1
|
Chen H, Shi J, Tang Y, Chen X, Wang Z, Liu Q, Wu K, Yao X. Exploring the effect of chlorogenic acid on oxidative stress and autophagy in dry eye mice via the AMPK/ULK1 pathway. Eur J Pharmacol 2025; 991:177311. [PMID: 39892448 DOI: 10.1016/j.ejphar.2025.177311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Dry eye disease (DED) is closely associated with oxidative stress (OS); its high prevalence and the limitations of current treatments highlight the need for highly effective antioxidants. Chlorogenic acid (CGA) can upregulate the activity of antioxidant enzymes, hinder the process of lipid peroxidation, and exert potent antioxidant effects. In this study, we established an OS-induced DED mouse model to investigate the protective effect and mechanism of CGA against OS-induced DED. Three aspects were examined: oxidative damage, apoptosis, and autophagy. The results demonstrated that CGA improved ocular surface signs in DED mice, decreased inflammatory responses in the meibomian gland (MG), downregulated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), inhibited apoptosis and autophagy, and regulated proteins related to the AMPK (AMP-activated protein kinase)/ULK1 (UNC-51-like Kinase 1) signaling pathway in the MG of DED mice. These findings suggest that CGA can attenuate oxidative damage and inhibit related apoptosis and autophagy in the MG of DED mice by affecting the expression of proteins related to the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Huimei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jian Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yu Tang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiong Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ziyan Wang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Yong Zhou Hospital of Traditional Chinese Medicine, Yongzhou, 425000, Hunan, China
| | - Qianhong Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Kai Wu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolei Yao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
2
|
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants (Basel) 2024; 13:1559. [PMID: 39765887 PMCID: PMC11674025 DOI: 10.3390/antiox13121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease.
Collapse
Affiliation(s)
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| |
Collapse
|
3
|
Fakhredini F, Alidadi H, Mahdavinia M, Khorsandi L. Morin promotes autophagy in human PC3 prostate cancer cells by modulating AMPK/mTOR/ULK1 signaling pathway. Tissue Cell 2024; 91:102557. [PMID: 39265522 DOI: 10.1016/j.tice.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
AMP-activated protein kinase (AMPK) suppresses tumorigenesis by modulating autophagy and apoptosis. This study evaluated the impact of Morin on PC3 prostate cancerous cells by examining the AMPK/ mechanistic target of rapamycin (mTOR)/ ULK1 (UNC-51-like kinase 1) pathway and autophagy process. The PC3 cells were treated with Morin (50 µg/ml) and AICAR (an AMPK activator). Cell viability, apoptosis, autophagy, and level of phosphorylated and non-phosphorylated ULK1, AMPK, and mTOR, as well as LC3B/LC3A, have been investigated. Through DAPI staining, measurement of Bax/Bcl-2 ratio, Caspase activity, and Annexin V/PI method, it has been revealed that Morin induces apoptosis and reduces the growth of PC3 cells. Morin enhanced the protein level of phosphorylated AMPK (p-AMPK) and ULK1 (p-ULK1) and decreased the expression of phosphorylated mTOR (p-mTOR) in the PC3 cells. Morin could also increase the LC3B/LC3A ratio, Acridine Orange-positive cells, expression of Beclin-1 and ATG5 genes, and decrease the p62 protein level indicating autophagy-inducing. AICAR (an AMPK activator) enhanced the impact of Morin on apoptosis, cell growth, and expression of LC3B, p-AMPK, p-ULK1, and p-mTOR proteins in the PC3 cells. These findings suggest that Morin induces apoptotic and autophagic cell death by activating AMPK and ULK1 and suppressing mTOR pathways.
Collapse
Affiliation(s)
- Fereshtesadat Fakhredini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Shreya S, Dagar N, Shelke V, Puri B, Gaikwad AB. ULK1 as a therapeutic target in kidney diseases: Current perspective. Expert Opin Ther Targets 2024; 28:911-922. [PMID: 39526701 DOI: 10.1080/14728222.2024.2421762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Globally, ~850 million people are affected by different kidney diseases. The pathogenesis of kidney diseases is intricate, where autophagy is crucial for maintaining kidney homeostasis. Iteliminates damaged organelles, thus reducing renal lesions and allowing tissue regeneration. Therefore, targeting various autophagy proteins, e.g. Unc-51-like autophagy-activating kinase 1 (ULK1), is emerging as potential therapeutic strategy against kidney disease. AREAS COVERED This review provides insights into the role of ULK1 as a therapeutic target in kidney diseases. Additionally, we have discussed the recent evidence based on pre-clinical studies for possible novel therapies modulating ULK1-mediated autophagy in kidney diseases. EXPERT OPINION ULK1 is one of the critical regulators of autophagy. Moreover, ULK1 works differently for different types of kidney disease. Considering its significant role in kidney disease pathogenesis, it could be a potential target to tackle kidney diseases. However, the dynamic molecular understanding of ULK1 in the context of various kidney diseases is still in its infancy and should be investigated further.
Collapse
Affiliation(s)
- Shruti Shreya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | | |
Collapse
|
6
|
Fan Z, Zhang Y, Fang Y, Zhong H, Wei T, Akhtar H, Zhang J, Yang M, Li Y, Zhou X, Sun Z, Wang J. Polystyrene nanoplastics induce lipophagy via the AMPK/ULK1 pathway and block lipophagic flux leading to lipid accumulation in hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134878. [PMID: 38897115 DOI: 10.1016/j.jhazmat.2024.134878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Micro- and nanoplastic pollution has emerged as a significant global concern due to their extensive presence in the environment and potential adverse effects on human health. Nanoplastics can enter the human circulatory system and accumulate in the liver, disrupting hepatic metabolism and causing hepatotoxicity. However, the precise mechanism remains uncertain. Lipophagy is an alternative mechanism of lipid metabolism involving autophagy. This study aims to explore how polystyrene nanoplastics (PSNPs) influence lipid metabolism in hepatocytes via lipophagy. Initially, it was found that PSNPs were internalized by human hepatocytes, resulting in decreased cell viability. PSNPs were found to induce the accumulation of lipid droplets (LDs), with autophagy inhibition exacerbating this accumulation. Then, PSNPs were proved to activate lipophagy by recruiting LDs into autophagosomes and block the lipophagic flux by impairing lysosomal function, inhibiting LD degradation. Ultimately, PSNPs were shown to activate lipophagy through the AMPK/ULK1 pathway, and knocking down AMPK exacerbated lipid accumulation in hepatocytes. Overall, these results indicated that PSNPs triggered lipophagy via the AMPK/ULK1 pathway and blocked lipophagic flux, leading to lipid accumulation in hepatocytes. Thus, this study identifies a novel mechanism underlying nanoplastic-induced lipid accumulation, providing a foundation for the toxicity study and risk assessments of nanoplastics.
Collapse
Affiliation(s)
- Zhuying Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yukang Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, Shanxi, China
| | - Yuting Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huiyuan Zhong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tingting Wei
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huraira Akhtar
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiahuai Zhang
- Center for Clinical Laboratory, Capital Medical University, Beijing 100069, China
| | - Man Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
8
|
Ding Y, Wang M, Bu H, Li J, Lin X, Xu X. Application of an F0-based genetic assay in adult zebrafish to identify modifier genes of an inherited cardiomyopathy. Dis Model Mech 2023; 16:dmm049427. [PMID: 35481478 PMCID: PMC9239171 DOI: 10.1242/dmm.049427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Modifier genes contribute significantly to our understanding of pathophysiology in human diseases; however, effective approaches to identify modifier genes are still lacking. Here, we aim to develop a rapid F0-based genetic assay in adult zebrafish using the bag3 gene knockout (bag3e2/e2) cardiomyopathy model as a paradigm. First, by utilizing a classic genetic breeding approach, we identified dnajb6b as a deleterious modifier gene for bag3 cardiomyopathy. Next, we established an F0-based genetic assay in adult zebrafish through injection of predicted microhomology-mediated end joining (MMEJ)-inducing single guide RNA/Cas9 protein complex. We showed that effective gene knockdown is maintained in F0 adult fish, enabling recapitulation of both salutary modifying effects of the mtor haploinsufficiency and deleterious modifying effects of the dnajb6b gene on bag3 cardiomyopathy. We finally deployed the F0-based genetic assay to screen differentially expressed genes in the bag3 cardiomyopathy model. As a result, myh9b was identified as a novel modifier gene for bag3 cardiomyopathy. Together, these data prove the feasibility of an F0 adult zebrafish-based genetic assay that can be effectively used to discover modifier genes for inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiothoracic Surgery, Xiangfan Hospital, Central South University, Changsha 410008, China
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Surgery, The Second Xiangfan Hospital of Central South University, Changsha 410011, China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Bi D, Zheng D, Shi M, Hu Q, Wang H, Zhi H, Lou D, Zhang A, Hu Y. Role of SESTRIN2/AMPK/ULK1 pathway activation and lysosomes dysfunction in NaAsO 2-induced liver injury under oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114751. [PMID: 36907090 DOI: 10.1016/j.ecoenv.2023.114751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Arsenic, a serious environmental poison to human health, is widely distributed in nature. As the main organ of arsenic metabolism, liver is easily damaged. In the present study, we found that arsenic exposure can cause liver injury in vivo and in vitro, to date the underlying mechanism of which is yet unclear. Autophagy is a process that depends on lysosomes to degrade damaged proteins and organelles. Here, we reported that oxidative stress can be induced and then activated the SESTRIN2/AMPK/ULK1 pathway, damaged lysosomes, and finally induced necrosis upon arsenic exposure in rats and primary hepatocytes, which was characterized by lipidation of LC3II, the accumulation of P62 and the activation of RIPK1 and RIPK3. Similarly, lysosomes function and autophagy can be damaged under arsenic exposure, which can be alleviated after NAC treatment and aggravated by Leupeptin treatment in primary hepatocytes. Moreover, we also found that the transcription and protein expressions of necrotic-related indicators RIPK1 and RIPK3 in primary hepatocytes were decreased after P62 siRNA. Taken together, the results revealed that arsenic can induce oxidative stress, activate SESTRIN2/AMPK/ULK1 pathway to damage lysosomes and autophagy, and eventually induce necrosis to damage liver.
Collapse
Affiliation(s)
- Dingnian Bi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Dan Zheng
- Guiyang Maternity and Child Health Hospital, Guizhou, PR China
| | - Mingyang Shi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qian Hu
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Hongling Wang
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Haiyan Zhi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Didong Lou
- Department of Forensic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, PR China; Key Laboratory of Traditional Chinese Medicine Toxicology in Forensic Medicine, Guizhou Education Department, Guiyang 550025, Guizhou, PR China
| | - Aihua Zhang
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Yong Hu
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
10
|
Zhang W, Wang J, Wang L, Shi R, Chu C, Shi Z, Liu P, Li Y, Liu X, Liu Z. Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice. J Nutr Biochem 2022; 110:109146. [PMID: 36049672 DOI: 10.1016/j.jnutbio.2022.109146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Alternate-day fasting (ADF) regimen has been reported to alleviate obesity and insulin resistance. However, the effects of ADF on preventing diet-induced non-alcoholic fatty liver disease (NAFLD) and related cognitive deficits are still elusive. In the present study, a high-fat diet (HFD)-induced obese (DIO) C57BL/6 mouse model was established. Mice were treated with a 4-week long ADF regimen and/or switching the diet to a standard diet. ADF reduced lipid accumulation, activated AMPK/ULK1 signaling, and suppressed the phosphorylation of mTOR. Also, ADF inhibited lipid accumulation and inflammatory responses in the white adipose tissue and down-regulated expressions of PPAR-γ and cytokines. Moreover, ADF improved the working memory and synaptic structure in the DIO mice and upregulated PSD-95 and BDNF in the hippocampus. ADF reduced oxidative stress and microglial over-activation in the CNS. These results suggest that ADF attenuates NAFLD development in the liver of DIO mice, which is related to the mediating effects of ADF on autophagy and energy metabolism. ADF also enhanced cognitive function, which could be partly explained by the down-regulated peripheral inflammatory responses. This study indicates that ADF could be a promising intervention for alleviating NAFLD development and cognitive decline.
Collapse
Affiliation(s)
- Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jun Wang
- Department of Digestive Diseases, Xijing Hospital, Xi'an, Shaanxi Province, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhiling Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Pujie Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yitong Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
11
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Li J, Zhou W, Mao Q, Gao D, Xiong L, Hu X, Zheng Y, Xu X. HMGB1 Promotes Resistance to Doxorubicin in Human Hepatocellular Carcinoma Cells by Inducing Autophagy via the AMPK/mTOR Signaling Pathway. Front Oncol 2021; 11:739145. [PMID: 34778055 PMCID: PMC8578906 DOI: 10.3389/fonc.2021.739145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Chemoresistance remains as a major hindrance in the treatment of hepatocellular carcinoma (HCC). High mobility group box protein 1 (HMGB1) enhances autophagic flux and protects tumor cells from apoptosis, which results in acquired drug resistance. However, the exact mechanisms underlying HMGB1-modulated autophagy in HCC chemoresistance remain to be defined. In the present study, we found that administration of doxorubicin (DOX) significantly promoted HMGB1 expression and induced HMGB1 cytoplasmic translocation in human HCC cell lines BEL7402 and SMMC7721, which enhanced autophagy that contributes to protecting HCC cells from apoptosis and increasing drug resistance. Moreover, we observed HMGB1 translocation and elevation of autophagy in DOX-resistant BEL7402 and SMMC7721 cells. Additionally, inhibition of HMGB1 and autophagy increased the sensitivities of BEL-7402 and SMMC-7721 cells to DOX and re-sensitized their DOX-resistant cells. Subsequently, we confirmed with HMGB1 regulated autophagy by activating the 5ʹ adenosine monophosphate-activated protein kinase (AMPK)/mTOR pathway. In summary, our results indicate that HMGB1 promotes acquired DOX resistance in DOX-treated BEL7402 and SMMC7721 cells by enhancing autophagy through the AMPK/mTOR signaling pathway. These findings provide the proof-of-concept that HMGB1 inhibitors might be an important targeted treatment strategy for HCC.
Collapse
Affiliation(s)
- Junhua Li
- Basic and Clinical Medical Research Center, Department of Gastroenterology, The First People's Hospital of Jingmen, Jingmen, China
| | - Wei Zhou
- Basic and Clinical Medical Research Center, Department of Gastroenterology, The First People's Hospital of Jingmen, Jingmen, China
| | - Qiang Mao
- Department of Statistics, The First People's Hospital of Jingmen, Jingmen, China
| | - Dandan Gao
- Department of Infectious Diseases, The First People's Hospital of Jingmen, Jingmen, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongfa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Liu X, Huang X, Bai Y, Zhang Z, Jin T, Wu H, Liang Z. Next-generation sequencing revealed recurrent ZFPM1 mutations in encapsulated papillary carcinoma of the breast. NPJ Precis Oncol 2021; 5:42. [PMID: 34007008 PMCID: PMC8131604 DOI: 10.1038/s41698-021-00180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
Encapsulated papillary carcinoma (EPC) of the breast is a rare subtype of tumor. To date, the genetic abnormalities underlying EPC remain elusive. The purpose of this study was to gain further insight into EPC mutation profile. Forty-one EPCs diagnosed from 2015 to 2018 were included. Twenty-six EPCs were submitted to whole-exome sequencing (WES), and a 185 gene-targeted sequencing panel was designed to validate the results of the 26 EPCs that underwent WES and 15 additional cases. Recurrently mutated genes were further confirmed by Sanger sequencing. Our study revealed multiple recurrently mutated genes including PI3K-AKT-mTOR pathway genes (PIK3CA, AKT1, ULK1, MAP3K1, MAP2K4, RHOA, and PTEN) (27/41, 65.8%) and chromatin modification genes (ZFPM1, GATA3, CTCF, and KMT2C) (21/41, 51.2%) in EPC. Importantly, somatic ZFPM1 mutations existed in 9/41 (21.9%) of the EPCs. The frequency of ZFPM1 mutations in the EPCs was significantly higher than that of other tumor types. Of the nine ZFPM1 mutations, seven were frameshift mutations, and the remaining two were nonsense mutations. Moreover, a significant concurrence of ZFPM1 and PI3K-AKT-mTOR mutations were revealed in the EPCs. Of note, no TP53 mutations were detected in our EPCs, whereas it was detected in a considerable proportion of the luminal A invasive ductal carcinomas of no special type (IDC-NSTs) from TCGA. We reveal that recurrent somatic ZFPM1 mutation is characteristic of EPC and concurred with mutations in the PI3K-AKT-mTOR pathway. The distinctive genetic features of EPC might underlie its special histological structures and indolent behavior.
Collapse
Affiliation(s)
- Xuguang Liu
- Department of Pathology, Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Bai
- Department of Pathology, Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Huanwen Wu
- Department of Pathology, Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
15
|
Zheng A, Ma H, Liu X, Huang Q, Li Z, Wang L, Zeng N, Wu B. Effects of Moist Exposed Burn Therapy and Ointment (MEBT/MEBO) on the autophagy mTOR signalling pathway in diabetic ulcer wounds. PHARMACEUTICAL BIOLOGY 2020; 58:124-130. [PMID: 31967912 PMCID: PMC7006791 DOI: 10.1080/13880209.2019.1711430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Context: Burn therapy (MEBT)/moist exposed burn ointment (MEBO) is an effective traditional Chinese medicine method to treat diabetic wound, but the mechanism is unclear. Autophagy has been proved to be closely related with wound healing, so MEBO/MEBT is hypothesized to promote diabetic wound healing by regulating autophagy.Objective: To explore the mechanism of moist exposed MEBT/MEBO promoting diabetic wound repair.Materials and methods: Eighty male Wistar rats were randomly assigned to control (n = 20) and diabetic group induced by intraperitoneal injection of STZ (n = 60), which were further randomly assigned to MEBO, Kangfuxin and model groups (n = 20 each). All rats underwent full-thickness skin resection in the back. Wound healing was dynamically observed and wound tissues were collected at five time points for pathological examination, autophagosome and the expression of PI3K, Akt and mTOR.Results: The healing time in the control group was the shortest, no statistically significant difference was found between the MEBO and the Kangfuxin group (p = 0.76). The morphology of autophagosomes ranged large to small, which was the most obvious in the MEBO group. The mRNA and protein expression of PI3K, Akt and mTOR in each group reached the peak on Day 5, the levels in the MEBO group were the highest (F = 18.43, 19.97, 15.36, p < 0.05). On Day 11, the expression levels in each group began to decline.Discussion and conclusions: In this study, we discussed the molecular mechanism of MEBT/MEBO promoting the repair of diabetic ulcer wounds through autophagy and PI3K-Akt-mTOR signalling pathway, which provides a new way for drug design in the future.
Collapse
Affiliation(s)
- Aitian Zheng
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Huadan Ma
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Xianbin Liu
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Qing Huang
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Zheng Li
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Lin Wang
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Na Zeng
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Biaoliang Wu
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| |
Collapse
|
16
|
Mucinous carcinoma with micropapillary features is morphologically, clinically and genetically distinct from pure mucinous carcinoma of breast. Mod Pathol 2020; 33:1945-1960. [PMID: 32358590 DOI: 10.1038/s41379-020-0554-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
Micropapillary features are seen in pure mucinous carcinoma of breast (PMC), which is termed mucinous carcinoma with micropapillary features (MPMC). However, whether MPMC can be identified as a morphologically, clinically or genetically distinct entity from PMC remains controversial. In this study, a retrospective review of 161 cases of breast mucinous carcinoma was conducted to assess the clinicopathologic features, prognostic implications, and genomic alterations of MPMC and PMC. MPMCs were identified in 32% of mucinous carcinomas showing an excellent interobserver agreement (ICC = 0.922). MPMCs occurred at a younger age and exhibited higher nuclear grade, more frequent lymph nodal metastasis, lymphovascular invasion, and HER2 amplification compared with PMCs. Survival analyses revealed that MPMCs show decreased progression-free survival compared with PMCs in both unmatched and matched cohorts. A similar outcome of distant disease-free survival was observed only in the unmatched cohort. However, no statistical difference in recurrence score was observed between MPMC and PMC using a 21-gene assay. Notably, both MPMCs and PMCs displayed low mutation burden, common mutations affecting TTN, GATA3, SF3B1, TP53, recurrent 6q14.1-q27 losses, and 8p11.21-q24.3 gains. GATA3, TP53, and SF3B1 were recurrently mutated in MPMCs, while PIK3CA mutations were exclusively detected in PMCs. Moreover, MPMCs harbored 17q and 20q gains as well as 17p losses, while PMCs displayed gains at 6p. PI3K-Akt, mTOR, ErbB, and focal adhesion pathways were more frequently deregulated in MPMCs than in PMCs, which may responsible for the aggressive tumor behavior of MPMCs. Our findings suggest that MPMC is morphologically, clinically, and genetically distinct from PMC.
Collapse
|
17
|
Rintz E, Pierzynowska K, Podlacha M, Węgrzyn G. Has resveratrol a potential for mucopolysaccharidosis treatment? Eur J Pharmacol 2020; 888:173534. [PMID: 32877657 DOI: 10.1016/j.ejphar.2020.173534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidoses (MPS) represent a devastating group of lysosomal storage diseases (LSD) affecting approximately 1 in 25,000 individuals, where degradation of glycosaminoglycans (GAG) by lysosomal enzymes is impaired due to mutations causing defects in one of GAG-degrading enzymes. The most commonly used therapy for MPS is enzyme replacement therapy, consisting of application of an active form of the missing enzyme. However, supply of the missing enzyme is not enough in case of MPS types whose symptoms are expressed in central nervous system (CNS), as enzyme does not cross the blood-brain barrier. Moreover, even though enzyme replacement therapy for non-neuronopathic MPS IVA type is approved, it has a limited impact on bone abnormalities, that are one of main symptoms in the disease. Therefore, research into alternative therapeutic approaches for these types of MPS is highly desirable. One such alternative strategy is accelerated degradation of GAG by induction of autophagy. Autophagy is a process of lysosomal degradation of macromolecules that become abnormal or unnecessary for cells. One of the latest discoveries is that GAGs can also be such molecules. Potential drug should also cross blood-brain barrier and be safe in long-term therapy. It seems that one of the polyphenols, resveratrol, can meet the requirements. The mechanism of its action in autophagy stimulation is pleiotropic. Therefore, in this review, we will briefly discuss potential of resveratrol treatment for mucopolysaccharidosis through autophagy stimulation based on research in diseases with similar outcome.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland.
| |
Collapse
|
18
|
Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction. Biomed Pharmacother 2020; 130:110575. [PMID: 32768883 DOI: 10.1016/j.biopha.2020.110575] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aβ-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aβ-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1β in Aβ(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aβ(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.
Collapse
|
19
|
Chai W, Ye F, Zeng L, Li Y, Yang L. HMGB1-mediated autophagy regulates sodium/iodide symporter protein degradation in thyroid cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:325. [PMID: 31331356 PMCID: PMC6647330 DOI: 10.1186/s13046-019-1328-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/15/2019] [Indexed: 11/11/2022]
Abstract
Background Sodium/iodide symporter (NIS)-mediated iodide uptake plays an important physiological role in regulating thyroid gland function, as well as in diagnosing and treating Graves’ disease and thyroid cancer. High-mobility group box 1 (HMGB1), a highly conserved nuclear protein, is a positive regulator of autophagy conferring resistance to chemotherapy, radiotherapy and immunotherapy in cancer cells. Here the authors intended to identify the role of HMGB1 in Hank’s balanced salt solution (HBSS)-induced autophagy, explore NIS protein degradation through a autophagy-lysosome pathway in thyroid cancer cells and elucidate the possible molecular mechanisms. Methods Immunohistochemical staining and reverse transcription-polymerase chain reaction (RT-PCR) were performed for detecting the expression of HMGB1 in different tissues. HMGB1 was knocked down by lentiviral transfection in FTC-133/TPC-1 cells. Autophagic markers LC3-II, p62, Beclin1 and autophagosomal formation were employed for evaluating HMGB1-mediated autophagy in HBSS-treated cells by Western blot, immunofluorescence and electron microscopy. Western blot, quantitative RT-PCR and gamma counter analysis were performed for detecting NIS expression and iodide uptake in HMGB1-knockdown cells after different treatments. The reactive oxygen species (ROS) level, ROS-mediated LC3-II expression and HMGB1 cytosolic translocation were detected by fluorospectrophotometer, flow cytometry, Western blot and immunofluorescence. HMGB1-mediated AMPK, mTOR and p70S6K phosphorylation (p-AMPK, p-mTOR & p-p70S6K) were detected by Western blot. Furthermore, a nude murine model with transplanted tumor was employed for examining the effect of HMGB1-mediated autophagy on imaging and biodistribution of 99mTcO4−. NIS, Beclin1, p-AMPK and p-mTOR were detected by immunohistochemical staining and Western blot in transplanted tumor samples. Results HMGB1 was a critical regulator of autophagy-mediated NIS degradation in HBSS-treated FTC-133/TPC-1 cells. And HMGB1 up-regulation was rather prevalent in thyroid cancer tissues and closely correlated with worse overall lymph node metastasis and clinical stage. HMGB1-knockdown dramatically suppressed autophagy, NIS degradation and boosted iodide uptake in HBSS-treated cells. Moreover, HBSS enhanced ROS-sustained autophagy and promoted the cytosolic translocation of HMGB1. A knockdown of HMGB1 suppressed LC3-II conversion and NIS degradation via an AMPK/mTOR-dependent signal pathway through a regulation of ROS generation, rather than ATP. Furthermore, these data were further supported by our in vivo experiment of xenografts formed by HMGB1 knockdown cells reverting the uptake of 99mTcO4− as compared with control shRNA-transfected cells in hunger group. Conclusions Acting as a critical regulator of autophagy-mediated NIS degradation via ROS/AMPK/mTOR pathway, HMGB1is a potential intervention target of radioiodine therapy in thyroid cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1328-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital, Changsha, Hunan, 410008, People's Republic of China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Li Zeng
- Department of Nuclear Medicine, Hunan Cancer Hospital, Changsha, Hunan, 410008, People's Republic of China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital, Changsha, Hunan, 410008, People's Republic of China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|