1
|
Guo X, Li S. Bone metastases of prostate cancer: Molecular mechanisms, targeted diagnosis and targeted therapy (Review). Oncol Rep 2025; 53:46. [PMID: 39981932 PMCID: PMC11865881 DOI: 10.3892/or.2025.8879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/12/2024] [Indexed: 02/22/2025] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer in terms of death among men worldwide. Advanced PCa frequently results in bone metastases, which occur in ~90% of patients and frequently result in severe skeleton‑related events. Currently, the treatment for this disease is limited to alleviating its clinical symptoms and cannot provide a complete cure. Therefore, the development of novel treatment strategies is particularly important. In recent years, numerous novel strategies for the diagnosis and treatment of PCa have emerged, resulting in good clinical efficacy. For example, strategies targeting prostate specific membrane antigen, poly ADP‑ribose polymerase and programmed cell death protein 1 have been applied to PCa‑induced bone metastasis, and have shown initial efficacy and great potential. Therefore, understanding the molecular mechanisms underlying the formation of bone metastases in patients with PCa is of importance for the effective management of this disease. The purpose of the present review is to comprehensively outline the roles of protein‑coding genes and non‑coding RNAs in the development of bone metastases of PCa to elucidate their significance in the management of PCa. The aim is to offer clinicians and researchers a comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Xutang Guo
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shaojun Li
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Chodurska B, Kunej T. Long non-coding RNAs in humans: Classification, genomic organization and function. Noncoding RNA Res 2025; 11:313-327. [PMID: 39967600 PMCID: PMC11833636 DOI: 10.1016/j.ncrna.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate numerous biological functions in animals. Despite recent advances in lncRNA research, their structural and functional annotation and classification remain an ongoing challenge. This review provides a comprehensive overview of human lncRNAs, highlighting their genomic organization, mode of action and role in physiological and pathological processes. Subgroups of lncRNA genes are discussed using representative examples and visualizations of genomic organization. The HUGO Gene Nomenclature Committee (HGNC) categorizes lncRNAs into nine subgroups: (1) microRNA non-coding host genes, (2) small nucleolar RNA non-coding host genes, (3) long intergenic non-protein coding RNAs (LINC), (4) antisense RNAs, (5) overlapping transcripts, (6) intronic transcripts, (7) divergent transcripts, (8) long non-coding RNAs with non-systematic symbols and (9) long non-coding RNAs with FAM root systems. Circular RNAs (circRNAs) are a separate class that shares some characteristics with lncRNAs and are divided into exonic, intronic and intronic-exonic types. LncRNAs act as molecular signals, decoys, scaffolds and sponges for microRNAs and often function as competing endogenous RNAs (ceRNAs). LncRNAs are involved in various physiological and pathological processes, such as cell differentiation, p53-mediated DNA damage response, glucose metabolism, inflammation and immune functions. They are associated with several diseases, including various types of neoplasms, Alzheimer's disease and autoimmune diseases. A clear classification system for lncRNA is essential for understanding their biological role and for facilitating practical applications in biomedical research. Future studies should focus on drug development and biomarker discovery. As important regulators of various biological processes, lncRNAs represent promising targets for innovative therapies.
Collapse
Affiliation(s)
- Barbara Chodurska
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
- Medical University of Łódź, Faculty of Biomedical Sciences, Poland
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
| |
Collapse
|
3
|
Jayne S, López C, Put N, Nagel I, Lierman E, Penas EMM, Michaux L, Ahearne MJ, Walter HS, Bens S, Drewes C, Szczepanowski M, Schlesner M, Rosenstiel P, Wlodarska I, Siebert R, Dyer MJS. The chromosomal translocation t(1;6)(p35.3;p25.2), recurrent in chronic lymphocytic leukaemia, leads to RCC1::IRF4 fusion. Br J Haematol 2024; 205:2321-2326. [PMID: 39406248 PMCID: PMC11637728 DOI: 10.1111/bjh.19790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024]
Abstract
The chromosomal translocation t(1;6)(p35.3;p25.2) is a rare but recurrent aberration in chronic lymphocytic leukaemia (CLL). We report molecular characterization of 10 cases and show that this translocation juxtaposes interferon regulatory factor 4 (IRF4) on 6p25 with regulator of chromosome condensation 1 (RCC1) on 1p35. The breakpoints fell within the 5' untranslated regions of both genes, resulting in RCC1::IRF4 fusion transcripts without alterations of the protein-coding sequences. Levels of expression of both RCC1 and IRF4 proteins were not obviously deregulated. The cases showed other mutations typical of CLL and we confirm previously reported skewing towards the IGHV-unmutated subtype. RCC1::IRF4 fusion characterizes a rare subset of CLL.
Collapse
Affiliation(s)
- Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Cristina López
- Institute of Human Genetics, Christian‐Albrechts‐University Kiel and University Hospital Schleswig‐Holstein—Campus KielKielGermany
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Universitat de BarcelonaBarcelonaSpain
| | - Natalie Put
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
- Department of Oncology, Hematology and RadiotherapyZiekenhuis Oost‐LimburgGenkBelgium
- Limburgs Oncologisch CentrumGenkBelgium
- Faculty of Medicine and Life SciencesUHasselt—Hasselt UniversityDiepenbeekBelgium
| | - Inga Nagel
- Institute of Human Genetics, Christian‐Albrechts‐University Kiel and University Hospital Schleswig‐Holstein—Campus KielKielGermany
| | - Els Lierman
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | - Eva Maria Murga Penas
- Institute of Human Genetics, Christian‐Albrechts‐University Kiel and University Hospital Schleswig‐Holstein—Campus KielKielGermany
| | - Lucienne Michaux
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | - Matthew J. Ahearne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Harriet S. Walter
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Susanne Bens
- Institute of Human Genetics, Christian‐Albrechts‐University Kiel and University Hospital Schleswig‐Holstein—Campus KielKielGermany
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Cosima Drewes
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Monika Szczepanowski
- Hematopathology SectionChristian‐Albrechts‐University KielKielGermany
- Second Medicine DepartmentUniversity Hospital Schleswig‐Holstein, Campus KielKielGermany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics (B240)German Cancer Research Center (DKFZ)HeidelbergGermany
- Biomedical InformaticsData Mining and Data Analytics, University of AugsburgAugsburgGermany
| | - Philip Rosenstiel
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐UniversityKielGermany
| | - Iwona Wlodarska
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Reiner Siebert
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Martin J. S. Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| |
Collapse
|
4
|
de Mello DC, Menezes JM, de Oliveira ATF, Cristovão MM, Kimura ET, Fuziwara CS. Modulating gene expression as a strategy to investigate thyroid cancer biology. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240073. [PMID: 39876973 PMCID: PMC11771757 DOI: 10.20945/2359-4292-2024-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 01/31/2025]
Abstract
Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab. Allied with that, the existence of various human cell line models for cancer covering different histotypes and biological behaviors, especially for thyroid cancer, has helped improve the understanding of cancer biology. In this review, we cover the most frequently used current techniques for gene modulation in the thyroid cancer field, such as RNA interference (RNAi), short hairpin RNA (shRNA), and gene editing with CRISPR/Cas9 for inhibiting a target gene, and strategies to overexpress a gene, such as plasmid cloning and CRISPRa. Exploring the possibilities for gene modulation allows the improvement of the scientific quality of the studies and the integration of clinicians and basic scientists, leading to better development of translational research.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Joice Moraes Menezes
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Antonio Tarelo Freitas de Oliveira
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcella Maringolo Cristovão
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edna Teruko Kimura
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cesar Seigi Fuziwara
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
6
|
Xie X, Gao M, Wang H, Zhang M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Ngowi EE, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA-Snhg3 regulates mouse hepatic glycogenesis under normal chow diet. FASEB J 2024; 38:e23880. [PMID: 39132919 DOI: 10.1096/fj.202401064r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.
Collapse
Affiliation(s)
- Xianghong Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingyue Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunmei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yinliang Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanfang Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zeyu Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yiting Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaolu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fude Fang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaojun Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Wang F, Hu D, Lou X, Wang L, Wang Y, Zhang T, Yan Z, Meng N, Lei Y, Zou Y. Predictive value of peripheral blood leukocytes-based methylation of Long non-coding RNA MALAT1 and H19 in the chemotherapy effect and prognosis of gastric cancer. Transl Oncol 2024; 44:101929. [PMID: 38493517 PMCID: PMC10958112 DOI: 10.1016/j.tranon.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/27/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The predictive value of the methylation of Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and H19 promoters in peripheral blood leukocytes as a non-invasive biomarker for the chemotherapy effect and prognosis gastric cancer (GC) is unclear. METHODS The DNA methylation of H19 and MALAT1 between chemotherapy-sensitive and non-sensitive groups and between groups with better and worse survival of GC was compared using regression analyses. Several predictive nomograms were constructed. The genetic alteration of MALAT1 and H19 and the association between gene expression and immune status in GC were also investigated using bioinformatics analysis. RESULTS Higher genetic methylations in peripheral blood were noticed in GC groups with poorer survival. The constructed nomograms presented strong predictive values for the chemotherapy effect and 3-year survival of disease-free survival, progression-free survival, and overall survival, with the area under the curve as 0.838, 0.838, 0.912, and 0.925, respectively. Significant correlations between MALAT1 or H19 expression and marker genes of immune checkpoints and immune pathways were noticed. The high infiltration of macrophages in H19-high and low infiltration of CD8+ T cells in MALAT1-high groups were associated with worse survival of GC. CONCLUSIONS MALAT1 and H19 have the potential to predict the chemotherapy response and clinical outcomes of GC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Xiaoqi Lou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Nana Meng
- Department of Quality Management Office, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
8
|
Huang L, Yang G, Shao Y, Sun J, Yang X, Hong H, Aikemu B, Yesseyeva G, Li S, Ding C, Fan X, Zhang S, Ma J, Zheng M. Cancer-derived exosomal lncRNA SNHG3 promotes the metastasis of colorectal cancer through hnRNPC-mediating RNA stability of β-catenin. Int J Biol Sci 2024; 20:2388-2402. [PMID: 38725844 PMCID: PMC11077369 DOI: 10.7150/ijbs.88313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of β-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of β-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.
Collapse
Affiliation(s)
- Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hiju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
10
|
Chen H, Xiao L, Xie G, Zhang P, Dong P, Bian B, Wang J, Zhou Y, Ma Y, Liu Y, Shen L. LINC00355 promotes gastric carcinogenesis by scaffolding p300 to activate CDC42 transcription and enhancing HNRNPA2B1 to stabilize CDC42 mRNA dependent on m6A. Mol Carcinog 2024; 63:430-447. [PMID: 37983727 DOI: 10.1002/mc.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
LINC00355 is involved in the tumorigenesis of several types of cancer. We verified that LINC00355 is upregulated in gastric cancer (GC) and contributes to GC cells' proliferation and metastasis. RNA sequencing (RNA-seq) and rescue assays suggested that LINC00355 controls gastric carcinogenesis by regulating the expression of cell division cycle 42 (CDC42) guanosine triphosphatase (GTPases), thereby activating their downstream pathways. Most previous studies have shown that LINC00355 acts as a ceRNA by sponging miRNAs to modulate downstream gene expression. Our group focus on epigenetic regulatory potential of LINC00355 in gene expression. Mechanistically, LINC00355 binds to p300 histone acetyltransferase, specifying the histone modification pattern on the CDC42 promoter to activate CDC42 transcription, thereby altering GC cell biology. In addition, HNRNPA2B1, which is upregulated by LINC00355, recognizes the N6-methyladenosine (m6A) sites of CDC42 and enhances the stability of CDC42 mRNA transcripts. Therefore, LINC00355 is mechanistically, functionally, and clinically oncogenic in GC cells.
Collapse
Affiliation(s)
- Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanshu Xiao
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxian Bian
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Clinical Laboratory, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| |
Collapse
|
11
|
Mohebbi H, Esbati R, Hamid RA, Akhavanfar R, Radi UK, Siri G, Yazdani O. EZH2-interacting lncRNAs contribute to gastric tumorigenesis; a review on the mechanisms of action. Mol Biol Rep 2024; 51:334. [PMID: 38393645 DOI: 10.1007/s11033-024-09237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Gastric cancer (GC) remains one of the deadliest malignancies worldwide, demanding new targets to improve its diagnosis and treatment. Long non-coding RNAs (lncRNAs) are dysregulated through gastric tumorigenesis and play a significant role in GC progression and development. Recent studies have revealed that lncRNAs can interact with histone-modifying polycomb protein, enhance Zeste Homolog 2 (EZH2), and mediate its site-specific functioning. EZH2, which functions as an oncogene in GC, is the catalytic subunit of the PRC2 complex that induces H3K27 trimethylation and epigenetically represses gene expression. EZH2-interacting lncRNAs can recruit EZH2 to the promoter regions of various tumor suppressor genes and cause their transcriptional deactivation via histone methylation. The interactions between EZH2 and this lncRNA modulate different processes, such as cell cycle, cell proliferation and growth, migration, invasion, metastasis, and drug resistance, in vitro and in vivo GC models. Therefore, EZH2-interacting lncRNAs are exciting targets for developing novel targeted therapies for GC. Subsequently, this review aims to focus on the roles of these interactions in GC progression to understand the therapeutic value of EZH2-interacting lncRNAs further.
Collapse
Affiliation(s)
- Hossein Mohebbi
- Kermanshah University of medical sciences, International branch, Kermanshah, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | | | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Liu S, Rong Y, Tang M, Zhao Q, Li C, Gao W, Yang X. The Functions and Mechanisms of Long Non-coding RNA SNHGs in Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2639-2653. [PMID: 37842903 DOI: 10.2174/0113862073268591230928100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Despite significant advancements in surgical and adjuvant treatments, patient prognosis remains unsatisfactory. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that lack protein-coding capacity but can engage in the malignant biological behaviors of tumors through various mechanisms. Among them, small nucleolar host genes (SNHGs) represent a subgroup of lncRNAs. Studies have revealed their involvement not only in gastric cancer cell proliferation, invasion, migration, epithelial- mesenchymal transition (EMT), and apoptosis but also in chemotherapy resistance and tumor stemness. This review comprehensively summarizes the biological functions, molecular mechanisms, and clinical significance of SNHGs in gastric cancer. It provides novel insights into potential biomarkers and therapeutic targets for the exploration of gastric cancer.
Collapse
Affiliation(s)
- Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Qiqi Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunyan Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Wenbin Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiaojun Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of National Health and Health Commission, Lanzhou, 730000, China
| |
Collapse
|
13
|
Shaemi F, Nejati M, Sarrafnia H, Mahabady MK, Tamtaji Z, Taheri AT, Hamblin MR, Zolfaghari MR, Heydari A, Mirzaei H. Expression of selected long non-coding RNAs in gastric cancer cells treated with coumarin: Possible mechanisms for anti-cancer activity. Pathol Res Pract 2023; 252:154914. [PMID: 37992506 DOI: 10.1016/j.prp.2023.154914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) can be utilized as prognostic indicators of gastric cancer since they can affect several cancer-related processes. Coumarin is a natural product with some useful anti-cancer properties. Here, we measured the expression of selected lncRNAs (RuPAR, SNHG6, CASC11, and their targets, miR-340-5p, p21, E-cadherin, and CDK1) in AGS gastric cancer cells treated with coumarin. MTT test has been utilized for assessing the AGS cells' cell viability after exposure to coumarin. The expression of the lncRNAs (RuPAR, SNHG6, and CASC11) and miR-340-5p was evaluated via qRT-PCR. Western blot analysis has been utilized to determine changes in p21, E-cadherin, and CDK1 expression. Coumarin decreased AGS viability in a dose-dependent manner. The coumarin treated cells had lower levels of the mRNAs known to be targets of lncRNAs SNHG6 and CASC11 compared to control. Additionally, the coumarin group had increased levels of lncRNA RuPAR expression when compared with the control group. Some lncRNA targets, including p21, E-cadherin, and CDK1, showed lower expression in the coumarin group compared to the control by Western blotting. Coumarin could be a promising pharmacological candidate to be included in gastric cancer treatment regimens because it modulates lncRNAs and their targets.
Collapse
Affiliation(s)
- Fatemeh Shaemi
- Department of Genetics, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haleh Sarrafnia
- Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
15
|
Ranjbar M, Heydarzadeh S, Shekari Khaniani M, Foruzandeh Z, Seif F, Pornour M, Rahmanpour D, Tarhriz V, Alivand M. Mutual interaction of lncRNAs and epigenetics: focusing on cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractLong noncoding RNAs are characterized as noncoding transcripts longer than 200 nucleotides in response to a variety of functions within the cells. They are involved in almost all cellular mechanisms so as epigenetics. Given that epigenetics is an important phenomenon, which participates in the biology of complex diseases, many valuable studies have been performed to demonstrate the control status of lncRNAs and epigenetics. DNA methylation and histone modifications as epigenetic mechanisms can regulate the expression of lncRNAs by affecting their coding genes. Reciprocally, the three-dimensional structure of lncRNAs could mechanistically control the activity of epigenetic-related enzymes. Dysregulation in the mutual interaction between epigenetics and lncRNAs is one of the hallmarks of cancer. These mechanisms are either directly or indirectly involved in various cancer properties such as proliferation, apoptosis, invasion, and metastasis. For instance, lncRNA HOTAIR plays a role in regulating the expression of many genes by interacting with epigenetic factors such as DNA methyltransferases and EZH2, and thus plays a role in the initiation and progression of various cancers. Conversely, the expression of this lncRNA is also controlled by epigenetic factors. Therefore, focusing on this reciprocated interaction can apply to cancer management and the identification of prognostic, diagnostic, and druggable targets. In the current review, we discuss the reciprocal relationship between lncRNAs and epigenetic mechanisms to promote or prevent cancer progression and find new potent biomarkers and targets for cancer diagnosis and therapy.
Collapse
|
16
|
Xie J, Ni J, Shi H, Wang K, Ma X, Li W, Peng B. LncRNA SNHG3 enhances BMI1 mRNA stability by binding and regulating c-MYC: Implications for the carcinogenic role of SNHG3 in bladder cancer. Cancer Med 2023; 12:5718-5735. [PMID: 36208024 PMCID: PMC10028137 DOI: 10.1002/cam4.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The transformation of nonmuscle-invasive bladder cancer (BLCa) to muscle-invasive type and distant metastasis are the two major threats to patients after surgery. Thus, it is important to identify the key genes of BLCa cell invasion and metastasis. Long noncoding RNA (lncRNA) is a potential clinical tool for cancer diagnosis and treatment. Herein, we verified that lncRNA SNHG3 is upregulated in human BLCa specimens and is proportional to poor clinical prognosis via a combination of bioinformatic analyses and wet bench experiments. Then, we constructed SNHG3 knockdown and overexpression cell models via lentiviral packaging and CRISPR-Cas9 technique. Fluorescence in situ hybridization assay showed that SNHG3 is distributed in both the nucleus and cytoplasm of BLCa cell lines. In vitro assays including CCK-8, EdU, colony formation, wound healing, transwell, and tube formation demonstrated that SNHG3 knockdown and overexpression potently inhibited and enhanced BLCa cell proliferation, migration, invasion, and angiogenesis. In addition, IVIS imaging revealed that SNHG3 knockdown could significantly inhibit M-NSG mice xenograft tumor growth. Next, RNA sequencing, bioinformatics analyses and western blots indicated that SNHG3 could promote c-MYC expression. RNA immunoprecipitation, actinomycin D assay and western blot assays suggested that SNHG3 could also bind c-MYC protein which subsequently facilitate the stabilization of BMI1 mRNA, thus enhancing BMI1 protein level. However, SNHG3 knockdown had a slightly weaker inhibitory effect on BMI1 expression than c-MYC knockdown. Further, in vitro assays demonstrated that BMI1 knockdown could suppress the SNHG3 activation-induced tumor promoting effect in BLCa cells. Overall, this study has provided new insights into the potential implication of lncRNA SNHG3 in the pathogenesis of BLCa. Importantly, SNHG3/c-MYC/BMI1 axis may be a novel target for regulating tumor growth and metastasis in BLCa patients.
Collapse
Affiliation(s)
- Jinbo Xie
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
| | - Huajuan Shi
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keyi Wang
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoying Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Peng
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Zhang F, Lu J, Yang J, Dai Q, Du X, Xu Y, Zhang C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics 2023; 75:39-51. [PMID: 36114381 DOI: 10.1007/s00251-022-01277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
The involvement of small nucleolar RNA host gene 3 (SNHG3) in cancer regulation has been reported. This study attempted to deeply investigate the molecular regulatory mechanism of SNHG3 on malignant progression of hepatocellular carcinoma (HCC). According to TCGA analysis, high SNHG3 expression was a risk factor for poor prognosis of HCC patients. Therefore, we further detected the mRNA level of SNHG3 in HCC tissue and cells. It was found that SNHG3 was upregulated in HCC tissue and cells. Afterwards, CCK-8 and flow cytometry assays further proved that silencing SNHG3 inhibited HCC cell proliferation while inducing cell apoptosis and G0/G1 phase arrest. It was also attested in vivo experiments that silencing SNHG3 could reduce the volume and weight of tumors and downregulate the Ki-67 expression to suppress HCC tumor growth. Next, it was discovered that SNHG3 increased the binding of E2F1 and NEIL3 promoter region, thereby activating the transcription feature of NEIL3. Lastly, rescue assays indicated that NEIL3 participated in SNHG3-mediated HCC cell cycle, apoptosis and proliferation. All in all, this study revealed the specific regulatory mechanism of SNHG3 in HCC to enable SNHG3 a hopeful marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Fabiao Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jie Lu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jian Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Qiqiang Dai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xuefeng Du
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
18
|
Ji G, Wang X, Xi H. METTL3-mediated m 6A modification of lncRNA SNHG3 accelerates gastric cancer progression by modulating miR-186-5p/cyclinD2 axis. Int J Immunopathol Pharmacol 2023; 37:3946320231204694. [PMID: 37823387 PMCID: PMC10571673 DOI: 10.1177/03946320231204694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES METTL3 as an m6A methyltransferase acts in diverse malignancies including gastric cancer (GC). We aimed to reveal the underlying mechanisms by which METTL3 contributes to gastric carcinogenesis. METHODS The association of METTL3 and SNHG3 with GC was analyzed by qRT-PCR, Western blot, and TCGA cohort. The functional experiments were implemented to uncover the role of METTL3 in GC. m6A dot blot and MeRIP were used to determine METTL3-mediated m6A modification of lncRNA SNHG3. The effect of METTL3 on SNHG3-mediated miR-186-5p/cyclinD2 axis was evaluated by luciferase gene report, RT-qPCR, and Western blot assays. RESULTS We found that METTL3 was remarkably elevated in GC tissues and correlated with poor survival in patients with GC. Silencing of METTL3 impaired GC cell growth and invasion, whereas restored METTL3 expression promoted these effects. Mechanistically, reduced expression of METTL3 decreased SNHG3 m6A level and caused a decrease in SNHG3 expression, which could further act as a sponge of miR-186-5p to upregulate cyclinD2. Overexpression of SNHG3 attenuated METTL3 knockdown-induced anti-proliferating and miR-186-5p upregulation and cyclinD2 downregulation. CONCLUSION We find that METTL3-mediated m6A modification of lncRNA SNHG3 accelerates GC progression by modulating miR-186-5p/cyclinD2 axis.
Collapse
Affiliation(s)
| | | | - Hao Xi
- Hao Xi, Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yanchang Middle Road, Shanghai 200072, China.
| |
Collapse
|
19
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ren S, Xiao Y, Yang L, Hu Y. RNA m6A methyltransferase METTL14 promotes the procession of non-small cell lung cancer by targeted CSF1R. Thorac Cancer 2022; 14:254-266. [PMID: 36448247 PMCID: PMC9870747 DOI: 10.1111/1759-7714.14741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the most malignant cancer types, characterized by a poor prognosis. N6-methyladenosine (m6A) is a prevalent internal modification of mRNA. METTL14, an RNA methyltransferase that mediates m6A modification, is implicated in mRNA biogenesis. However, the biomechanism of METTL14 in NSCLC is not very clear. METHODS Here, immunohistochemical (IHC) assay was employed to detect METTL14 in NSCLC tissues. The biological functions of METTL14 were demonstrated using cell transfection, cell proliferation assay, cell clone formation assay, cell cycle analysis, cell death analysis, transwell and wound healing assays. Transcriptome and methylated RNA immunoprecipitation (MERIP)-sequencing were used to explore the pathways and potential mechanism of METTL14 in NSCLC. RNA sequencing, METTL14 rip-sequencing, and METTL14 merip-sequencing were conducted to identify the potential targets of METTL14. RESULTS METTL14 was significantly correlated with clinical pathological parameters of differentiation and M stage. Additionally, METTL14 promotes cell proliferation, induces cell death, and enhances cell migration and invasion in vitro. Transcriptome and MeRIP-sequencing reveal oncogenic mechanism of METTL14. RIP-sequencing highlights CSF1R and AKR1C1 as targets of METTL14. After validation with TCGA dataset, colony stimulating factor 1 receptor (CSF1R) showed significant positive coefficient with METTL14, and was presumed to be one target of METTl14 in lung cancer and verified by the cellular experiments. CONCLUSION In conclusion, our results revealed the clinical significance of m6A RNA modification atlas, the function, and molecular targets CSF1R of METTL14 in NSCLC cell lines. The RNA m6A methyltransferase METTL14 promotes the progression of NSCLC by targeted CSF1R.
Collapse
Affiliation(s)
- Siying Ren
- Department of Respiratory and Critical Care MedicineThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ying Xiao
- Department of Respiratory and Critical Care MedicineThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lulu Yang
- Department of Respiratory and Critical Care MedicineThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Hu
- Department of Thoracic SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
21
|
Ren T, Wang D, Gu J, Hou X. LncRNA SNHG3 promoted cell proliferation, migration, and metastasis of esophageal squamous cell carcinoma via regulating miR-151a-3p/PFN2 axis. Open Med (Wars) 2022. [DOI: 10.1515/med-2022-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant tumor with a poor prognosis. The dysregulation of long non-coding RNAs (lncRNAs) is closely related to the tumorigenesis and progression of ESCC. However, the effects of lncRNA small nucleolar RNA host gene 3 (lncRNA SNHG3) in ESCC are still unclear. Therefore, a series of experiments methods, such as quantitative real-time polymerase chain reaction, function gain/loss experiments, western blots, and animal xenograft tumor model, were employed to explore the biological function and molecular mechanism of SNHG3 in ESCC. As results, we first reported that SNHG3 was significantly up-regulated in ESCC tissues and cells. SNHG3 knockdown obviously inhibited cell proliferation, migration, invasion, and promoted apoptosis. Mechanism analysis revealed that SNHG3 sponged miR-151a-3p to regulate PFN2. Inhibition of miR-151a-3p and overexpression of PFN2 attenuated the positive effect of SNHG3 knockdown on suppressing tumor progression. Furthermore, the anti-tumor effects of SNHG3 knockdown were also observed in vivo. In summary, our results indicated that SNHG3 knockdown suppressed tumor development via the miR-151a-3p/PFN2 axis, and targeting SNHG3 may provide a new opportunity for ESCC patients.
Collapse
Affiliation(s)
- Tiejun Ren
- Department of Medical Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University , 288 Zhongzhou Middle Road, Xigong District , Luoyang , 471000, Henan , China
| | - Dingyi Wang
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| | - Jinjin Gu
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| | - Xiaozhen Hou
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| |
Collapse
|
22
|
Chen L, Liu H, Sun C, Pei J, Li J, Li Y, Wei K, Wang X, Wang P, Li F, Gai S, Zhao Y, Zheng Z. A Novel LncRNA SNHG3 Promotes Osteoblast Differentiation Through BMP2 Upregulation in Aortic Valve Calcification. JACC Basic Transl Sci 2022; 7:899-914. [PMID: 36317131 PMCID: PMC9617132 DOI: 10.1016/j.jacbts.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
The long noncoding RNA SNHG3 was upregulated in the leaflets of both patients and mice with calcific aortic valve disease. SNHG3 can associate with EZH2 in the nucleus of hVICs to epigenetically upregulate BMP2, a key mediator of calcification. SNHG3 promoted osteoblast differentiation of hVICs via upregulation of the BMP2 pathway. SNHG3 silencing significantly ameliorated aortic valve calcification in experimental animals, providing a novel therapeutic target for CAVD.
Based on high-throughput transcriptomic sequencing, SNHG3 was among the most highly expressed long noncoding RNAs in calcific aortic valve disease. SNHG3 upregulation was verified in human and mouse calcified aortic valves. Moreover, in vivo and in vitro studies showed SNHG3 silencing markedly ameliorated aortic valve calcification. In-depth functional assays showed SNHG3 physically interacted with polycomb repressive complex 2 to suppress the H3K27 trimethylation BMP2 locus, which in turn activated BMP2 expression and signaling pathways. Taken together, SNHG3 promoted aortic valve calcification by upregulating BMP2, which might be a novel therapeutic target in human calcific aortic valve disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhe Zheng
- Address for correspondence: Dr Zhe Zheng, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, PR China.
| |
Collapse
|
23
|
Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int 2022; 22:227. [PMID: 35810299 PMCID: PMC9270757 DOI: 10.1186/s12935-022-02648-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
As one of the most common malignancies worldwide, gastric cancer contributes to cancer death with a high mortality rate partly responsible for its out-of-control progression as well as limited diagnosis. DNA methylation, one of the epigenetic events, plays an essential role in the carcinogenesis of many cancers, including gastric cancer. Long non-coding RNAs have emerged as the significant factors in the cancer progression functioned as the oncogene genes, the suppressor genes and regulators of signaling pathways over the decade. Intriguingly, increasing reports, recently, have claimed that abnormal DNA methylation regulates the expression of lncRNAs as tumor suppressor genes in gastric cancer and lncRNAs as regulators could exert the critical influence on tumor progression through acting on DNA methylation of other cancer-related genes. In this review, we summarized the DNA methylation-associated lncRNAs in gastric cancer which play a large impact on tumor progression, such as proliferation, invasion, metastasis and so on. Furthermore, the underlying molecular mechanism and signaling pathway might be developed as key points of gastric cancer range from diagnosis to prognosis and treatment in the future.
Collapse
Affiliation(s)
- Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
24
|
N6-methyladenosine-related lncRNAs identified as potential biomarkers for predicting the overall survival of Asian gastric cancer patients. BMC Cancer 2022; 22:721. [PMID: 35778697 PMCID: PMC9248105 DOI: 10.1186/s12885-022-09801-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Gastric cancer (GC) is one of the most prevalent malignant tumors in Asian countries. Studies have proposed that lncRNAs can be used as diagnostic and prognostic indicators of GC due to the high specificity of lncRNAs expression involvement in GC. Recently, N6-methyladenosine (m6A) has also emerged as an important modulator of the expression of lncRNAs in GC. This study aimed at establishing a novel m6A-related lncRNAs prognostic signature that can be used to construct accurate models for predicting the prognosis of GC in the Asian population. Methods First, the levels of m6A modification and m6A methyltransferases expression in GC samples were determined using dot blot and western blot analyses. Next, we evaluated the lncRNAs expression profiles and the corresponding clinical data of 88 Asian GC patients retrieved from The Cancer Genome Atlas (TCGA) database. Differential expression of m6A-related lncRNAs between GC and normal tissues was investigated. The relationship between these target lncRNAs and potential immunotherapeutic signatures was also analyzed. Gene set enrichment analysis (GSEA) was performed to identify the malignancy-associated pathways. Univariate Cox regression, LASSO regression, and multivariate Cox regression analyses were performed to establish a novel prognostic m6A-related lncRNAs prognostic signature. Moreover, we constructed a predictive nomogram and determined the expression levels of nine m6A-related lncRNAs in 12 pairs of clinical samples. Results We found that m6A methylation levels were significantly increased in GC tumor samples compared to adjacent normal tissues, and the increase was positively correlated with tumor stage. Patients were then divided into two clusters (cluster 1 and cluster 2) based on the differential expression of the m6A-related lncRNAs. Results showed that there was a significant difference in survival probability between the two clusters (p = 0.018). Notably, the low survival rate in cluster 2 may be associated with high expression of immune cells (resting memory CD4+ T cells, p = 0.027; regulatory T cells, p = 0.0018; monocytes, p = 0.00095; and resting dendritic cells, p = 0.015), and low expression of immune cells (resting NK cells, p = 0.033; and macrophages M1, p = 0.045). Enrichment analysis indicated that malignancy-associated biological processes were more common in the cluster 2 subgroup. Finally, the risk model comprising of six m6A-related lncRNAs was identified as an independent predictor of prognoses, which could divide patients into high- or low-risk groups. Time-dependent ROC analysis suggested that the risk score could accurately predict the prognosis of GC patients. Patients in the high-risk group had worse outcomes compared to patients in the low-risk group, and the risk score showed a positive correlation with immune cells (resting memory CD4+ T cells, R = 0.31, P = 0.038; regulatory T cells, R = 0.42, P = 0.0042; monocytes, R = 0.42, P = 0.0043). However, M1 macrophages (R = -0.37, P = 0.012) and resting NK cells (R = -0.31, P = 0.043) had a negative correlation with risk scores. Furthermore, analysis of clinical samples validated the weak positive correlation between the risk score and tumor stage. Conclusions The risk model described here, based on the six m6A-related lncRNAs signature, and may predict the clinical prognoses and immunotherapeutic response in Asian GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09801-z.
Collapse
|
25
|
Dai T, Li J, Ye L, Yu H, Deng M, Liu W, Li H, Yang Y, Wang G. Prognostic Role and Potential Mechanisms of N6-methyladenosine-related Long Noncoding RNAs in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:308-320. [PMID: 35528973 PMCID: PMC9039697 DOI: 10.14218/jcth.2021.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Numerous studies have explored the important role of N6-methyladenosine (m6A) in cancer. Nonetheless, the interaction between m6A and long noncoding RNAs (lncRNAs) is poorly investigated. Herein, we systematically analyzed the role and prognostic value of m6A-related lncRNAs in hepatocellular carcinoma (HCC). METHODS The m6A-related lncRNAs were identified based on the correlation coefficients with m6A-related genes in HCC from The Cancer Genome Atlas. Subsequently, a novel risk score model was determined using the least absolute shrinkage and selection operator Cox regression analyses. Univariate and multivariate Cox analyses were used to identify independent prognostic factors for overall survival (OS) of HCC; thereafter, a prognostic nomogram was constructed. RESULTS A total of 259 lncRNAs showed significant correlations with m6A in HCC, while 29 lncRNAs had prognostic significance. Further, six critical m6A-related lncRNAs (NRAV, SNHG3, KDM4A-AS1, AC074117.1, AC025176.1, and AL031985.3) were screened out to construct a novel risk score model which classified HCC patients into high- and low-risk groups. Survival analyses revealed that patients in the high-risk group exhibited worse OS, both in the training and validation groups. The risk score was also identified as an independent prognostic factor of OS, and a nomogram was established and verified with superior prediction capacity. Besides, the risk score significantly correlated with the expression of immune checkpoint genes and immune subtypes. CONCLUSIONS These findings indicated the significant role of m6A-related lncRNAs in HCC and the potential application of the novel risk score model for prognostic prediction.
Collapse
Affiliation(s)
- Tianxing Dai
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingbin Deng
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guoying Wang
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
27
|
LncRNA SNHG3 Facilitates the Malignant Phenotype of Cholangiocarcinoma Cells via the miR-3173-5p/ERG Axis. J Gastrointest Surg 2022; 26:802-812. [PMID: 34647226 DOI: 10.1007/s11605-021-05160-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/17/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) is an oncogenic lncRNA that has been reported in many cancers, but the role of SNHG3 in cholangiocarcinoma (CCA) remains largely unknown. Bioinformatic analysis revealed a regulatory relationship among SNHG3, miR-3173-5p, and ERG. miR-3173-5p is a tumour suppressive miRNA, while ERG is an oncogene. In the present study, we focused on the regulatory effects and molecular mechanisms of SNHG3 in CCA. METHOD The expression of SNHG3 and miR-3173-5p was evaluated using qRT-PCR analysis. Knockdown of SNHG3 was achieved by shRNA. Cell viability was assessed by MTT assay. Migration and invasion were determined by Transwell assay. Flow cytometry was used to assess cell apoptosis. Western blots were applied to quantify protein levels. Furthermore, using RNA pulldown and dual luciferase assays, the interactions between SNHG3 and miR-3173-5p and between miR-3173-5p and ERG in CCA cells were validated. RESULTS SNHG3 was significantly upregulated in CCA cells compared with normal human intrahepatic biliary epithelial cells. Knockdown of SNHG3 inhibited the proliferation and migration of CCA cells. Mechanistically, SNHG3-sponged miR-3173-5p, thus releasing the repression of ERG by miR-3173-5p. Rescue experiments showed that the miR-3173-5p/ERG axis mediated the oncogenic effect of SNHG3. CONCLUSION Taken together, our data suggest that SNHG3 is a pleiotropic oncogenic lncRNA in CCA. Knockdown of SNHG3 expression suppressed malignant phenotypes in CCA cells via the miR-3173-5p/ERG axis.
Collapse
|
28
|
lncRNA SNHG26 promoted the growth, metastasis, and cisplatin resistance of tongue squamous cell carcinoma through PGK1/Akt/mTOR signal pathway. Mol Ther Oncolytics 2022; 24:355-370. [PMID: 35118193 PMCID: PMC8783117 DOI: 10.1016/j.omto.2021.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is closely linked to head and neck cancers. Here, we sought to explore the role and mechanism of lncRNAs in the occurrence and progression of TSCC and cisplatin resistance. The results of next-generation transcriptomic sequencing revealed that lncRNA-SNHG26 was differentially expressed and was associated with TSCC cisplatin resistance. The Cancer Genome Atlas dataset and tumor tissue analysis revealed that high SHNG26 expression was associated with the occurrence, progression, and poor prognosis of TSCC. Evidence from cell and animal experiments showed that SNHG26 expression was positively correlated with TSCC proliferation, epithelial-mesenchymal transformation, migration, invasion, and cisplatin resistance. Furthermore, in TSCC cells, SNHG26 was found to bind directly to the PGK1 protein, inhibiting its ubiquitination and activating the Akt/mTOR signaling pathway. These findings suggest that lncRNA-SNHG26 may be a promising target for inhibiting TSCC progression and improving sensitivity to cisplatin chemotherapy in TSCC.
Collapse
|
29
|
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res 2022; 41:100. [PMID: 35292092 PMCID: PMC8922926 DOI: 10.1186/s13046-022-02319-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Collapse
|
30
|
Golla U, Sesham K, Dallavalasa S, Manda NK, Unnam S, Sanapala AK, Nalla S, Kondam S, Kumar R. ABHD11-AS1: An Emerging Long Non-Coding RNA (lncRNA) with Clinical Significance in Human Malignancies. Noncoding RNA 2022; 8:ncrna8020021. [PMID: 35314614 PMCID: PMC8938790 DOI: 10.3390/ncrna8020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of lncRNAs has been linked to the development and progression of different cancers. One such lncRNA is ABHD11 antisense RNA 1 (ABHD11-AS1), which has recently gained attention for its significant role in human malignancies. ABHD11-AS1 is highly expressed in gastric, lung, breast, colorectal, thyroid, pancreas, ovary, endometrium, cervix, and bladder cancers. Several reports highlighted the clinical significance of ABHD11-AS1 in prognosis, diagnosis, prediction of cancer progression stage, and treatment response. Significantly, the levels of ABHD11-AS1 in gastric juice had been exhibited as a clinical biomarker for the assessment of gastric cancer, while its serum levels have prognostic potential in thyroid cancers. The ABHD11-AS1 has been reported to exert oncogenic effects by sponging different microRNAs (miRNAs), altering signaling pathways such as PI3K/Akt, epigenetic mechanisms, and N6-methyladenosine (m6A) RNA modification. In contrast, the mouse homolog of AHD11-AS1 (Abhd11os) overexpression had exhibited neuroprotective effects against mutant huntingtin-induced toxicity. Considering the emerging research reports, the authors attempted in this first review on ABHD11-AS1 to summarize and highlight its oncogenic potential and clinical significance in different human cancers. Lastly, we underlined the necessity for future mechanistic studies to unravel the role of ABHD11-AS1 in tumor development, prognosis, progression, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| | - Kishore Sesham
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri 522503, India;
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Mysuru 570015, India;
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Sambamoorthy Unnam
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Arun Kumar Sanapala
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Sharada Nalla
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Susmitha Kondam
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Rajesh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| |
Collapse
|
31
|
Wang D, Zou L, Luo J, Zhang C, Feng H, Qin G. Potential diagnostic and prognostic value of the long non-coding RNA SNHG3 in human cancers: A systematic review and meta-analysis. Int J Biol Markers 2022; 37:3-12. [PMID: 35130083 DOI: 10.1177/03936155221077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Small nucleolar RNA host gene 3 (SNHG3), as a novel long non-coding RNA (lncRNA) participates in the oncogenic processes of various cancers. We combined a systematic review and a meta-analysis to assess the potential role of SNHG3 as a pan-cancer marker for cancer diagnosis and prognosis. METHODS Our study comprehensively searched for SNHG3 expression profiling studies from PubMed, Web of Science, Excerpta Medica Database (EMBASE), Cochrane Library, Google Scholar, and The Cancer Genome Atlas (TCGA). The diagnostic capacity of SNHG3 for all cancers in TCGA database was evaluated from the perspective of pooled sensitivity, specificity, diagnostic odds ratio (DOR), area under the curve (AUC) of the summary receiver operating characteristic (sROC) curve. Also, this research studied the correlation of SNHG3 expression and the overall survival to access its prognostic value. RESULTS A sum total of 11,888 cancer patients and 730 controls from 44 eligible studies were enrolled in this integrated analysis. In TCGA database, SNHG3 was significantly upregulated in most types of cancers (16/33, 48%). The pooled sensitivity, specificity, and DOR with 95% CIs was 0.72 (95% CI: 0.60-0.82), 0.87 (95% CI: 0.84-0.90), and 18 (95% CI: 11-30), respectively. Similarly, the AUC of the sROC curve was 0.89 (95% CI: 0.86-0.92), indicating SNHG3 was highly conserved as a diagnosis biomarker. Additionally, SNHG3 overexpression significantly deteriorated the overall survival of cancer patients (pooled HR = 1.28, 95% CI:1.11-1.48; P < 0.05). CONCLUSIONS These findings suggest that the lncRNA SNHG3 could serve as a promising diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Dingting Wang
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longfei Zou
- Department of Orthopedic Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yibin, Yibin, China
| | - Conghong Zhang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Province Panzhihua Central Hospital, Panzhihua, China * These authors contributed equally to this work
| | - Huajun Feng
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Dis 2022; 8:32. [PMID: 35064102 PMCID: PMC8782901 DOI: 10.1038/s41420-022-00815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
Zinc finger CCCH-type containing 15 (ZC3H15), a highly conserved eukaryotic protein, which was associated with several cellular processes and was ubiquitously expressed in various human tissues. Recent studies indicated that ZC3H15 was involved in tumorigenesis and may be a potential biomarker in hepatocellular carcinoma (HCC) and acute myeloid leukemia (AML). However, the biological function and molecular mechanism of ZC3H15 in gastric cancer (GC) have not been studied. In this study, we revealed that ZC3H15 was highly expressed in GC and high ZC3H15 expression was closely linked to poor survival of patients with GC. We found that ZC3H15 promoted cell proliferation, migration, and invasion by increasing c-Myc expression. Next, we found that ZC3H15 could modulate c-Myc protein stability by suppressing the transcription of FBXW7, which was mainly responsible for c-Myc degradation. Moreover, silencing of FBXW7 in ZC3H15-knockdown GC cells could partly abrogate the effects induced by ZC3H15 downregulation. Taken together, our data unearth the important roles of ZC3H15 in GC development and suggest that ZC3H15 may be a potential target for the treatment of GC.
Collapse
|
33
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered 2022; 13:1895-1907. [PMID: 35030969 PMCID: PMC8805939 DOI: 10.1080/21655979.2021.2020393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone metastasis is closely related to tumor death in prostate cancer (PC). Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) has been implicated in the initiation and progression of multiple human cancers. Nevertheless, the biological function of SNHG3 in PC has not been elucidated. Our results indicated that SNHG3 was upregulated in bone metastasis-positive PC tissues compared to bone metastasis-negative PC tissues and adjacent normal tissues. High expression of SNHG3 indicates advanced clinicopathological features and predicts poor prognosis in patients with PC. Meanwhile, SNHG3 knockdown suppressed the proliferation, migration, and invasion abilities of PC cells and inhibited PC cell metastasis to the bone. Mechanistically, SNHG3 enhanced the expression of transforming growth factor beta receptor 1 (TGFBR1) and activated transforming growth factor-Beta (TGF-β) signaling by targeting miR-214-3p. Our study demonstrated the novel role of the SNHG3/miR-214-3p/TGF-β axis in tumor growth and bone metastasis in PC, indicating that SNHG3 may act as a biomarker and promising therapeutic target against PC.
Collapse
Affiliation(s)
- Xinhua Xi
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengbo Hu
- Department of Orthopedics, Shaoguan First People's Hospital Affiliated Southern Medical University, Shaoguan, Guangdong, China
| | - Qiang Wu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Konghe Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Zhou
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junjian Liao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongyu Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Xueren Zhong
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongzheng Bao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
34
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
35
|
Ma L, Jiang Y, Wu N. Long non-coding RNA CCL2 promoted gastric cancer function via miR-128/ PARP2 signal pathway. Bioengineered 2022; 13:1602-1611. [PMID: 35000531 PMCID: PMC8805977 DOI: 10.1080/21655979.2021.2020548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
Amounts of studies have revealed long non-coding RNA (lncRNA) was related to the development of gastric cancer. Here, our results suggested the function and regulatory mechanism of CCL2 in gastric cancer. Quantitative polymerase-chain reaction (qPCR) was employed to inspect lncRNA CCL2 and miR-128 expression in normal gastric cell line (GES-1) and tumor cell lines (HGC-27 and MKN-45). The effects of CCL2 and miR-128 were measured via Luciferase reporter test. Western blot was used to check PARP2 protein expression. CCL2 expression and PARP2 protein levels were up-regulated, while miR-128 expression was obviously lower. Meanwhile, CCL2 down-regulating significantly repressed the proliferation, migration, and invasion by regulating miR-128. In addition, we proved miR-128 was a direct target of CCL2 through double luciferase assay and bioinformatics analysis. Moreover, miR-128 markedly inhibited the proliferation, migration, and invasion in gastric cancer. More importantly, miR-128 could reverse the effects of lncRNA CCL2 knocked down. PARP2-si obviously suppressed in gastric cancer proliferation, migration, and invasion. Meanwhile, miR-128 mimic and the knockout of CCL2 distinctly decreased PARP2 protein level. Additionally, luciferase report experiments certificated that PARP2 targeted miR-128, implying PARP2 directly interacted with miR-128 in gastric cancer. More interestingly, the downregulation of PARP could reverse the trend triggered by miR-128 inhibitor in gastric tumor. All over these results showed lncRNA CCL2 played importance of role in gastric tumor via miR-128/PARP2 axis signal pathway. LncRNA CCL2 accelerated gastric cancer progression by regulating miR-128/PARP2 signaling pathway, providing a novel possible strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Liang Ma
- Department of Digestive Internal Medicine,Shaoxing No. 2 Hospital Medical Community General Hospital,Shaoxing, Zhejiang Province, China
| | - Yunshan Jiang
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University,Longyan, P.R. China
| | - Ning Wu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| |
Collapse
|
36
|
Xie Y, Rong L, He M, Jiang Y, Li H, Mai L, Song F. LncRNA SNHG3 promotes gastric cancer cell proliferation and metastasis by regulating the miR-139-5p/MYB axis. Aging (Albany NY) 2021; 13:25138-25152. [PMID: 34898477 PMCID: PMC8714158 DOI: 10.18632/aging.203732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The long non-coding RNA (lncRNA) SNHG3 has been shown to play oncogenic roles in several cancer types, but the mechanisms underlying its activity are poorly understood. In this study, we aimed to explore the clinical relevance and mechanistic role of SNHG3 in gastric cancer (GC). We found that SNHG3 expression in GC cell lines and tissues was significantly increased, and the upregulation of this lncRNA was correlated with tumor clinical stage and decreased patient survival. Knocking down SNHG3 in GC cells impaired the proliferative, migratory, and invasive activity in vitro and constrained in vivo GC xenograft tumor growth. Mechanistically, SNHG3 was found to bind and sequester miR-139-5p, thereby indirectly promoting the upregulation of the miR-139-5p target gene MYB. These data demonstrated that SNHG3 functions in an oncogenic manner to drive GC proliferation, migration, and invasion by regulating the miR-139-5p/MYB axis.
Collapse
Affiliation(s)
- Yan Xie
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.,Qinggang Senior Care Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Chongqing 402760, China
| | - Min He
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Jiang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Li Mai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
37
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Zhu H, Zhu C, Feng X, Luo Y. Long noncoding RNA SNHG3 promotes malignant phenotypes in cervical cancer cells via association with YAP1. Hum Cell 2021; 35:320-332. [PMID: 34816392 DOI: 10.1007/s13577-021-00644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA (LncRNA) Small Nucleolar RNA Host Gene 3 (SNHG3) is involved in the occurrence and development of various cancers. However, the exact function and mechanism of SNHG3 in cervical cancer (CC) are still unclear. In this context, we identified a significant increase of SNHG3 expression in CC tissues. Upregulation of SNHG3 expression was associated with advanced FIGO stage and metastasis, and indicated poor overall survival of the CC patients. Functionally, SNHG3 enhanced the proliferation, migration and invasion of CC cells in vitro, and facilitated CC growth in vivo. Further investigation uncovered that SNHG3 interacted with oncoprotein YAP1, thus suppressing its degradation. Additionally, SNHG3 modulated the transcription of several target genes of YAP1. The oncogenic role of SNHG3 was partially attributable to YAP1. Taken together, our research revealed the prognostic and functional roles for SNHG3 in CC, suggesting that SNHG3 could serve as a biomarker for prognosis and a therapeutic target for CC.
Collapse
Affiliation(s)
- Hongyu Zhu
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| | - Chenyu Zhu
- Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Xiang Feng
- Obstetrics Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Youzhen Luo
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|
39
|
Zhou X, Dou M, Liu Z, Jiao D, Li Z, Chen J, Li J, Yao Y, Li L, Li Y, Han X. Screening Prognosis-Related lncRNAs Based on WGCNA to Establish a New Risk Score for Predicting Prognosis in Patients with Hepatocellular Carcinoma. J Immunol Res 2021; 2021:5518908. [PMID: 34426790 PMCID: PMC8380184 DOI: 10.1155/2021/5518908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains an important cause of cancer death. The molecular mechanism of hepatocarcinogenesis and prognostic factors of HCC have not been completely uncovered. METHODS In this study, we screened out differentially expressed lncRNAs (DE lncRNAs), miRNAs (DE miRNAs), and mRNAs (DE mRNAs) by comparing the gene expression of HCC and normal tissue in The Cancer Genome Atlas (TCGA) database. DE mRNAs were used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the miRNA and lncRNA/mRNA modules that were most closely related to the survival time of patients with HCC were screened to construct a competitive endogenous RNA (ceRNA) network by weighted gene coexpression network analysis (WGCNA). Moreover, univariable Cox regression and Kaplan-Meier curve analyses of DE lncRNAs and DE mRNAs were conducted. Finally, the lasso-penalized Cox regression analysis and nomogram model were used to establish a new risk scoring system and predict the prognosis of patients with liver cancer. The expression of survival-related DE lncRNAs was verified by qRT-PCR. RESULTS A total of 1896 DEmRNAs, 330 DElncRNAs, and 76 DEmiRNAs were identified in HCC and normal tissue samples. Then, the turquoise miRNA and turquoise lncRNA/mRNA modules that were most closely related to the survival time of patients with HCC were screened to construct a ceRNA network by WGCNA. In this ceRNA network, there were 566 lncRNA-miRNA-mRNA regulatory pairs, including 30 upregulated lncRNAs, 16 downregulated miRNAs, and 75 upregulated mRNAs. Moreover, we screened out 19 lncRNAs and 14 hub mRNAs related to prognosis from this ceRNA network by univariable Cox regression and Kaplan-Meier curve analyses. Finally, a new risk scoring system was established by selecting the optimal risk lncRNAs from the 19 prognosis-related lncRNAs through lasso-penalized Cox regression analysis. In addition, we established a nomogram model consisting of independent prognostic factors to predict the survival rate of HCC patients. Finally, the correlation between the risk score and immune cell infiltration and gene set enrichment analysis were determined. CONCLUSIONS In conclusion, the results may provide potential biomarkers or therapeutic targets for HCC and the establishment of the new risk scoring system and nomogram model provides the new perspective for predicting the prognosis of HCC.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjian Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Yao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
41
|
Zhao L, Song X, Guo Y, Ding N, Wang T, Huang L. Long non‑coding RNA SNHG3 promotes the development of non‑small cell lung cancer via the miR‑1343‑3p/NFIX pathway. Int J Mol Med 2021; 48:147. [PMID: 34132359 PMCID: PMC8208627 DOI: 10.3892/ijmm.2021.4980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to identify the function of long non‑coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) and examine its effects on non‑small cell lung cancer (NSCLC). A series of in vitro experiments were employed to evaluate the effects of SNHG3 on the progression of NSCLC, including Cell Counting Kit‑8, 5‑Ethynyl‑2'‑deoxyuridine, flow cytometry, wound healing, Transwell, western blotting and reverse transcription‑quantitative PCR assays. Bioinformatics analyses and a luciferase reporter assay were performed to identify the target gene of SNHG3 and microRNA (miR)‑1343‑3p. Finally, recuse experiments were conducted to verify the effect of SNHG3 and its target gene on proliferation, apoptosis, migration and invasion. The findings indicated that lncRNA SNHG3 was highly expressed in NSCLC tissues and cell lines. Knockdown of lncRNA SNHG3 inhibited cell proliferation, migration and invasion, and accelerated cell apoptosis in NSCLC cell lines. The results of the bioinformatics analysis and the luciferase reporter assay indicated that lncRNA SNHG3 directly bound to miR‑1343‑3p and that it could downregulate the expression levels of miR‑1343‑3p to promote the progression of NSCLC. Rescue experiments indicated that lncRNA SNHG3 increased nuclear factor IX (NFIX) expression by sequestering miR‑1343‑3p in NSCLC. These results suggested that the SNHG3/miR‑1343‑3p/NFIX axis may serve as a novel prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xue Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yesong Guo
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Naixin Ding
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Tingting Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Huang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
42
|
Zhan T, Gao X, Wang G, Li F, Shen J, Lu C, Xu L, Li Y, Zhang J. Construction of Novel lncRNA-miRNA-mRNA Network Associated With Recurrence and Identification of Immune-Related Potential Regulatory Axis in Hepatocellular Carcinoma. Front Oncol 2021; 11:626663. [PMID: 34336642 PMCID: PMC8320021 DOI: 10.3389/fonc.2021.626663] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases globally. Despite continuous improvement of treatment methods, high postoperative recurrence rate remains an urgent problem. In order to determine the mechanism underlying recurrence of liver cancer and identify prognostic genes, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were integrated and analyzed. Differentially expressed genes (DEGs) between HCC tissue and normal liver tissue were identified, and a protein-protein interaction network was constructed to find hub genes. Clinical correlation analysis and disease-free survival (DFS) analysis were performed using the R language and GEPIA to identify relapse-related genes. Correlation analysis was used to identify a potential regulatory axis. Dual-luciferase reporter gene assay was used to confirm the reliability of the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axis. Immune infiltration analysis was performed using the TIMER database. Correlations between immune gene markers and ASF1B were verified using quantitative real-time polymerase chain reaction (RT-qPCR). In this work, we found that nine lncRNAs and five mRNAs were significantly overexpressed in HCC tissues from patients with recurrence. SNHG3, LINC00205, ASF1B, AURKB, CCNB1, CDKN3, and DTL were also closely related to HCC grade and stage. Survival analysis showed that these seven DEGs were significantly correlated with poor DFS. Correlation analysis identified SNHG3-miR-214-3p-ASF1B as a potential regulatory axis. Dual-luciferase reporter gene assay showed that SNHG3 and ASF1B directly bound to miR-214-3p. ASF1B was negatively regulated by miRNA-214-3p, and overexpression of SNHG3 could inhibit the expression of miRNA-214-3p. In addition, ASF1B was positively correlated with immune infiltration. A reduction in ASF1B could markedly inhibit the expression of CD86, CD8, STAT1, STAT4, CD68, and PD1 in HCC cells. Flow cytometry showed that SNHG3 promoted the PD-1 expression by regulating ASF1B. Meanwhile, elevated ASF1B predicted poor prognosis of HCC patients in subgroups with decreased B cells, CD8+ T cells, or neutrophils, and those with enriched CD4+ T cells. In conclusion, we found that a novel lncRNA SNHG3/miR-214-3p/ASF1B axis could promote the recurrence of HCC by regulating immune infiltration.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Lu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuan Li
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Wu J, Xu S, Li W, Lu Y, Zhou Y, Xie M, Luo Y, Cao Y, He Y, Zeng T, Ling H. lncRNAs as Hallmarks for Individualized Treatment of Gastric Cancer. Anticancer Agents Med Chem 2021; 22:1440-1457. [PMID: 34229588 DOI: 10.2174/1871520621666210706113102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Gastric cancer is global cancer with a high mortality rate. A growing number of studies have found the abnormal expression of lncRNA (long noncoding RNA) in many tumors, which plays a role in promoting or inhibiting cancer. Similarly, lncRNA abnormal expression plays an essential biological function in gastric cancer. This article focuses on lncRNA involvement in the development of gastric cancer in terms of cell cycle disorder, apoptosis inhibition, metabolic remodeling, promotion of tumor inflammation, immune escape, induction of angiogenesis, and epithelial mesenchymal transition (EMT). The involvement of lncRNA in the development of gastric cancer is related to drug resistance, such as cisplatin and multi-drug resistance. It can also be used as a potential marker for the diagnosis and prognosis of gastric cancer and a target for the treatment. With an in-depth understanding of the mechanism of lncRNA in gastric cancer, new ideas for personalized treatment of gastric cancer are expected.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yu Zhou
- Shaoyang University, Shaoyang, Hunan 422000, China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yan He
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001, China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
44
|
Zhang Q, Cheng M, Fan Z, Jin Q, Cao P, Zhou G. Identification of Cancer Cell Stemness-Associated Long Noncoding RNAs for Predicting Prognosis of Patients with Hepatocellular Carcinoma. DNA Cell Biol 2021; 40:1087-1100. [PMID: 34096799 DOI: 10.1089/dna.2021.0282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as crucial contributors to the development of hepatocellular carcinoma (HCC) and are involved in the stemness regulation of liver cancer stem cells (LCSCs). However, cancer cell stemness-associated lncRNAs and their relevance in prediction of clinical prognosis remain largely unexplored. In this study, through the transcriptome-wide screen, we identified a total of 136 LCSC-associated lncRNAs. We evaluated the prognostic value of these lncRNAs and optimally established an 11-lncRNA (including AC008622.2, AC015908.3, AC020915.2, AC025176.1, AC026356.2, AC099850.3, CYTOR, DDX11-AS1, HTR2A-AS1, LINC02870, and SNHG3) prognostic risk model. Multivariate analysis revealed that the risk score is an independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis suggested that the high-risk score reflects the alteration of pathways involved in cell cycle, oxidative phosphorylation, and metabolism. Furthermore, functional studies on SNHG12, the leading candidate of the risk lncRNAs, revealed that knockdown of SNHG12 reduces the abilities of HCC cells stemness, proliferation, migration, and invasion. In summary, we constructed a prognostic risk model based on 11 LCSC-associated lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight the involvement of lncRNAs in LCSC-associated treatment strategy in clinical practice.
Collapse
Affiliation(s)
- Qian Zhang
- Medical College of Guizhou University, Guiyang City, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Zhijuan Fan
- Clinical Lab of Tianjin Third Central Hospital, Tianjin, China
| | - Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- Medical College of Guizhou University, Guiyang City, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| |
Collapse
|
45
|
Tokgun O, Tokgun PE, Inci K, Akca H. lncRNAs as Potential Targets in Small Cell Lung Cancer: MYC -dependent Regulation. Anticancer Agents Med Chem 2021; 20:2074-2081. [PMID: 32698750 DOI: 10.2174/1871520620666200721130700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Small Cell Lung Cancer (SCLC) is a highly aggressive malignancy. MYC family oncogenes are amplified and overexpressed in 20% of SCLCs, showing that MYC oncogenes and MYC regulated genes are strong candidates as therapeutic targets for SCLC. c-MYC plays a fundamental role in cancer stem cell properties and malignant transformation. Several targets have been identified by the activation/repression of MYC. Deregulated expression levels of lncRNAs have also been observed in many cancers. OBJECTIVE The aim of the present study is to investigate the lncRNA profiles which depend on MYC expression levels in SCLC. METHODS Firstly, we constructed lentiviral vectors for MYC overexpression/inhibition. MYC expression is suppressed by lentiviral shRNA vector in MYC amplified H82 and N417 cells, and overexpressed by lentiviral inducible overexpression vector in MYC non-amplified H345 cells. LncRNA cDNA is transcribed from total RNA samples, and 91 lncRNAs are evaluated by qRT-PCR. RESULTS We observed that N417, H82 and H345 cells require MYC for their growth. Besides, MYC is not only found to regulate the expressions of genes related to invasion, stem cell properties, apoptosis and cell cycle (p21, Bcl2, cyclinD1, Sox2, Aldh1a1, and N-Cadherin), but also found to regulate lncRNAs. With this respect, expressions of AK23948, ANRIL, E2F4AS, GAS5, MEG3, H19, L1PA16, SFMBT2, ZEB2NAT, HOTAIR, Sox2OT, PVT1, and BC200 were observed to be in parallel with MYC expression, whereas expressions of Malat1, PTENP1, Neat1, UCA1, SNHG3, and SNHG6 were inversely correlated. CONCLUSION Targeting MYC-regulated genes as a therapeutic strategy can be important for SCLC therapy. This study indicated the importance of identifying MYC-regulated lncRNAs and that these can be utilized to develop a therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Onur Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin E Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Hakan Akca
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
46
|
Fattahi S, Nikbakhsh N, Taheri H, Ghadami E, Ranaee M, Akhavan-Niaki H. LINC02688 and PP7080 as novel biomarkers in early diagnosis of gastric cancer. Noncoding RNA Res 2021; 6:86-91. [PMID: 33997538 PMCID: PMC8099719 DOI: 10.1016/j.ncrna.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Despite considerable progress in gastric cancer screening, prevention, and treatment, it remains a major cause of morbidity and mortality worldwide. Due to late diagnosis of the disease, early potential diagnostic biomarkers are needed. Accumulating evidence indicates that non-coding RNAs have potential applications as diagnostic and prognostic biomarkers in gastric cancer. Herein, we investigated the expression levels of two novel non-coding RNAs, long intergenic non-protein coding RNA 2688 (LINC02688) and LOC25845 (PP7080) by real-time PCR for the first time in 47 gastric cancer patients. We found significant downregulation of LINC02688 and LOC25845 (PP7080) with 3.44 and 2.2-fold decrease, respectively in tumoral tissues in comparison with their adjacent non-tumoral counterparts (P < 0.0001). Our data also indicates that more than 96% and 88% of patients showed unchanged or decreased expression of LINC02688 and LOC25845 (PP7080), respectively. As most gastric cancer patients showed lower expression of these two lncRNAs, no significant association between clinicopathological features of the patients and the level of LINC02688 and LOC25845 (PP7080) expression could be detected. Furthermore, ROC curve analysis indicated that LINC02688 and PP7080 can serve as good predictive biomarkers for distinguishing tumoral tissues from their adjacent non-tumoral counterparts. Taken together, our findings suggested that these two novel tumor suppressor non-coding RNAs may act as novel diagnostic biomarkers for diagnosis of carcinogenesis event even at earlier stages of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- North Research Center of Pasteur Institute, Amol, Iran
| | - Novin Nikbakhsh
- Department of Surgery, Rouhani Hospital Babol University of Medical Sciences, Babol, Iran
| | - Hassan Taheri
- Department of Internal Medicine, Rouhani Hospital Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ranaee
- Department of Pathology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
47
|
Overexpression of lncRNA SNGH3 Predicts Unfavorable Prognosis and Clinical Outcomes in Human Cancers: Evidence from a Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7974034. [PMID: 32802874 PMCID: PMC7335396 DOI: 10.1155/2020/7974034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in human disease, especially in tumor development and progression. Small nucleolar RNA host gene (SNHG3), a newly identified lncRNA, has been found dysregulated in various cancers. Nevertheless, the results remain controversial. Thus, we aim to analyze the comprehensive data to elaborate the association between SNHG3 expression and clinical outcomes in multiple cancers. We searched PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE database to identify eligible articles. STATA software was applied to calculate the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (95% CI) for survival outcomes and clinical parameters, respectively. Besides, the data from The Cancer Genome Atlas (TCGA) dataset was extracted to verify the results in our meta-analysis. There were thirteen studies totaling 919 cancer patients involved in this meta-analysis. The results demonstrated that high SNHG3 expression was significantly associated with poor overall survival (OS) (HR = 2.53, 95% CI: 1.94-3.31) in cancers, disease-free survival (DFS) (HR = 3.89, 95% CI: 1.34-11.3), and recurrence-free survival (RFS) (HR = 2.42, 95% CI: 1.14-5.15) in hepatocellular carcinoma. Analysis stratified by analysis method, sample size, follow-up time, and cancer type further verified the prognostic value of SNHG3. Additionally, patients with high SNHG3 expression tended to have more advanced clinical stage, higher histological grade, earlier distant metastasis, and earlier lymph node metastasis. Excavation of TCGA dataset valuated that SNHG3 was upregulated in various cancers and predicted worse OS and DFS. Overexpressed SNHG3 was strongly associated with poor survival and clinical outcomes in human cancers and therefore can serve as a promising biomarker for predicting patients' prognosis.
Collapse
|
48
|
Wang W, Wu J. Identification of long noncoding RNA TC0101441 as a novel biomarker for diagnosis and prognosis of gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:363-368. [PMID: 33786153 PMCID: PMC7994149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The present work aimed to explore the prognostic values of lncRNA TC0101441 (TC0101441) in patients with gastric cancer (GC). The expression of TC0101441 in a total of 159 GC specimens and matched normal specimens was detected by quantitative RT-PCR. ROC assays were conducted to determine the diagnostic value of TC0101441 expression in GC patients. The association of TC0101441 expression with clinical characteristics of 159 patients was analyzed using chi-square test. Kaplan-Meier methods were employed to determine the prognostic value of TC0101441 expression in the survival rate of GC patients. Multivariate Cox regression assays were used to identify whether TC0101441 could be a prognostic biomarker for GC patients. We found that TC0101441 expression was significantly increased in GC specimens compared to that in the normal specimens (P < 0.01). High TC0101441 expression was correlated with lymphatic metastasis (P = 0.027) and TNM stage (P = 0.015). TC0101441 could distinguish GC specimens from adjacent normal gastric specimens with an area under the receiver operating characteristic curve (AUC) of 0.8082. Survival data revealed that patients with high TC0101441 expression had worse overall survival (P = 0.0009) and disease-free survival (P < 0.0001) rates than those with low TC0101441 expression. Multivariate assays showed that TC0101441 expression was an independent biomarker for GC patients. The present study suggested that TC0101441 expression was increased in GC and may be aprognostic and diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Radiotherapy, Heping Hospital Affiliated to Changzhi Medical College Changzhi 046000, Shanxi, China
| | - Jianjun Wu
- Department of Radiotherapy, Heping Hospital Affiliated to Changzhi Medical College Changzhi 046000, Shanxi, China
| |
Collapse
|
49
|
Zhou W, Li J, Lu X, Liu F, An T, Xiao X, Kuo ZC, Wu W, He Y. Derivation and Validation of a Prognostic Model for Cancer Dependency Genes Based on CRISPR-Cas9 in Gastric Adenocarcinoma. Front Oncol 2021; 11:617289. [PMID: 33732644 PMCID: PMC7959733 DOI: 10.3389/fonc.2021.617289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
As a CRISPR-Cas9-based tool to help scientists to investigate gene functions, Cancer Dependency Map genes (CDMs) include an enormous series of loss-of-function screens based on genome-scale RNAi. These genes participate in regulating survival and growth of tumor cells, which suggests their potential as novel therapeutic targets for malignant tumors. By far, studies on the roles of CDMs in gastric adenocarcinoma (GA) are scarce and only a small fraction of CDMs have been investigated. In the present study, datasets of the differentially expressed genes (DEGs) were extracted from the TCGA-based (The Cancer Genome Atlas) GEPIA database, from which differentially expressed CDMs were determined. Functions and prognostic significance of these verified CDMs were evaluated using a series of bioinformatics methods. In all, 246 differentially expressed CDMs were determined, with 147 upregulated and 99 downregulated. Ten CDMs (ALG8, ATRIP, CCT6A, CFDP1, CINP, MED18, METTL1, ORC1, TANGO6, and PWP2) were identified to be prognosis-related and subsequently a prognosis model based on these ten CDMs was constructed. In comparison with that of patients with low risk in TCGA training, testing and GSE84437 cohort, overall survival (OS) of patients with high risk was significantly worse. It was then subsequently demonstrated that for this prognostic model, area under the ROC (receiver operating characteristic) curve was 0.771 and 0.697 for TCGA training and testing cohort respectively, justifying its reliability in predicting survival of GA patients. With the ten identified CDMs, we then constructed a nomogram to generate a clinically practical model. The regulatory networks and functions of the ten CDMs were then explored, the results of which demonstrated that as the gene significantly associated with survival of GA patients and Hazard ratio (HR), PWP2 promoted in-vitro invasion and migration of GA cell lines through the EMT signaling pathway. Therefore, in conclusion, the present study might help understand the prognostic significance and molecular functions of CDMs in GA.
Collapse
Affiliation(s)
- Wenjie Zhou
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junqing Li
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fangjie Liu
- Department of Hematology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tailai An
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xing Xiao
- Scientific Research Centre, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zi Chong Kuo
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenhui Wu
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
50
|
Zhang M, Bai M, Wang L, Lu N, Wang J, Yan R, Cui M, Yan H, Zhang L. Targeting SNHG3/miR-186-5p reverses the increased m6A level caused by platinum treatment through regulating METTL3 in esophageal cancer. Cancer Cell Int 2021; 21:114. [PMID: 33596916 PMCID: PMC7887820 DOI: 10.1186/s12935-021-01747-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/02/2021] [Indexed: 02/13/2023] Open
Abstract
Background Platinum-based chemotherapy is a mainstay for treating esophageal cancer patients. In this manuscript, we have provided clues for influence of platinum on overall m6A level and further investigated the potential regulatory mechanism. Methods qRT-PCR was used to measure SNHG3 and miR-186-5p expression; ELISA and western blot were used to measure the expression of METTL3. CCK8 was used to measure the cell proliferation rate. Caspase 3/7 activity was used to measure the apoptosis rate. Dual luciferase reporter gene assay and RNA pull down assay were used to investigate the potential crosstalk between miR-186-5p and SNHG3; and miR-186-5p and METTL3. Results m6A level was increased when treated with platinum (CDDP, CPB and L-OHP). Besides, SNHG3 expression was induced and miR-186-5p expression was suppressed by platinum. Furthermore, SNHG3 could promote the m6A level, however miR-186-5p inhibited the m6A level through targeting METTL3. SNHG3 interacts with miR-186-5p to negatively regulate the expression of miR-186-5p; and miR-186-5p might bind to the 3′UTR of METTL3 to regulate its expression. Conclusion Platinum can increase the overall m6A level of esophageal cancer. SNHG3/miR-186-5p, induced by platinum, was involved in regulating m6A level by targeting METTL3. Our manuscript has provided clues that regulating m6A level might be a novel way to enhance the platinum efficacy.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China
| | - Minghua Bai
- Department of Health, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Li Wang
- Department of Scientific Research, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China
| | - Jia Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China
| | - Rong Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China.
| | - Honglin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, No. 48 Feng Hao West Road, Xi'an, 710077, Shaanxi, China.
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|