1
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Lin YY, Noghabi HS, Volik S, Bell R, Sar F, Haegert A, Chung HC, Fazli L, Oo HZ, Daugaard M, Kuo MH, Hsu SC, Imeda EL, Zanettini C, Queiroz L, Schlotmann B, Gheybi K, Cooper C, Kote-Jarai Z, Eeles R, Kung HJ, Marchionni L, Weischenfeldt J, Miller KD, Rabinowitz A, Wang Y, Zhang HF, Sorensen PH, Carey MS, Gleave M, Hayes VM, Gibson WT, Collins CC. Identifying Rare Germline Variants Associated with Metastatic Prostate Cancer Through an Extreme Phenotype Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.28.25326584. [PMID: 40343042 PMCID: PMC12060958 DOI: 10.1101/2025.04.28.25326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background Studies of germline variants in prostate cancer (PCa) have largely focused on their connections to cancer predisposition. However, an understanding of how heritable factors contribute to cancer progression and metastasis remain limited. Objective To identify low frequency to rare germline nonsynonymous variants associated with increased risk for metastatic PCa (mPCa), while providing functional validation. Design We assembled an extreme phenotype cohort (EPC) of 52 patients diagnosed with predominantly high-grade (Gleason Score (GS) ≥ 8) PCa and > 7 years of follow-up for which localized treatment naïve tumor tissues were available. In half of the cases, the tumor had metastasized to bone, providing an even distribution of bone mPCa and non mPCa cases. Tumor and matched distant benign DNA samples were exome sequenced and analyzed for germline variants with population-wide minor allelic frequencies ≤ 2%. Findings were validated using two independent PCa germline cohorts, including a closely matched Australian study biased to aggressive disease (n = 53) and Pan Prostate Cancer Group (PPCG, n = 976). Two mPCa-promoting candidate variants in KDM6B and BRCA2 were engineered into cell lines and functionalized. Results Germline nonsynonymous rare variants (gnsRVs) identified in 25 DNA Damage Repair (DDR) genes were significantly enriched in the mPCa patients (p=4.57e-06). Conversely, the prevalence of synonymous variants at minor allele frequencies of ≤ 2% were similar between the mPCa and non mPCa patients. The predictive power of variants in 53 non-DDR genes was validated in the Australian cohort (p=0.028) and correlated with high-risk PCa in PPCG (p=0.03). KDM6B K973Q showed functional significance despite being annotated as benign in ClinVar, while BRCA2 I1962T showed sensitivity to Olaparib. In total, six EPC variants related to DNA repair or epigenetics were found to alter enzymatic activity. Conclusions EPCs coupled with low frequency/rare variant analyses may advance understanding of interactions between the germline and tumor in PCa. We identified a series of germline variants that were enriched among mPCa patients. Moreover, we showed that one of these variants confers a metastatic phenotype. Our findings suggest that germline testing at diagnosis may improve treatment stratification in PCa. Patient summary The presence of specific genetic variants among men with PCa may elevate the risk of mPCa once PCa develops. Knowledge of the variant burden at time of diagnosis may enable accurate stratification of some patients for aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Yen-Yi Lin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- These authors are joint first authors
| | - Hamideh Sharifi Noghabi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- These authors are joint first authors
| | - Stanislav Volik
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Robert Bell
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Funda Sar
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hee Chul Chung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ming-Han Kuo
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Chieh Hsu
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Eddie L Imeda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Lucio Queiroz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Balthasar Schlotmann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Colin Cooper
- The Institute of Cancer Research, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Rosalind Eeles
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Alan Rabinowitz
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark S Carey
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- These authors are joint last authors
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- These authors are joint last authors
| |
Collapse
|
3
|
Lu J, Huang S, Wei S, Cheng J, Li W, Fei Y, Yang J, Hu R, Huang S, Zhai W, Wu Z, Liu M, Xu Q, Hu P, Chen L. Heat inducible nuclear translocation of Kdm6bb drives temperature dependent sex reversal in Nile tilapia. PLoS Genet 2025; 21:e1011664. [PMID: 40305565 PMCID: PMC12043187 DOI: 10.1371/journal.pgen.1011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Understanding the primary molecular events driving temperature-dependent sex reversal (TSR) has proven challenging, particularly in distinguishing these from secondary effects of sexual differentiation. The mechanisms translating temperature into a sex-determining signal in fish are still largely unknown. Through combined transcriptomic and genome-wide histone methylation analyses of gonads in Nile tilapia (Oreochromis niloticus) exposed to normal and elevated temperatures, we observed significant upregulation of male-promoting genes (amh, dmrt1, gsdf) and suppression of female-promoting genes (wt1a and foxl3) at high temperature. These changes were correlated with methylation changes in H3K27 and H3K4 in the promoter regions of these genes. Among the histone methylation enzymes induced by high temperature, we identified the H3K27 demethylase Kdm6bb to be a key factor. Gene deletion and biochemical studies confirmed that Kdm6bb significantly impacts the H3K27 methylation level, that influences sex determination. Crucially, we discovered that the TSR function of Kdm6bb is mediated by the alternative inclusion of a previously unrecognized intron, enabling nuclear translocation of the demethylase to perform its function. Our findings refute the previously proposed "translation deficiency" mechanism of kdm6bb, and highlight the critical role of mRNA alternative splicing and subcellular localization of the demethylase in temperature-induced sex reversal.
Collapse
Affiliation(s)
- Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jihui Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Shin JH, Yoo HB, Roe JS. Current advances and future directions in targeting histone demethylases for cancer therapy. Mol Cells 2025; 48:100192. [PMID: 39938867 PMCID: PMC11889978 DOI: 10.1016/j.mocell.2025.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Epigenetic regulators, known as "writers," erasers," and "readers," are essential for controlling gene expression by adding, removing, or recognizing post-translational modifications to histone tails, respectively. These regulators significantly affect genes involved in cancer initiation and maintenance. Recently, several clinical strategies targeting these epigenetic enzymes have emerged and some trials have demonstrated promising results for cancer treatment. Histone lysine demethylases (KDMs) yield distinct transcriptional outcomes that depend on the position of the methylated lysine and the specific genotype or lineage of the cancer cells. Due to their diverse roles in transcription, KDMs offer valuable opportunities for precision oncology, allowing treatments to be tailored to meet individual patient needs. This review emphasizes our current understanding of the functional relationship between KDMs and cancer as well as the development and application of small-molecule compounds that target KDMs.
Collapse
Affiliation(s)
- June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hye-Been Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
He J, Zhang H, Quan H, Wang Q, Wen C, Wang Y, Zhu Y, Ge RS, Li X. Bisphenol B restrains rat leydig cell function via H3K27me3/H3K9me3 histone modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117847. [PMID: 39919587 DOI: 10.1016/j.ecoenv.2025.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
As an alternative compound of bisphenol A (BPA), bisphenol B (BPB) was widely used in plastic materials. The potential actions of BPB on the function of Leydig cells through the regulation of H3K27me3 and H3K9me3 remains unclear. Our goal was to assess how BPB influences Leydig cell function via histone modifications mediated by H3K27me3 and H3K9me3. Male 56-day-old Sprague-Dawley rats were given with 0, 50, 100, and 200 mg/kg/day of BPB by the oral administration for 14 days to study the impact of BPB on the function of Leydig cells in rats. The findings indicated that BPB significantly reduced the serum testosterone levels at the dose of 100 mg/kg and 200 mg/kg and follicle-stimulating hormone levels at the doses of 50, 100, and 200 mg/kg, while increasing estradiol levels at the dose of 200 mg/kg. BPB did not alter the numbers of CYP11A1+ Leydig cells and SOX9+ Sertoli cells, but it downregulated the expression of key genes in testosterone synthesis pathway (Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, Hsd11b1, Hsd17b3, and Insl3) and their corresponding protein levels. Notably, BPB significantly boosted the expressions of histone methylation markers like EEF1A1, SUZ12, EED, EZH2, H3K27me3, and H3K9me3 in vivo. H3K27me3 and H3K9me3 levels were enhanced at the proximal promoters of Lhcgr, Cyp11a1, and Star through ChIP and PCR analyses. Furthermore, adult Leydig cells were extracted and cultured with BPB (0, 10, 50, 100, and 200 μM) alone or in combination with H3K27me3 antagonist GSK-J4. The results demonstrated that BPB significantly decreased testosterone output, which was counteracted by GSK-J4 to reverse BPB-mediated testosterone suppression. Additionally, BPB significantly elevated the levels of EEF1A1, EEF1A2, EED, H3K27me3, and H3K9me3 in vitro. BPB could potentially hinder the growth and function of Leydig cells by modulating H3K27me3 and H3K9me3. The findings of the study indicate the involvement of histone methylation (H3K27me3) in BPB-induced steroidogenic dysfunction, emphasizing the correlation between histone modifications and male reproductive toxicity.
Collapse
Affiliation(s)
- Jiayi He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Huiqian Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Hehua Quan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Qingyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China.
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Mathew Thomas V, Sayegh N, Chigarira B, Gebrael G, Tripathi N, Nussenzveig R, Jo Y, Dal E, Galarza Fortuna G, Li H, Sahu KK, Srivastava A, Maughan BL, Agarwal N, Swami U. Differences in Tumor Gene Expression Profiles Between De Novo Metastatic Castration-sensitive Prostate Cancer and Metastatic Relapse After Prior Localized Therapy. Eur Urol Oncol 2024; 7:1462-1468. [PMID: 38735779 DOI: 10.1016/j.euo.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND OBJECTIVE It has been reported that patients with de novo metastatic castration-sensitive prostate cancer (dn-mCSPC) have worse prognosis and outcomes than those whose cancer relapses after prior local therapy (PLT-mCSPC). Our aim was to interrogate and validate underlying differences in tumor gene expression profiles between dn-mCSPC and PLT-mCSPC. METHODS The inclusion criteria were histologically confirmed prostate adenocarcinoma and the availability of RNA sequencing data for treatment-naïve primary prostate tissue. RNA sequencing was performed by Tempus or Caris Life Sciences, both of which have Clinical Laboratory Improvement Amendments certification. The Tempus cohort was used for interrogation, while the Caris cohort was used for validation. Differential gene expression analysis between the cohorts was conducted using the DEseq2 pipeline. The resulting gene expression profiles were further analyzed using Gene Set Enrichment software to identify pathways with enrichment in each cohort. KEY FINDINGS AND LIMITATIONS Overall, 128 patients were eligible, of whom 78 were in the Tempus cohort (dn-mCSPC 37, PLT-mCSPC 41) and 50 were in the Caris cohort (dn-mCSPC 30, PLT-mCSPC 20). Tumor tissues from patients with dn-mCSPC had higher expression of genes associated with inflammation pathways, while tissues from patients with PLT-mCSPC had higher expression of genes involved in oxidative phosphorylation, fatty acid metabolism, and androgen response pathways. CONCLUSIONS AND CLINICAL IMPLICATIONS Our study revealed upregulation of distinct genomic pathways in dn-mCSPC in comparison to PLT-mCSPC. These hypothesis-generating data could guide personalized therapy for men with prostate cancer and explain different survival outcomes for dn-mCSPC and PLT-mCSPC. PATIENT SUMMARY We measured gene expression levels in tumors from patients with metastatic castration-sensitive prostate cancer. In patients with metastatic disease at first diagnosis, inflammatory pathways were upregulated. In patients whose metastasis occurred on relapse after treatment, androgen response pathways were upregulated. These findings could help in personalizing therapy for prostate cancer and explaining differences in survival.
Collapse
Affiliation(s)
- Vinay Mathew Thomas
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beverly Chigarira
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nishita Tripathi
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, Detroit Medical Center Sinai Grace Hospital, Detroit, MI, USA
| | - Roberto Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; DDx Foundation, Lehi, UT, USA
| | - Yeonjung Jo
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Emre Dal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Haoran Li
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, Westwood, KS, USA
| | - Kamal Kant Sahu
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ayana Srivastava
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
9
|
Pecci V, Troisi F, Aiello A, De Martino S, Carlino A, Fiorentino V, Ripoli C, Rotili D, Pierconti F, Martini M, Porru M, Pinto F, Mai A, Bassi PF, Grassi C, Gaetano C, Pontecorvi A, Strigari L, Farsetti A, Nanni S. Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer. Cancer Cell Int 2024; 24:56. [PMID: 38317193 PMCID: PMC10845766 DOI: 10.1186/s12935-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and β4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and β4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
Collapse
Affiliation(s)
- Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | - Fabiola Troisi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | | | - Sara De Martino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- National Research Council (CNR)-IASI, Rome, Italy
| | - Angela Carlino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Vincenzo Fiorentino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Ripoli
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Francesco Pierconti
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS- Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pinto
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Pier Francesco Bassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Claudio Grassi
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, S. Orsola, Malpighi University Hospital, Bologna, Italy
| | | | - Simona Nanni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy.
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy.
| |
Collapse
|
10
|
Zhang Y, Wu W, Xu C, Yang H, Huang G. Antitumoral Potential of the Histone Demethylase Inhibitor GSK-J4 in Retinoblastoma. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38393716 PMCID: PMC10901251 DOI: 10.1167/iovs.65.2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Purpose The purpose of this study was to investigate the antitumor effects of GSK-J4 on retinoblastoma, as well as its related biological functions and molecular mechanisms. Methods The antitumor effect of GSK-J4 on retinoblastoma was evaluated by in vitro and in vivo assays. CCK-8, EdU incorporation, and soft agar colony formation assays were performed to examine the effect of GSK-J4 on cell proliferation. Flow cytometry was used to evaluate the effect of GSK-J4 on the cell cycle and apoptosis. RNA-seq and Western blotting were conducted to explore the molecular mechanisms of GSK-J4. An orthotopic xenograft model was established to determine the effect of GSK-J4 on tumor growth. Results GSK-J4 significantly inhibited retinoblastoma cell proliferation both in vitro and in vivo, arrested the cell cycle at G2/M phase, and induced apoptosis. Mechanistically, GSK-J4 may suppress retinoblastoma cell growth by regulating the PI3K/AKT/NF-κB signaling pathway. Conclusions The antitumor effects of GSK-J4 were noticeable in retinoblastoma and were at least partially mediated by PI3K/AKT/NF-κB pathway suppression. Our study provides a novel strategy for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, PR China
- Jiangxi Provincial Key Laboratory of Tumor Metastasis and Precision Therapy, Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Weiqi Wu
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, PR China
- Jiangxi Provincial Key Laboratory of Tumor Metastasis and Precision Therapy, Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Caixia Xu
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hongwei Yang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Jiangxi Provincial Key Laboratory of Tumor Metastasis and Precision Therapy, Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
11
|
Wang J, Yin H, Zhu W, He Q, Zhang H, Sun L, Qiao Y, Xiang Y. Research on the resistance of isoviolanthin to hydrogen peroxide-triggered injury of skin keratinocytes based on Transcriptome sequencing and molecular docking. Medicine (Baltimore) 2023; 102:e36119. [PMID: 38013320 PMCID: PMC10681389 DOI: 10.1097/md.0000000000036119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Apoptosis of skin keratinocytes is closely associated with skin problems in humans and natural flavonoids have shown excellent biological activity. Hence, the study of flavonoids against human keratinocyte apoptosis has aroused the interest of numerous researchers. In this study, methyl thiazolyl tetrazolium (MTT) assay and Western blots were used to investigate the skin-protective effect of isoviolanthin, a di-C-glycoside derived from Dendrobium officinale, on hydrogen peroxide (H2O2)-triggered apoptosis of skin keratinocytes. Transcriptome sequencing (RNA-Seq) was used to detect the altered expression genes between the model and treatment group and qRT-PCR was used to verify the accuracy of transcriptome sequencing results. Finally, molecular docking was used to observe the binding ability of isoviolanthin to the selected differential genes screened by transcriptome sequencing. Our results found isoviolanthin could probably increase skin keratinocyte viability, by resisting against apoptosis of skin keratinocytes through downregulating the level of p53 for the first time. By comparing transcriptome differences between the model and drug administration groups, a total of 2953 differential expression genes (DEGs) were identified. Enrichment analysis showed that isoviolanthin may regulate these pathways, such as DNA replication, Mismatch repair, RNA polymerase, Fanconi anemia pathway, Cell cycle, p53 signaling pathway. Last, our results found isoviolanthin has a strong affinity for binding to KDM6B, CHAC2, ESCO2, and IPO4, which may be the potential target for treating skin injuries induced by reactive oxide species. The current study confirms isoviolanthin potential as a skin protectant. The findings may serve as a starting point for further research into the mechanism of isoviolanthin protection against skin damage caused by reactive oxide species (e.g., hydrogen peroxide).
Collapse
Affiliation(s)
- Jie Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyi He
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haitang Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunxiao Qiao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Patronas EM, Balber T, Miller A, Geist BK, Michligk A, Vraka C, Krisch M, Rohr-Udilova N, Haschemi A, Viernstein H, Hacker M, Mitterhauser M. A fingerprint of 2-[ 18F]FDG radiometabolites - How tissue-specific metabolism beyond 2-[ 18F]FDG-6-P could affect tracer accumulation. iScience 2023; 26:108137. [PMID: 37867937 PMCID: PMC10585399 DOI: 10.1016/j.isci.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Studies indicate that the radiotracer 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) can be metabolized beyond 2-[18F]FDG-6-phosphate (2-[18F]FDG-6-P), but its metabolism is incompletely understood. Most importantly, it remains unclear whether downstream metabolism affects tracer accumulation in vivo. Here we present a fingerprint of 2-[18F]FDG radiometabolites over time in cancer cells, corresponding tumor xenografts and murine organs. Strikingly, radiometabolites representing glycogen metabolism or the oxPPP correlated inversely with tracer accumulation across all examined tissues. Recent studies suggest that not only hexokinase, but also hexose-6-phosphate dehydrogenase (H6PD), an enzyme of the oxidative pentose phosphate pathway (oxPPP), determines 2-[18F]FDG accumulation. However, little is known about the corresponding enzyme glucose-6-phosphate dehydrogenase (G6PD). Our mechanistic in vitro experiments on the role of the oxPPP propose that 2-[18F]FDG can be metabolized via both G6PD and H6PD, but data from separate enzyme knockdown suggest diverging roles in downstream tracer metabolism. Overall, we propose that tissue-specific metabolism beyond 2-[18F]FDG-6-P could matter for imaging.
Collapse
Affiliation(s)
- Eva-Maria Patronas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, University of Vienna, Vienna 1090, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna 1090, Austria
| | - Anne Miller
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Barbara Katharina Geist
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Antje Michligk
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Maximilian Krisch
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Helmut Viernstein
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, University of Vienna, Vienna 1090, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna 1090, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna 1090, Austria
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Vienna 1090, Austria
| |
Collapse
|
13
|
Mei Q, Zheng R, Li J, Ma X, Wang L, Wei Y, Luo X, Guan J, Zhang X. Transcriptomic analysis reveals differentially expressed genes and key immune pathways in the spleen of the yak (Bos grunniens) at different growth stage. Gene 2023; 884:147743. [PMID: 37640116 DOI: 10.1016/j.gene.2023.147743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Yak is one of the rare and unique cattle species on the Qinghai-Tibetan Plateau, which has strong adaptability to the extreme environment of the plateau. The spleens are important functional organs that enable animals to adapt to their external environment and are vital in the growth and development process. To further investigate changes in immune function during yak development, we compared the transcriptome profiles of spleen tissues among juvenile (1-day old), youth (15-months old), and prime (5-years old) yaks. Immunology of spleen development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. In this work, we found 6378 genes with significant differences between the spleen of juvenile yak and youth yak, with the largest difference between groups. There were 3144 genes with significant differences between the spleen of young yak and prime yak, with the smallest differences between groups. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the functional annotation of these genes. GO and KEGG analysis showed that some of them were related to growth, disease, immune, and metabolism. However, the genetic mechanism underlying the adaptability of yak spleens at different ages to harsh plateau environments remains unknown. These findings are important for studying the mechanisms of spleen development in yaks of different age groups.
Collapse
Affiliation(s)
- Qundi Mei
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Rui Zheng
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Xuefeng Ma
- Chongqing Institute for Food and Drug Control, Chongqing 404100, China.
| | - Li Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, Chengdu 610066, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| |
Collapse
|
14
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
15
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
16
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
He C, Liu W, Sun J, Zhang D, Li B. Jumonji domain-containing protein RIOX2 is overexpressed and associated with worse survival outcomes in prostate cancers. Front Oncol 2023; 13:1087082. [PMID: 36776320 PMCID: PMC9911806 DOI: 10.3389/fonc.2023.1087082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background Histone demethylase RIOX2 was cloned as a c-Myc downstream gene involved in cell proliferation and has been implicated as an oncogenic factor in multiple tumor types. Its expression profiles and correlation with disease progression in prostate cancers are unknown. Methods Transcriptomic profiles of Jumanji domain-containing protein genes were assessed using multiple public expression datasets generated from RNA-seq and cDNA microarray assays. RIOX2 protein expression was assessed using an immunohistochemistry approach on a tissue section array from benign and malignant prostate tissues. Gene expression profiles were analyzed using the bioinformatics software R package. Western blot assay examined androgen stimulation on RIOX2 protein expression in LNCaP cells. Results Among 35 Jumanji domain-containing protein genes, 12 genes were significantly upregulated in prostate cancers compared to benign compartments. COX regression analysis identified that the ribosomal oxygenase 2 (RIOX2) gene was the only one significantly associated with disease-specific survival outcomes in prostate cancer patients. RIOX2 upregulation was confirmed at the protein levels using immunohistochemical assays on prostate cancer tissue sections. Meanwhile, RIOX2 upregulation was associated with clinicopathological features, including late-stage diseases, adverse Gleason scores, TP53 gene mutation, and disease-free status. In castration-resistant prostate cancers (CRPC), RIOX2 expression was positively correlated with AR signaling index but negatively correlated with the neuroendocrinal progression index. However, androgen treatment had no significant stimulatory effect on RIOX2 expression, indicating a parallel but not a causative effect of androgen signaling on RIOX2 gene expression. Further analysis discovered that RIOX2 expression was tightly correlated with its promoter hypomethylation and MYC gene expression, consistent with the notion that RIOX2 was a c-Myc target gene. Conclusion The Jumanji domain-containing protein RIOX2 was significantly overexpressed in prostate cancer, possibly due to c-Myc upregulation. RIOX2 upregulation was identified as an independent prognostic factor for disease-specific survival.
Collapse
Affiliation(s)
- Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jiahao Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Da Zhang
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Benyi Li,
| |
Collapse
|
18
|
Dalpatraj N, Naik A, Thakur N. Combination Treatment of a Phytochemical and a Histone Demethylase Inhibitor-A Novel Approach towards Targeting TGFβ-Induced EMT, Invasion, and Migration in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24031860. [PMID: 36768182 PMCID: PMC9915876 DOI: 10.3390/ijms24031860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Minimizing side effects, overcoming cancer drug resistance, and preventing metastasis of cancer cells are of growing interest in current cancer therapeutics. Phytochemicals are being researched in depth as they are protective to normal cells and have fewer side effects. Hesperetin is a citrus bioflavonoid known to inhibit TGFβ-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion of prostate cancer cells. Targeting epigenetic modifications that cause cancer is another class of upcoming therapeutics, as these changes are reversible. Global H3K27me3 levels have been found to be reduced in invasive prostate adenocarcinomas. Combining a demethylase inhibitor and a known anti-cancer phytochemical is a unique approach to targeting cancer to attain the aforementioned objectives. In the current study, we used an H3K27 demethylase (JMJD3/KDM6B) inhibitor to study its effects on TGFβ-induced EMT in prostate cancer cells. We then gave a combined hesperetin and GSK-J4 treatment to the PC-3 and LNCaP cells. There was a dose-dependent increase in cytotoxicity and inhibition of TGFβ-induced migration and invasion of prostate cancer cells after GSK-J4 treatment. GSK-J4 not only induced trimethylation of H3K27 but also induced the trimethylation of H3K4. Surprisingly, there was a reduction in the H3K9me3 levels. GSK-J4 alone and a combination of hesperetin and GSK-J4 treatment effectively inhibit the important hallmarks of cancer, such as cell proliferation, migration, and invasion, by altering the epigenetic landscape of cancer cells.
Collapse
|
19
|
Sawada T, Kanemoto Y, Kurokawa T, Kato S. The epigenetic function of androgen receptor in prostate cancer progression. Front Cell Dev Biol 2023; 11:1083486. [PMID: 37025180 PMCID: PMC10070878 DOI: 10.3389/fcell.2023.1083486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Androgen and androgen deprivation (castration) therapies, including androgen receptor antagonists, are clinically used to treat patients with prostate cancer. However, most hormone-dependent prostate cancer patients progress into a malignant state with loss of hormone-dependency, known as castration (drug)-resistant prostate cancer (CRPC), after prolong androgen-based treatments. Even in the CRPC state with irreversible malignancy, androgen receptor (AR) expression is detectable. An epigenetic transition to CRPC induced by the action of AR-mediated androgen could be speculated in the patients with prostate cancer. Androgen receptors belongs to the nuclear receptor superfamily with 48 members in humans, and acts as a ligand-dependent transcriptional factor, leading to local chromatin reorganization for ligand-dependent gene regulation. In this review, we discussed the transcriptional/epigenetic regulatory functions of AR, with emphasis on the clinical applications of AR ligands, AR protein co-regulators, and AR RNA coregulator (enhancer RNA), especially in chromatin reorganization, in patients with prostate cancer.
Collapse
Affiliation(s)
- Takahiro Sawada
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Tomohiro Kurokawa
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
- *Correspondence: Shigeaki Kato,
| |
Collapse
|
20
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
21
|
Han X, Cao X, Cabrera RM, Pimienta Ramirez PA, Zhang C, Ramaekers VT, Finnell RH, Lei Y. KDM6B Variants May Contribute to the Pathophysiology of Human Cerebral Folate Deficiency. BIOLOGY 2022; 12:74. [PMID: 36671766 PMCID: PMC9855468 DOI: 10.3390/biology12010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
(1) Background: The genetic etiology of most patients with cerebral folate deficiency (CFD) remains poorly understood. KDM6B variants were reported to cause neurodevelopmental diseases; however, the association between KDM6B and CFD is unknown; (2) Methods: Exome sequencing (ES) was performed on 48 isolated CFD cases. The effect of KDM6B variants on KDM6B protein expression, Histone H3 lysine 27 epigenetic modification and FOLR1 expression were examined in vitro. For each patient, serum FOLR1 autoantibodies were measured; (3) Results: Six KDM6B variants were identified in five CFD patients, which accounts for 10% of our CFD cohort cases. Functional experiments indicated that these KDM6B variants decreased the amount of KDM6B protein, which resulted in elevated H3K27me2, lower H3K27Ac and decreased FOLR1 protein concentrations. In addition, FOLR1 autoantibodies have been identified in serum; (4) Conclusion: Our study raises the possibility that KDM6B may be a novel CFD candidate gene in humans. Variants in KDM6B could downregulate FOLR1 gene expression, and might also predispose carriers to the development of FOLR1 autoantibodies.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Vincent T. Ramaekers
- Department of Pediatric Neurology, University Hospital Center Liège, 4000 Liège, Belgium
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
KDM6B promotes gastric carcinogenesis and metastasis via upregulation of CXCR4 expression. Cell Death Dis 2022; 13:1068. [PMID: 36564369 PMCID: PMC9789124 DOI: 10.1038/s41419-022-05458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
KDM6B (Lysine-specific demethylase 6B) is a histone lysine demethyltransferase that plays a key role in many types of cancers. However, its potential role in gastric cancer (GC) remains unclear. Here, we focused on the clinical significance and potential role of KDM6B in GC. We found that the KDM6B expression is upregulated in GC tissues and that its high expression in patients is related to poor prognosis. KDM6B ectopic expression promotes GC cells' proliferation and metastasis, while its inhibition has opposite effects in vitro and in vivo. Mechanistically, KDM6B promotes GC cells proliferation and metastasis through its enzymatic activity through the induction of H3K27me3 demethylation near the CXCR4 (C-X-C chemokine receptor type 4) promoter region, resulting in the upregulation of CXCR4 expression. Furthermore, H. pylori was found to induce KDM6B expression. In conclusion, our results suggest that KDM6B is aberrantly expressed in GC and plays a key role in gastric carcinogenesis and metastasis through CXCR4 upregulation. Our work also suggests that KDM6B may be a potential oncogenic factor and a therapeutic target for GC.
Collapse
|
23
|
TGF-β1-induced bone marrow mesenchymal stem cells (BMSCs) migration via histone demethylase KDM6B mediated inhibition of methylation marker H3K27me3. Cell Death Dis 2022; 8:339. [PMID: 35902563 PMCID: PMC9334584 DOI: 10.1038/s41420-022-01132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in clinical research and therapy. Since the number of MSCs migration is extremely crucial at the lesion site, exploring the mechanisms to enhance the migration of MSCs is necessary. Therefore, this study focused on the epigenetic mechanisms in MSCs migration. TGF-β1 stimulated bone marrow mesenchymal stem cells (BMSCs) to promote cell migration at lesion sites in vitro and in vivo. The mRNA and protein levels of several migration-related genes (N cadherin, CXCR4, FN1) were enhanced. The trimethylation marker H3K27me3 recruitment on the promoter of these genes were studied to dissect the epigenetic mechanisms. TGF-β1 elevated the levels of KDM6B leading to removal of repression marker H3K27me3 in the promoter region of N cadherins and FN1. Congruently, knockdown of demethylase KDM6B substantially affected the TGF-β1 induced BMSCs migration. This promoted the down-regulation of various migration-related genes. Collectively, epigenetic regulation played an important role in BMSCs migration, and H3K27me3 was at least partially involved in the migration of BMSCs induced by TGF-β1.
Collapse
|
24
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
25
|
Ding JT, Yu XT, He JH, Chen DZ, Guo F. A Pan-Cancer Analysis Revealing the Dual Roles of Lysine (K)-Specific Demethylase 6B in Tumorigenesis and Immunity. Front Genet 2022; 13:912003. [PMID: 35783266 PMCID: PMC9246050 DOI: 10.3389/fgene.2022.912003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Epigenetic-targeted therapy has been increasingly applied in the treatment of cancers. Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators and the tissue microenvironment whereas the pan-cancer analysis of KDM6B remains unavailable. Methods: The dual role of KDM6B in 33 cancers was investigated based on the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases. TIMER2 and GEPIA2 were applied to investigate the KDM6B levels in different subtypes or stages of tumors. Besides, the Human Protein Atlas database allowed us to conduct a pan-cancer study of the KDM6B protein levels. GEPIA2 and Kaplan–Meier plotter were used for the prognosis analysis in different cancers. Characterization of genetic modifications of the KDM6B gene was analyzed by the cBioPortal. DNA methylation levels of different KDM6B probes in different TCGA tumors were analyzed by MEXPRESS. TIMER2 was applied to determine the association of the KDM6B expression and immune infiltration and DNA methyltransferases. Spearman correlation analysis was used to assess the association of the KDM6B expression with TMB (tumor mutation burden) and MSI (microsatellite instability). The KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis and GO (Gene ontology) enrichment analysis were used to further investigate the potential mechanism of KDM6B in tumor pathophysiology. Results: KDM6B was downregulated in 11 cancer types and upregulated across five types. In KIRC (kidney renal clear cell carcinoma) and OV (ovarian serous cystadenocarcinoma), the KDM6B level was significantly associated with the pathological stage. A high level of KDM6B was related to poor OS (overall survival) outcomes for THCA (thyroid carcinoma), while a low level was correlated with poor OS and DFS (disease-free survival) prognosis of KIRC. The KDM6B expression level was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts, across various cancer types with different correlations. Furthermore, the enrichment analysis revealed the relationship between H3K4 and H3K27 methylation and KDM6B function. Conclusion: Dysregulation of the DNA methyltransferase activity and methylation levels of H3K4 and H3K27 may involve in the dual role of KDM6B in tumorigenesis and development. Our study offered a relatively comprehensive understanding of KDM6B’s dual role in cancer development and response to immunotherapy.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiao-Ting Yu
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Hao He
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - De-Zhi Chen
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Guo
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fei Guo,
| |
Collapse
|
26
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Novel brown adipose tissue candidate genes predicted by the human gene connectome. Sci Rep 2022; 12:7614. [PMID: 35534514 PMCID: PMC9085833 DOI: 10.1038/s41598-022-11317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Brown adipose tissue (BAT) is a promising therapeutic target against obesity. Therefore, research on the genetic architecture of BAT could be key for the development of successful therapies against this complex phenotype. Hypothesis-driven candidate gene association studies are useful for studying genetic determinants of complex traits, but they are dependent upon the previous knowledge to select candidate genes. Here, we predicted 107 novel-BAT candidate genes in silico using the uncoupling protein one (UCP1) as the hallmark of BAT activity. We first identified the top 1% of human genes predicted by the human gene connectome to be biologically closest to the UCP1, estimating 167 additional pathway genes (BAT connectome). We validated this prediction by showing that 60 genes already associated with BAT were included in the connectome and they were biologically closer to each other than expected by chance (p < 2.2 × 10-16). The rest of genes (107) are potential candidates for BAT, being also closer to known BAT genes and more expressed in BAT biopsies than expected by chance (p < 2.2 × 10-16; p = 4.39 × 10-02). The resulting new list of predicted human BAT genes should be useful for the discovery of novel BAT genes and metabolic pathways.
Collapse
|
28
|
Zhao Z, Zhang Y, Gao D, Zhang Y, Han W, Xu X, Song Q, Zhao C, Yang J. Inhibition of Histone H3 Lysine-27 Demethylase Activity Relieves Rheumatoid Arthritis Symptoms via Repression of IL6 Transcription in Macrophages. Front Immunol 2022; 13:818070. [PMID: 35371061 PMCID: PMC8965057 DOI: 10.3389/fimmu.2022.818070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages. The role of epigenetic regulation has been introduced in the process of macrophage polarization and the pathogenesis of inflammatory diseases. As a repressive epigenetic marker, tri-methylation of lysine 27 on histone H3 (H3K27me3) was shown to be important for transcriptional gene expression regulation. Here, we comprehensively analyzed H3K27me3 binding promoter and corresponding genes function by RNA sequencing in two differentially polarized macrophage populations. The results revealed that H3K27me3 binds on the promoter regions of multiple critical cytokine genes and suppressed their transcription, such as IL6, specifically in M-CSF derived macrophages but not GM-CSF derived counterparts. Our results may provide a new approach for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Zhan Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenwei Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
He K, Li Z, Ye K, Zhou Y, Yan M, Qi H, Hu H, Dai Y, Tang Y. Novel sequential therapy with metformin enhances the effects of cisplatin in testicular germ cell tumours via YAP1 signalling. Cancer Cell Int 2022; 22:113. [PMID: 35264157 PMCID: PMC8905836 DOI: 10.1186/s12935-022-02534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Testicular germ cell tumours (TGCTs) are the most commonly diagnosed malignancy in young men. Although cisplatin has been shown to be effective to treat TGCT patients, long-term follow-up has shown that TGCT survivors who accepted cisplatin treatment suffered from a greater number of adverse reactions than patients who underwent orchiectomy alone. As metformin has shown an anticancer effect in various cancers, we investigated whether metformin could enhance the effects of cisplatin to treat TGCTs. Methods The anticancer effects of different treatment strategies consisting of metformin and cisplatin in TCam-2 and NTERA-2 cells were assessed in vitro and in vivo. First, we used a colony formation assay, CCK-8 and MTT assays to explore the viability of TGCT cells. Flow cytometry was used to assess the cell cycle and apoptosis of TGCTs. Then, Western blotting was used to detect the protein expression of TGCTs cells after different treatments. In addition, a xenograft model was used to investigate the effects of the different treatments on the proliferation of TGCT cells. Immunohistochemistry assays were performed to analyse the expression of related proteins in the tissues from the xenograft model. Results Metformin inhibited the proliferation of TCam-2 and NTERA-2 cells by arresting them in G1 phase, while metformin did not induce apoptosis in TGCT cells. Compared with cisplatin monotherapy, the CCK-8, MTT assay and colony formation assay showed that sequential treatment with metformin and cisplatin produced enhanced anticancer effects. Further study showed that metformin blocked the cells in G1 phase by inducing phosphorylated YAP1 and reducing the expression of cyclin D1, CDK6, CDK4 and RB, which enhanced the chemosensitivity of cisplatin and activated the expression of cleaved caspase 3 in TGCTs. Conclusions Our study discovers the important role of YAP1 in TGCTs and reports a new treatment strategy that employs the sequential administration of metformin and cisplatin, which can reduce the required cisplatin dose and enhance the sensitivity of TGCT cells to cisplatin. Therefore, this sequential treatment strategy may facilitate the development of basic and clinical research for anticancer therapies to treat TGCTs.
Collapse
Affiliation(s)
- Kancheng He
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huating Hu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
30
|
Yıldırım-Buharalıoğlu G. Lysine Demethylase 6B Regulates Prostate Cancer Cell Proliferation by Controlling c-MYC Expression. Mol Pharmacol 2022; 101:106-119. [PMID: 34862309 DOI: 10.1124/molpharm.121.000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Elevated expression of lysine demethylase 6A (KDM6A) and lysine demethylase 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in prostate adenocarcinoma, lymph node metastatic site (LNCaP) but not in prostate adenocarcinoma, bone metastatic site (PC3) and prostate adenocarcinoma, brain metastatic site (DU145) cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focused oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, ethyl-3-(6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-ylamino)propanoate (GSK-J4). This identified five genes [V-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC), neurofibromin 2 (merlin) (NF2), C-terminal binding protein 1 (CTBP1), EPH receptor B2 (EPHB2), and plasminogen activator urokinase receptor (PLAUR)] that were decreased more than 50% by GSK-J4, and c-MYC was the most downregulated gene. Array data were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR), which detected a reduction in c-MYC steady state mRNA and prespliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, cyclinD1 (CCND1). Silencing of KDM6A/B with small interfering RNA (siRNA) confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted in a decrease in cell proliferation and cell number, detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay and conventional cell counting, respectively. Consequently, we conclude that KDM6B controlling c-MYC, CCND1, and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. SIGNIFICANCE STATEMENT: Lysine demethylase 6A (KDM6A) and 6B (KDM6B) were upregulated in prostate cancer (PCa). We reported novel KDM6A/B downstream targets controlling proliferation. Amongst 84 metastasis associated genes, V-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC) was the most inhibited gene by KDM6 inhibitor, ethyl-3-(6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-ylamino)propanoate (GSK-J4). This was accompanied by decreased c-MYC targets, cyclinD1 (CCND1) and phosphorylated retinoblastoma (pRb), which were KDM6B dependent. GSK-J4 decreased proliferation and cell counting. We conclude that KDM6B controlling c-MYC, CCND1, and pRb contribute regulation of PCa proliferation.
Collapse
|
31
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Yang D, Yang B, Zhu Y, Xia Q, Zhang Y, Zhu X, Guo J, Ding T, Zheng J. Circular RNA-DPP4 serves an oncogenic role in prostate cancer progression through regulating miR-195/cyclin D1 axis. Cancer Cell Int 2021; 21:379. [PMID: 34271919 PMCID: PMC8283928 DOI: 10.1186/s12935-021-02062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, more and more studies have highlighted the critical regulatory roles of circular RNAs (circRNAs), a class of non-coding RNAs, in the progression of many human cancers, including prostate cancer (PCa). circRNA microarray analysis was performed to identify circRNAs that are differentially expressed in PCa tissues. METHODS 104 pairs of PCa tissues and matched adjacent normal prostate tissues (at least 2 cm distal to the tumor margin) were obtained. circRNA microarray analysis was performed on four pairs of PCa tissues and matched adjacent normal prostate tissues to investigate the potential involvement of circRNAs in PCa. Flow cytometric analysis was performed to investigate whether the effect of circDPP4 on PCa cell proliferation was associated with the alteration in cell cycle progression. The role of circDPP4 in PCa tumor growth was further explored in vivo. RESULTS We found that circDPP4 was overexpressed in PCa tissues and cell lines, and its expression was closely associated with Gleason score and clinical stage of PCa patients. In vitro loss- and gain-of-function experiments demonstrated that circDPP4 knockdown inhibited, whereas circDPP4 overexpression promoted the proliferation, migration, invasion and cell cycle progression of PCa cells. Knockdown of circDPP4 also suppressed PCa tumor growth in vivo. We further found that circDPP4 functioned as a competing endogenous RNA (ceRNA) for miR-195 in PCa cells, and miR-195 negatively regulated the expression of oncogenic cyclin D1. Rescue experiments suggested that restoration of miR-195 blocked the oncogenic role of circDPP4 in PCa cells. CONCLUSIONS Taken together, our findings revealed a novel regulatory mechanism between circDPP4 and miR-195/cyclin D1 axis, and offered novel strategies for the treatment of PCa.
Collapse
Affiliation(s)
- Deping Yang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qianlin Xia
- Department of Laboratory Medicine, The Sixth People's Hospital East Campus, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xin Zhu
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, 201489, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Ding
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, 201489, China.
| | - Jianghua Zheng
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
33
|
Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, Farzaneh M. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal 2021; 19:72. [PMID: 34217316 PMCID: PMC8254972 DOI: 10.1186/s12964-021-00753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract
Collapse
Affiliation(s)
- Yuanjie Ding
- School of Medicine, Jishou University, Jishou, 416000, China.,Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, China
| | - Yuanchun Yao
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Xingmu Gong
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Qi Zhuo
- School of Medicine, Jishou University, Jishou, 416000, China.
| | - Jinhua Chen
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Miao Tian
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
34
|
Skorupska A, Lenda R, Ożyhar A, Bystranowska D. The Multifaceted Nature of Nucleobindin-2 in Carcinogenesis. Int J Mol Sci 2021; 22:5687. [PMID: 34073612 PMCID: PMC8198689 DOI: 10.3390/ijms22115687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Nucb2 is a multifunctional protein associated with a variety of biological processes. Multiple studies have revealed that Nucb2, and its derivative nesfatin-1, are involved in carcinogenesis. Interestingly, the role of Nucb2/nesfatin-1 in tumorigenesis seems to be dual-both pro-metastatic and anti-metastatic. The implication of Nucb2/nesfatin-1 in carcinogenesis seems to be tissue dependent. Herein, we review the role of Nucb2/nesfatin-1 in both carcinogenesis and the apoptosis process, and we also highlight the multifaceted nature of Nucb2/nesfatin-1.
Collapse
Affiliation(s)
| | | | | | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (A.S.); (R.L.); (A.O.)
| |
Collapse
|
35
|
Lagunas-Rangel FA. KDM6B (JMJD3) and its dual role in cancer. Biochimie 2021; 184:63-71. [PMID: 33581195 DOI: 10.1016/j.biochi.2021.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic modifications play a fundamental role in the regulation of gene expression and cell fate. During the development of cancer, epigenetic modifications appear that favor cell proliferation and migration, but at the same time prevent differentiation and apoptosis, among other processes. KDM6B is a histone demethylase that specifically removes methyl groups from H3K27me3, thus allowing re-expression of its target genes. It is currently known that KDM6B can act as both a tumor suppressor and an oncogene depending on the cellular context. Therefore, in this work we summarize the current knowledge of the role that KDM6B plays in different oncological contexts, and we try to orient it towards its clinical application.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|