR1 kinase activity assays were employed to investigate the interaction between myricetin and TGFBR1. An adenovirus vector encoding TGFBR1 was used to verify the effects of myricetin. In vivo, the left common carotid artery (LCCA) ligation mouse model was adopted to determine the impacts of myricetin on neointimal formation and TGFBR1 activation. RESULTS Myricetin dose-dependently inhibited the migration and proliferation in VSMCs, suppressed the expression of CDK4, cyclin D3, MMP2, and MMP9. Molecular docking revealed that myricetin binds to key regions for TGFBR1 antagonist binding, and the binding energy was -9.61 kcal/mol. MD simulation indicated stable binding between TGFBR1 and myricetin. Additionally, SPR revealed an equilibrium dissociation constant of 4.35 × 10-5 M between myricetin and TGFBR1. According to the TGFBR1 kinase activity assay, myricetin directly inhibited TGFBR1 kinase activity (IC50 = 8.551 μM). Furthermore, myricetin suppressed the phosphorylation level of TGFBR1, Smad2, and Smad3 in a dose-dependent pattern, which was partially inhibited by TGFBR1 overexpression. Consistently, TGFBR1 overexpression partially rescued the suppressive roles of myricetin on VSMCs migration and proliferation. Moreover, myricetin dramatically inhibited NIH and reduced TGFBR1, Smad2, and Smad3 phosphorylation in the LCCA. CONCLUSION This is the first study to demonstrate that myricetin suppresses NIH and VSMC proliferation and migration via inhibiting TGFBR1 signaling. Myricetin can be developed as a potential therapeutic candidate for treating atherosclerosis and vascular restenosis.
Collapse
Affiliation(s)
- Guanghong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - YingChun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Pinocembrin Ameliorates Skin Fibrosis via Inhibiting TGF-β1 Signaling Pathway. Biomolecules 2021; 11:biom11081240. [PMID: 34439906 PMCID: PMC8393190 DOI: 10.3390/biom11081240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/06/2023] Open
Abstract
Skin fibrotic diseases, such as keloids, are mainly caused by pathologic scarring of wounds during healing and characterized by benign cutaneous overgrowths of dermal fibroblasts. Current surgical and therapeutic modalities of skin fibrosis are unsatisfactory. Pinocembrin, a natural flavonoid, has been shown to possess a vast range of pharmacological activities including antimicrobial, antioxidant, anti-inflammatory, and anti-tumor activities. In this study we explored the potential effect and mechanisms of pinocembrin on skin fibrosis in vitro and in vivo. In vitro studies indicated that pinocembrin dose-dependently suppressed proliferation, migration, and invasion of keloid fibroblasts and mouse primary dermal fibroblasts. The in vivo studies showed that pinocembrin could effectively alleviate bleomycin (BLM)-induced skin fibrosis and reduce the gross weight and fibrosis-related protein expression of keloid tissues in xenograft mice. Further mechanism studies indicated that pinocembrin could suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced activation of skin fibroblasts. In conclusion, our results demonstrate the therapeutic potential of pinocembrin for skin fibrosis.
Collapse
|
17
|
Li X, Yu H, Liang L, Bi Z, Wang Y, Gao S, Wang M, Li H, Miao Y, Deng R, Ma L, Luan J, Li S, Liu M, Lin J, Zhou H, Yang C. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol 2020; 178:114097. [PMID: 32535102 DOI: 10.1016/j.bcp.2020.114097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown to possess a variety of biological characteristics including anti-inflammatory and anti-tumor. In this study we explored the potential effect and mechanisms of myricetin on pulmonary fibrosis in vivo and vitro. The in vivo studies showed that myricetin effectively alleviated bleomycin (BLM)-induced pulmonary fibrosis. KEGG analysis of RNA-seq data indicated that myricetin could regulate the transforming growth factor (TGF)-β signaling pathway. In vitro studies indicated that myricetin could dose-dependently suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). Molecular docking indicated that heat shock protein (HSP) 90β may be a potential target of myricetin, and MST assay demonstrated that the dissociation constant (Kd) of myricetin and HSP90β was 331.59 nM. We demonstrated that myricetin interfered with the binding of HSP90β and TGF-β receptor II and impeded fibroblast activation and EMT. In conclusion, myricetin impedes TGF-β1-induced lung fibroblast activation and EMT via targeting HSP90β and attenuates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Haiyan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Menghan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
18
|
Xu T, Huang S, Huang Q, Ming Z, Wang M, Li R, Zhao Y. Kaempferol attenuates liver fibrosis by inhibiting activin receptor-like kinase 5. J Cell Mol Med 2019; 23:6403-6410. [PMID: 31273920 PMCID: PMC6714241 DOI: 10.1111/jcmm.14528] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a common public health problem. Patients with liver fibrosis are more likely to develop cirrhosis, or hepatocellular carcinoma (HCC) as a more serious consequence. Numerous therapeutic approaches have emerged, but the final clinical outcome remains unsatisfactory. Here, we discovered a flavonoid natural product kaempferol that could dramatically ameliorate liver fibrosis formation. Our data showed that intraperitoneal injection of kaempferol could significantly decrease the necroinflammatory scores and collagen deposition in the liver tissue. In addition, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), laminin (LN) and hyaluronic acid (HA) levels were significantly down-regulated in kaempferol treatment group compared with those in the control group. Our study also demonstrated that kaempferol markedly inhibited the synthesis of collagen and activation of hepatic stellate cells (HSCs) both in vivo and in vitro. Furthermore, the results of Western blotting revealed that kaempferol could down-regulate Smad2/3 phosphorylation dose-dependently. These bioactivities of kaempferol may result from its targeted binding to the ATP-binding pocket of activin receptor-like kinase 5 (ALK5), as suggested by the molecular docking study and LanthaScreen Eu kinase binding assay. Above all, our data indicate that kaempferol may prove to be a novel agent for the treatment of liver fibrosis or other fibroproliferative diseases.
Collapse
Affiliation(s)
- Taifu Xu
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China.,Department of General Surgery, The Fourth Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Qianrong Huang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Zhiyong Ming
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Min Wang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Rongrui Li
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| |
Collapse
|