1
|
Wang H, Hu J, Wang D, Cai Y, Zhu W, Deng R, Zhang Y, Dong Z, Yang Z, Xiao J, Li A, Liu Z. TM9SF1 inhibits colorectal cancer metastasis by targeting Vimentin for Tollip-mediated selective autophagic degradation. Cell Death Differ 2025:10.1038/s41418-025-01498-4. [PMID: 40175707 DOI: 10.1038/s41418-025-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/18/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Selective autophagy is a finely regulated degradation pathway that can either promote or suppress cancer progression depending on its specific target cargoes. In this study, we report that transmembrane 9 superfamily member 1 (TM9SF1) suppresses colorectal cancer metastasis via selective autophagic degradation of Vimentin. Tm9sf1 knockout significantly increases tumor numbers and size, as well as enhances tumor invasion in colorectal cancer model. In vitro and in vivo phenotypical analyses reveal that TM9SF1 functions as a metastasis suppressor in colorectal cancer. Mechanistically, TM9SF1 facilitates the K63-linked ubiquitination of Vimentin by the E3 ligase TRIM21. The K63-linked ubiquitination of Vimentin serves as a recognition signal for autophagic degradation mediated by autophagic cargo receptor Tollip. Consequently, the downregulation of Vimentin results in a decreased number of F-actin-rich stress fibers and filopodium-like protrusions, ultimately inhibiting colorectal cancer metastasis. Moreover, TM9SF1 is downregulated in colorectal cancer patients with advanced stage compared to those with early stage and associated with favorable prognosis. Overall, our findings identify a novel TM9SF1-TRIM21-Vimentin-Tollip pathway involved in colorectal cancer metastasis, which may provide promising therapeutic targets for the treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Huifen Wang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Di Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudie Cai
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Deng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihui Dong
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Xiao
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Ang Li
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhibo Liu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Li P, Dong X, Xu L, Hu X, Meng X, Yang P, Zhang X, Zong WX, Gao S, Zhuang S, Xin H. TRIM21 knockout alleviates renal fibrosis by promoting autophagic degradation of mature TGF-β1. Biochem Pharmacol 2025; 234:116822. [PMID: 39983846 DOI: 10.1016/j.bcp.2025.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/02/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Renal fibrosis is a common feature of chronic kidney disease, in which transforming growth factor-β1 (TGF-β1) plays an important role. Tripartite motif-containing 21 (TRIM21), an E3 ubiquitin ligase, has been studied for its role in acute kidney injury, but its role in renal fibrosis has not been reported. We analyzed public RNA-seq data of unilateral ureteral obstruction (UUO), ischemia-reperfusion injury (I/R), and aristolochic acid (AA)-induced renal fibrosis and found that TRIM21 expression was significantly elevated in fibrotic kidneys, which was verified by Western blot results corresponding to the mouse models. Similarly, TRIM21 expression was significantly elevated and negatively correlated with renal function in human fibrotic kidneys. We showed that TRIM21 knockout alleviated renal fibrosis in UUO mice. In vitro, TRIM21 knockout reduced TGF-β1-induced expression of mature TGF-β1 in HK-2 cells and primary renal tubular cells (PTECs), and this process was reversed by the autophagy inhibitor bafilomycin A1 (Baf-A1). Specifically, TRIM21 promoted K63-linked ubiquitination of p62, inhibited its oligomerization and thus its aggregation and segregation functions, and suppressed autophagic degradation of TGF-β1. Meanwhile, in the UUO mouse model, TRIM21 knockout promoted autophagy levels, and reduced the protein levels of mature TGF-β1 and the phosphorylation levels of SMAD2/3. In conclusion, our study demonstrates that TRIM21 knockdown alleviates renal fibrosis by promoting autophagic degradation of mature TGF-β1 and provides an insight into TRIM21 as a potential therapeutic target for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyi Dong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lijun Xu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiangyu Meng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China.
| | - Shaoyong Zhuang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Xia L, Xing Y, Ye X, Wu Y, Yang Y, Yin Z, Wang A, Chen J, Zhang M. TRIM21-driven K63-linked ubiquitination of RBM38c, as a novel interactor of BECN1, contributes to DNA damage-induced autophagy. Cell Death Differ 2025:10.1038/s41418-025-01480-0. [PMID: 40133668 DOI: 10.1038/s41418-025-01480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Autophagy is essential in DNA damage response by limiting damage, but its responsive activation remains unclear. RBM38 (RBM38a), an RNA-binding protein, regulates mRNA metabolism and plays a key role in controlling cell cycle progression, senescence, and cancer. In this study, we uncovered a novel primate-specific isoform, RBM38c, with 32 extra amino acids from exon 2, which imparts a distinct capacity to promote autophagy upon DNA damage. TP53 increases RBM38c expression upon DNA damage, while TRIM21 facilitates its K63-linked ubiquitination at lysine (K) 35. Activated RBM38c enhances its interaction with BECN1, promoting the formation of the ATG14-containing PtdIns3K-C1 complex and thus autophagy initiation. A K35R mutation or TRIM21 deficiency impairs RBM38c ubiquitination, preventing autophagy activation upon DNA damage. Moreover, RBM38c-driven autophagy protects cells from DNA damage-induced apoptosis and promotes survival, with this beneficial effect susceptible to suppression by the autophagy inhibitor 3-methyladenine. Consequently, depleting RBM38c enhances the efficacy of DNA-damaging drugs by impairing autophagy and increasing DNA damage. Clinical lung cancer samples show a positive correlation between RBM38c expression and LC3 expression, and this correlation is linked to chemotherapy resistance. Together, our study reveals a novel mechanism for DNA damage-induced autophagy, involving K63-linked ubiquitination of RBM38c as a critical interactor with BECN1.
Collapse
Affiliation(s)
- Lishenglan Xia
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yusheng Xing
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinjia Ye
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanshun Wu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ziyi Yin
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Anni Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Chen
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Wuhan, China
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Sun B, Wang G, Chen G, Zhang Y, Yang R, Hua H, Li Y, Feng H. GNAO1 overexpression promotes neural differentiation of glioma stem-like cells and reduces tumorigenicity through TRIM21/CREB/HES1 axis. Oncogene 2025; 44:450-461. [PMID: 39580518 DOI: 10.1038/s41388-024-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Inducing tumor cell differentiation is a promising strategy for treating malignant cancers, including glioma, yet the critical regulator(s) underlying glioma cell differentiation is poorly understood. Here, we identify G Protein Subunit Alpha O1 (GNAO1) as a critical regulator of neural differentiation of glioma stem-like cells (GSCs). GNAO1 expression was lower in gliomas than in normal neuronal tissues and high expression of GNAO1 correlated with a better prognosis. GNAO1 overexpression markedly promoted neural differentiation of GSCs, leading to decreased cell proliferation and colony formation. Mechanistically, GNAO1 recruited TRIM21 and facilitated TRIM21-mediated ubiquitination. This ubiquitination resulted in the degradation of CREB and further reduced p300-mediated H3K27ac levels of the HES1 promoter. As a result, GNAO1 overexpression downregulated HES1 expression, which reinforced neuronal differentiation. In addition, knockdown of METTL3, a key writer of the N6-methyladenosine (m6A), enhanced GNAO1 mRNA stability. Treatment with GNAO1 adenovirus increased neuronal differentiation of tumor cells and reduced tumor cell proliferation in orthotopic GSC xenografts and temozolomide further enhanced GNAO1 adenovirus effects, resulting in extended animal survival. Our study presents that engineering GNAO1 overexpression-inducing neural differentiation of GSCs is a potential therapy strategy via synergistic inhibition of malignant proliferation and chemotherapy resistance.
Collapse
Affiliation(s)
- Bowen Sun
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ge Wang
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru Yang
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - He Hua
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
5
|
Gao X, Huang D, Liu Y, Zhang G, Zheng X, Guan B, Chen A, Wu J, Luo SM, Liu Z, Chen L, Liu X, Jin J, Yin X, Sun Z, Zhang Y, Lu M, Zhang G, Liu W, Liu L. FAM210B activates STAT1/IRF9/IFIT3 axis by upregulating IFN-α/β expression to impede the progression of lung adenocarcinoma. Cell Death Dis 2025; 16:63. [PMID: 39900908 PMCID: PMC11791038 DOI: 10.1038/s41419-025-07375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
FAM210B (family with sequence similarity 210 member B) is a novel protein that has been linked to tumor development. However, its role and underlying mechanisms in lung adenocarcinoma (LUAD) progression remain largely unexplored. In this study, FAM210B was observed to be down-regulated in LUAD cells. Analyses of public datasets revealed that decreased expression of FAM210B predicts poor survival. Accordingly, in vitro and in vivo studies have confirmed the inhibitory role of FAM210B on the growth and tumor metastasis of LUAD cells. RNA-seq analysis further indicated that FAM210B plays a role in regulating innate immune-related signaling pathways in LUAD cells, particularly involving the production of type I interferon (IFN-α/β). Specifically, FAM210B activates STAT1/IRF9/IFIT3 axis by upregulating IFN-α/β expression, leading to the inhibition of proliferation and migration of LUAD cells. Furthermore, TOM70 (Translocase of outer mitochondrial membrane 70, also named as TOMM70) has been identified as a functional interacting partner of FAM210B in its modulation on the expression of IFN-α/β, as well as the proliferative and metastatic phenotypes of LUAD cells. In conclusion, our study indicates that FAM210B is an important suppressor of cellular viability and mobility during lung cancer progression.
Collapse
Affiliation(s)
- Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Donglan Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ying Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaofen Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Baiye Guan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Aiwen Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayao Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zonghua Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jingjie Jin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xingfeng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, People's Hospital of Huadu District; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meizhi Lu
- Department of Nephrology, People's Hospital of Huadu District; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Wanting Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Shao Y, Zuo X. PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling. Mol Biotechnol 2024; 66:2985-2994. [PMID: 37851191 DOI: 10.1007/s12033-023-00914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Protein tyrosine phosphatase receptor type C (PTPRC) is reported to function as an oncogenic role in various cancer. However, the studies on the roles of PTPRC in osteosarcoma (OS) are limited. This study aimed to explore the potentials of PTPRC in OS. mRNA levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by western blot. Lysosome biogenesis was determined using immunofluorescence. The binding sites of transcription factor EB (TFEB) on the promoter of ferritin heavy chain 1 (FTH1) were predicted by the online dataset JASPAR and confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Cell death was determined using propidium iodide (PI) and TdT-mediated dUTP nick-end labeling (TUNEL) staining. The results showed that PTPRC was significantly overexpressed in OS tissues and cells. PTPRC knockdown promoted the phosphorylation and nuclear translocation of TFEB. Moreover, PTPRC knockdown markedly promoted lysosome biogenesis and the accumulation of ferrous ion (Fe2+), whereas decreased the release of glutathione (GSH). Besides, PTPRC knockdown significantly promoted autophagy and downregulated mRNA expression of FTH1 and ferritin light chain (FTL). Additionally, TFEB transcriptionally inactivated FTH1. PTPRC knockdown significantly promoted the ferroptosis of OS cells, which was markedly alleviated by TFEB shRNA. Taken together, PTPRC knockdown-mediated TFEB phosphorylation and translocation dramatically promoted lysosome biogenesis, ferritinophagy, as well as the ferroptosis of OS cells via regulating FTH1/FTL signaling. Therefore, PTPRC/TFEB/FTH1 signaling may be a potential target for OS.
Collapse
Affiliation(s)
- Yan Shao
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China.
| | - Xiao Zuo
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| |
Collapse
|
7
|
Liu H, Xie Z, Gao X, Wei L, Li M, Lin Z, Huang X. Lysosomal dysfunction-derived autophagy impairment of gingival epithelial cells in diabetes-associated periodontitis with altered protein acetylation. Cell Signal 2024; 121:111273. [PMID: 38950874 DOI: 10.1016/j.cellsig.2024.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.
Collapse
Affiliation(s)
- Hui Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Linhesheng Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Mengdi Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| |
Collapse
|
8
|
Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189171. [PMID: 39127243 DOI: 10.1016/j.bbcan.2024.189171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Osteosarcoma, a rare primary bone cancer, presents diverse molecular aberrations that underscore its complexity. Despite the persistent endeavors by researchers, the limited amelioration in the five-year survival rate indicates that current therapeutic strategies prove inadequate in addressing the clinical necessities. Advancements in molecular profiling have facilitated an enhanced comprehension of the biology of osteosarcoma, offering a promising outlook for treatment. There is an urgent need to develop innovative approaches to address the complex challenges of osteosarcoma, ultimately contributing to enhanced patient outcomes. This review explores the nexus between osteosarcoma and cancer predisposition syndromes, intricacies in its somatic genome, and clinically actionable alterations. This review covers treatment strategies, including surgery, chemotherapy, immune checkpoint inhibitors (ICIs), and tyrosine kinase inhibitors (TKIs). Innovative treatment modalities targeting diverse pathways, including multi-target tyrosine kinases, cell cycle, PI3K/mTOR pathway, and DNA damage repair (DDR), offer promising interventions. This review also covers promising avenues, including antibody-drug conjugates (ADCs) and immunotherapy strategies, such as cytokines, adoptive cellular therapy (ACT), ICIs, and cancer vaccines. This comprehensive exploration contributes to a holistic understanding, offering guidance for clinical applications to advance the management of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Jie Wang
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Bin Yue
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| | - Xinyi Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| |
Collapse
|
9
|
Xu K, Huang RQ, Wen RM, Yao TT, Cao Y, Chang B, Cheng Y, Yi XJ. Annexin A family: A new perspective on the regulation of bone metabolism. Biomed Pharmacother 2024; 178:117271. [PMID: 39121589 DOI: 10.1016/j.biopha.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Ming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Ting-Ting Yao
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cao
- Graduate School, Anhui University of Traditional Chinese Medicine, Heifei, Anhui 230012, China.
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Xue-Jie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| |
Collapse
|
10
|
Wu H, Zhou M, Jin Q, Wang X, Xu Y, Li M, Chen S, Tang Q, Wang Q, Hu B, Wu H, Xiao M, Qu L, Zhang Q, Liu J. The upregulation of Annexin A2 by TLR4 pathway facilitates lipid accumulation and liver injury via blocking AMPK/mTOR-mediated autophagy flux during the development of non-alcoholic fatty liver disease. Hepatol Int 2024; 18:1144-1157. [PMID: 38184503 DOI: 10.1007/s12072-023-10622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. In this study, we aimed to investigate the role and regulatory mechanism of Annexin A2 (ANXA2) in the pathogenesis of NAFLD. METHODS Histological analyses and ELISA were used to illuminate the expression of ANXA2 in NAFLD and healthy subjects. The role of ANXA2 was evaluated using high-fat diet (HFD)-fed mice via vein injection of adeno-associated viruses (AAV) knocking down ANXA2 or non-targeting control (NC) shRNAs. Moreover, HepG2 and LO2 cells were employed as in vitro hepatocyte models to investigate the expression and function of ANXA2. RESULTS ANXA2 was confirmed to be one of three hub genes in liver injury, and its expression was positively correlated with NAFLD activity score (NAS) and macrophage infiltration in NAFLD. Moreover, ANXA2 was significantly upregulated in NAFLD patients and HFD-fed mice. LPS/TLR4 pathway strongly upregulated ANXA2 expression, which is mediated by direct ANXA2 promoter binding by TLR4 downstream NF-κB p65 and c-Jun transcription factors. Increased ANXA2 expression was correlated with decreased autophagy flux and autophagy was activated by the depletion of ANXA2 in the models of NAFLD. Furthermore, ANXA2 interference led to the activation of AMPK/mTOR signaling axis, which may play a causal role in autophagy flux and the amelioration of steatosis. CONCLUSIONS ANXA2 is a pathological predictor and promising therapeutic target for NAFLD. ANXA2 plays a crucial role in linking inflammation to hepatic metabolic disorder and injury, mainly through the blockage of AMPK/mTOR-mediated lipophagy.
Collapse
Affiliation(s)
- Haifeng Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
- Department of Emergency Medicine, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Meng Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xun Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Yue Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Ming Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Shuhui Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Qin Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Baoying Hu
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hongpei Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China.
| | - Qiong Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Xisi Road, Nantong, 226001, China.
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China.
| |
Collapse
|
11
|
Guo D, Zhou S, Liu R, Yao W, Li S, Zhang X, Shen W, Zhu S. NEK2 contributes to radioresistance in esophageal squamous cell carcinoma by inducing protective autophagy via regulating TRIM21. Cancer Cell Int 2024; 24:179. [PMID: 38783335 PMCID: PMC11112778 DOI: 10.1186/s12935-024-03367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) has been identified as a vital treatment for esophageal squamous cell carcinoma (ESCC), while the development of radioresistance remains a major obstacle in ESCC management. The aim of this study was to investigate the effect of NIMA-related kinase 2 (NEK2) on radioresistance in ESCC cells and to reveal potential molecular mechanisms. METHODS Human esophageal epithelial cells (HEEC) and human ESCC cell lines were obtained from the Research Center of the Fourth Hospital of Hebei Medical University (Shijiazhuang, China). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were applied to assess the proliferation ability, cell cycle, apoptosis rates, and ROS production of ESCC cells. The colony-forming assay was used to estimate the effect of NEK2 on radiosensitivity. Autophagy was investigated by western blotting analysis, GFP-mRFP-LC3 fluorescence assay, and transmission electron microscopy (TEM). RESULTS In the present study, our results showed that NEK2 was associated with radioresistance, cell cycle arrest, apoptosis, ROS production, and survival of ESCC. NEK2 knockdown could significantly inhibit growth while enhancing radiosensitivity and ROS production in ESCC cells. Interestingly, NEK2 knockdown inhibited ESCC cell autophagy and reduced autophagic flux, ultimately reversing NEK2-induced radioresistance. Mechanistically, NEK2 bound to and regulated the stability of tripartite motif-containing protein 21 (TRIM21). The accumulation of NEK2-induced light chain 3 beta 2 (LC3B II) can be reversed by the knockdown of TRIM21. CONCLUSION These results demonstrated that NEK2 activated autophagy through TRIM21, which may provide a promising therapeutic strategy for elucidating NEK2-mediated radioresistance in ESCC.
Collapse
Affiliation(s)
- Dong Guo
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuo Zhou
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ruixue Liu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Weinan Yao
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuguang Li
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xueyuan Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbin Shen
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuchai Zhu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
12
|
Liu R, Lu Y, Li J, Yao W, Wu J, Chen X, Huang L, Nan D, Zhang Y, Chen W, Wang Y, Jia Y, Tang J, Liang X, Zhang H. Annexin A2 combined with TTK accelerates esophageal cancer progression via the Akt/mTOR signaling pathway. Cell Death Dis 2024; 15:291. [PMID: 38658569 PMCID: PMC11043348 DOI: 10.1038/s41419-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Annexin A2 (ANXA2) is a widely reported oncogene. However, the mechanism of ANXA2 in esophageal cancer is not fully understood. In this study, we provided evidence that ANXA2 promotes the progression of esophageal squamous cell carcinoma (ESCC) through the downstream target threonine tyrosine kinase (TTK). These results are consistent with the up-regulation of ANXA2 and TTK in ESCC. In vitro experiments by knockdown and overexpression of ANXA2 revealed that ANXA2 promotes the progression of ESCC by enhancing cancer cell proliferation, migration, and invasion. Subsequently, animal models also confirmed the role of ANXA2 in promoting the proliferation and metastasis of ESCC. Mechanistically, the ANXA2/TTK complex activates the Akt/mTOR signaling pathway and accelerates epithelial-mesenchymal transition (EMT), thereby promoting the invasion and metastasis of ESCC. Furthermore, we identified that TTK overexpression can reverse the inhibition of ESCC invasion after ANXA2 knockdown. Overall, these data indicate that the combination of ANXA2 and TTK regulates the activation of the Akt/mTOR pathway and accelerates the progression of ESCC. Therefore, the ANXA2/TTK/Akt/mTOR axis is a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaoyan Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Nan
- Graduate Department, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yitian Zhang
- Department of Oncology, Jinxiang People's Hospital, Jining, Shandong, China
| | - Weijun Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China.
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Hu Q, Xu Y, Xiao T, Peng R, Li Z, Xu G, Yu B, Li J, Li ZY, Hou H, Lin Y, Cao J, Liu N, Zha ZG, Gui T, Zhang HT, Cai Y. Trim21 Regulates the Postnatal Development and Thermogenesis of Brown Adipose Tissue. Adv Biol (Weinh) 2024; 8:e2300510. [PMID: 38085135 DOI: 10.1002/adbi.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Indexed: 03/16/2024]
Abstract
Brown adipose tissue undergoes rapid postnatal development to mature and plays a crucial role in thermoregulation and energy expenditure, which protects against cold and obesity. Herein, it is shown that the expression of Trim21 mRNA level of interscapular brown adipose tissue elevates after birth, and peaks at P14 (postnatal day 14). Trim21 depletion severely impairs the maturation of interscapular brown adipose tissue, decreases the expression of a series of thermogenic genes, and reduces energy expenditure. Consistently, the loss of Trim21 also leads to a suppression of white adipose tissue "browning", in response to cold exposure and a β-adrenergic agonist, CL316,243. In addition, Trim21-/- mice are more prone to high-fat diet-induced obesity compared with the control littermates. Taken together, the study for the first time reveals a critical role of Trim21 in regulating iBAT postnatal development and thermogenesis.
Collapse
Affiliation(s)
- Qinxiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yidi Xu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Teng Xiao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Rui Peng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Zhenwei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Orthopedics, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233002, China
| | - Guisheng Xu
- Department of Joint and Sports Medicine, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, 526000, China
| | - Bo Yu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Jianping Li
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Huige Hou
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yuning Lin
- Department of Joint and Sports Medicine, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, 526000, China
| | - Jiahui Cao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Tao Gui
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yuebo Cai
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Orthopedics, the Affiliated Shunde Hospital of Jinan University, Shunde, Guangdong, 528300, China
| |
Collapse
|
14
|
Song H, Zhao Z, Ma L, Zhao W, Hu Y, Song Y. Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop. Oncogene 2024; 43:821-836. [PMID: 38280941 PMCID: PMC10920198 DOI: 10.1038/s41388-024-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Huachen Song
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, Woo Y, Kim ES, Kim SY, Kim KM, Lim HK, Jung J, Kang S, Park B, Lee HB, Han W, Lee MS, Moon A. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy 2024; 20:659-674. [PMID: 38290972 PMCID: PMC10936647 DOI: 10.1080/15548627.2024.2305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.
Collapse
Affiliation(s)
- Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Minjoo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yeji Hong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Young Keun Hwang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yunjung Woo
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul, Korea
| | - Kyung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
16
|
Xueqing X, Yongcan P, Wei L, Qingling Y, Jie D. Regulation of T cells in the tumor microenvironment by histone methylation: LSD1 inhibition-a new direction for enhancing immunotherapy. Heliyon 2024; 10:e24457. [PMID: 38312620 PMCID: PMC10835161 DOI: 10.1016/j.heliyon.2024.e24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Although immune checkpoint blockade (ICB) has been shown to achieve durable therapeutic responses in various types of tumors, only 20-40 % of patients benefit from this therapy. A growing body of research suggests that epigenetic modulation of the tumor microenvironment may be a promising direction for enhancing the efficacy of immunotherapy, for example, histone methylation plays an important role in the regulation of T cells in the tumor microenvironment (TME). In particular, histone lysine-specific demethylase 1 (LSD1/KDM1A), as an important histone-modifying enzyme in epigenetics, was found to be an important factor in the regulation of T cells. Therefore, this paper will summarize the effects of histone methylation, especially LSD1, on T cells in the TME to enhance the efficacy of anti-PD-1 immunotherapy. To provide a strong theoretical basis for the strategy of combining LSD1 inhibitors with anti-PD-1/PD-L1 immunotherapy, thus adding new possibilities to improve the survival of tumor patients.
Collapse
Affiliation(s)
- Xie Xueqing
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Peng Yongcan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Lu Wei
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yin Qingling
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Ding Jie
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| |
Collapse
|
17
|
Su G, Zhang D, Li T, Pei T, Yang J, Tu S, Liu S, Ren J, Zhang Y, Duan M, Yang X, Shen Y, Zhou C, Xie J, Liu X. Annexin A5 derived from matrix vesicles protects against osteoporotic bone loss via mineralization. Bone Res 2023; 11:60. [PMID: 37940665 PMCID: PMC10632518 DOI: 10.1038/s41413-023-00290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Matrix vesicles (MVs) have shown strong effects in diseases such as vascular ectopic calcification and pathological calcified osteoarthritis and in wound repair of the skeletal system due to their membranous vesicle characteristics and abundant calcium and phosphorus content. However, the role of MVs in the progression of osteoporosis is poorly understood. Here, we report that annexin A5, an important component of the matrix vesicle membrane, plays a vital role in bone matrix homeostasis in the deterioration of osteoporosis. We first identified annexin A5 from adherent MVs but not dissociative MVs of osteoblasts and found that it could be sharply decreased in the bone matrix during the occurrence of osteoporosis based on ovariectomized mice. We then confirmed its potential in mediating the mineralization of the precursor osteoblast lineage via its initial binding with collagen type I to achieve MV adhesion and the subsequent activation of cellular autophagy. Finally, we proved its protective role in resisting bone loss by applying it to osteoporotic mice. Taken together, these data revealed the importance of annexin A5, originating from adherent MVs of osteoblasts, in bone matrix remodeling of osteoporosis and provided a new strategy for the treatment and intervention of bone loss.
Collapse
Affiliation(s)
- Guanyue Su
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tong Pei
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shasha Tu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Sijun Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Ren
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Liu RX, Gu RH, Li ZP, Hao ZQ, Hu QX, Li ZY, Wang XG, Tang W, Wang XH, Zeng YK, Li ZW, Dong Q, Zhu XF, Chen D, Zhao KW, Zhang RH, Zha ZG, Zhang HT. Trim21 depletion alleviates bone loss in osteoporosis via activation of YAP1/β-catenin signaling. Bone Res 2023; 11:56. [PMID: 37884520 PMCID: PMC10603047 DOI: 10.1038/s41413-023-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Orthopedic and Spine Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rong-He Gu
- School of Basic Medical Sciences of Guangxi Medical University, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhi-Quan Hao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qin-Xiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Gang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Wei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qiu Dong
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China
| | - Ke-Wei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, 510375, Guangzhou, China
| | - Rong-Hua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
19
|
Pan B, Pan Y, Wang S, Bai Y, Hu X, Yang Y, Wu L, Liu J. ANXA2 and Rac1 negatively regulates autophagy and osteogenic differentiation in osteosarcoma cells to confer CDDP resistance. Biochem Biophys Res Commun 2023; 676:198-206. [PMID: 37536195 DOI: 10.1016/j.bbrc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Cisplatin (CDDP) is a mainstay chemotherapeutic agent for OS treatment, but drug resistance has become a hurdle to limit its clinical effect. Autophagy plays an important role in CDDP resistance in OS, and in the present study we explored the role of ANXA2 and Rac1 in dictating CDDP sensitivity in OS cells. METHODS ANXA2 and Rac1 expression levels were examined by Western blot and autophagy induction was detected by transmission electron miscroscope (TEM) in the clinical samples and OS cell lines. CDDP resistant cells were established by exposing OS cells to increasing doses of CDDP. The effects of ANXA2 and Rac1 knockdown on CDDP sensitivity were evaluated in the cell and animal models. RESULTS Reduced autophagy was associated with the increased expression of ANXA2 and Rac1 in CDDP resistant OS tumor samples and cells. Autophagy suppression promoted CDDP resistance and inducing autophagy re-sensitized the resistant cells to CDDP treatment in vitro and in vivo. Further, knocking down ANXA2 or Rac1 re-activated autophagy and attenuated CDDP resistance in OS cells. We further demonstrated that CDDP resistant OS cells displayed a poorer osteogenic differentiation state when compared to the parental cell lines, which was significantly reversed by autophagy re-activation and ANXA2 or Rac1 silencing. CONCLUSION Our findings revealed a complicated interplay of ANXA2/Rac1, autophagy induction, and osteogenic differentiation in dictating CDDP resistance in OS cells, suggesting ANXA2 and Rac1 as promising targets to modulate autophagy and overcome CDDP resistance in OS cells.
Collapse
Affiliation(s)
- Baolong Pan
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yanyu Pan
- College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shuangneng Wang
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yingying Bai
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xuemei Hu
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yang Yang
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Ling Wu
- Department of Blood Composition Production, Central Blood Station of Yuxi City, Yuxi, 653100, Yunnan, China.
| | - Jianping Liu
- Research Management Department, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
20
|
Cheng Q, Liu K, Xiao J, Shen K, Wang Y, Zhou X, Wang J, Xu Z, Yang L. SEC23A confers ER stress resistance in gastric cancer by forming the ER stress-SEC23A-autophagy negative feedback loop. J Exp Clin Cancer Res 2023; 42:232. [PMID: 37670384 PMCID: PMC10478313 DOI: 10.1186/s13046-023-02807-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Sec23 homolog A (SEC23A), a core component of coat protein complex II (COPII), has been reported to be involved in several cancers. However, the role of SEC23A in gastric cancer remains unclear. METHODS The expression of SEC23A in gastric cancer was analyzed by using qRT-PCR, western blotting and IHC staining. The role of SEC23A in ER stress resistance was explored by functional experiments in vitro and vivo. The occupation of STAT3 on the SEC23A promoter region was verified by luciferase reporter plasmids and CHIP assay. The interaction between SEC23A and ANXA2 was identified by Co-IP and mass spectrometry analysis. RESULTS We demonstrated that SEC23A was upregulated in gastric cancer and predicted poor prognosis in patients with gastric cancer. Mechanistically, SEC23A was transcriptional upregulated by ER stress-induced pY705-STAT3. Highly expressed SEC23A promoted autophagy by regulating the cellular localization of ANXA2. The SEC23A-ANXA2-autophay axis, in turn, protected gastric cancer cells from ER stress-induced apoptosis. Furthermore, we identified SEC23A attenuated 5-FU therapeutic effectiveness in gastric cancer cells through autophagy-mediated ER stress relief. CONCLUSION We reveal an ER stress-SEC23A-autophagy negative feedback loop that enhances the ability of gastric cancer cells to resist the adverse survival environments. These results identify SEC23A as a promising molecular target for potential therapeutic intervention and prognostic prediction in patients with gastric cancer.
Collapse
Affiliation(s)
- Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yuanhang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiawei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
- Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, Jiangsu Province, China.
| |
Collapse
|
21
|
Meng M, Lu M, Feng J, Zhou X, Meng P, Chen L, Zou X, Liu X, Liu L, Gao X, Zhang Y. Exosomal PPARγ derived from macrophages suppresses LPS-induced peritonitis by negative regulation of CD14/TLR4 axis. Inflamm Res 2023; 72:1567-1581. [PMID: 37438583 DOI: 10.1007/s00011-023-01765-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis. METHODS Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed. RESULTS In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs. CONCLUSIONS These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.
Collapse
Affiliation(s)
- Meng Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Meizhi Lu
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Junxia Feng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaoying Zhou
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xunliang Zou
- Department of Nephrology, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Yang C, Wang Z, Kang Y, Yi Q, Wang T, Bai Y, Liu Y. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy 2023; 19:1934-1951. [PMID: 36692217 PMCID: PMC10283440 DOI: 10.1080/15548627.2022.2164427] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic stress granules (SGs) are highly dynamic assemblies of untranslated mRNAs and proteins that form through liquid-liquid phase separation (LLPS) under cellular stress. SG formation and elimination process is a conserved cellular strategy to promote cell survival, although the precise regulation of this process is poorly understood. Here, we screened six E3 ubiquitin ligases present in SGs and identified TRIM21 (tripartite motif containing 21) as a central regulator of SG homeostasis that is highly enriched in SGs of cells under arsenite-induced oxidative stress. Knockdown of TRIM21 promotes SG formation whereas overexpression of TRIM21 inhibits the formation of physiological and pathological SGs associated with neurodegenerative diseases. TRIM21 catalyzes K63-linked ubiquitination of the SG core protein, G3BP1 (G3BP stress granule assembly factor 1), and G3BP1 ubiquitination can effectively inhibit LLPS, in vitro. Recent reports suggested the involvement of macroautophagy/autophagy, as a stress response pathway, in the regulation of SG homeostasis. We systematically investigated well-defined autophagy receptors and identified SQSTM1/p62 (sequestosome 1) and CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2) as the primary receptors that directly interact with G3BP1 during arsenite-induced stress. Endogenous SQSTM1 and CALCOCO2 localize to the periphery of SGs under oxidative stress and mediate SG elimination, as single knockout of each receptor causes accumulation of physiological and pathological SGs. Collectively, our study broadens the understanding in the regulation of SG homeostasis by showing that TRIM21 and autophagy receptors modulate SG formation and elimination respectively, suggesting the possibility of clinical targeting of these molecules in therapeutic strategies for neurodegenerative diseases.Abbreviations: ACTB: actin beta; ALS: amyotrophic lateral sclerosis; BafA1: bafilomycin A1; BECN1: beclin 1; C9orf72: C9orf72-SMCR8 complex subunit; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; FTD: frontotemporal dementia; FUS: FUS RNA binding protein; G3BP1: G3BP stress granule assembly factor 1; GFP: green fluorescent protein; LLPS: liquid-liquid phase separation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NBR1: NBR1 autophagy cargo receptor; NES: nuclear export signal; OPTN: optineurin; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; SG: stress granule; TAX1BP1: Tax1 binding protein 1; TOLLIP: toll interacting protein; TRIM21: tripartite motif containing 21; TRIM56: tripartite motif containing 56; UB: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingjin Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianqian Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
24
|
Liu H, Huang Q, Tang H, Luo K, Qin Y, Li F, Tang F, Zheng J, Feng W, Li B, Xie T, Liu Y. Circ_0001060 Upregulates and Encourages Progression in Osteosarcoma. DNA Cell Biol 2023; 42:53-64. [PMID: 36580535 DOI: 10.1089/dna.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Circular RNA (circRNA) is involved in the occurrence and development of various cancers. To this day, the expression and mechanism of circRNA in osteosarcoma (OS) remain unclear. We previously found that circ_0001060 was highly expressed in OS tumor tissues. In this work, we identified that high level expression of circ_0001060 was significantly associated with late clinical stage, larger tumor volume, higher frequency of metastasis, and poor prognosis in OS patients. Furthermore, we confirmed that silencing circ_0001060 inhibited the proliferation and migration of OS cell. Using bioinformatics analysis, we built three circRNA-miRNA-mRNA regulatory modules (circ_0001060-miR-203a-5p-TRIM21, circ_0001060-miR-208b-5p-MAP3K5, and circ_0001060-miR-203a-5p-PRKX), suggesting that these signaling axes may be involved in the inhibitory effect of circ_0001060 on OS. To sum up, circ_0001060 is a novel tumor biomarker for OS as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Huijiang Liu
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Qin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feicui Li
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiqing Zheng
- Department of Rehabilitation and The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boxiang Li
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Liu
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Gao X, Lian Q, Guan B, Liu QY, Meng M, Chen Y, Jin J, Li H, Liu X, Sun Z, Liu L, He QY, Zhang G. ZSWIM1 Promotes the Proliferation and Metastasis of Lung Adenocarcinoma Cells through the STK38/MEKK2/ERK1/2 Axis. J Proteome Res 2022; 22:1080-1091. [PMID: 36511424 DOI: 10.1021/acs.jproteome.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Investigating the functions of the proteins with no or less functional annotations is an important goal of the HPP (Human Proteome Project) Grand Project. In this study, we investigated the function of such a protein, ZSWIM1 (C20orf162), its gene located on chromosome 20. Its expression is upregulated in lung adenocarcinoma compared with the adjacent normal tissues and negatively correlated with the overall survival. Overexpressing ZSWIM1 markedly promotes the proliferation, migration, invasion as well as epithelial-to-mesenchymal transition in lung adenocarcinoma cells, while knocking down ZSWIM1 functions oppositely. The interactome of ZSWIM1 was identified by immunoprecipitation-mass spectrometry, and we verified the interaction of ZSWIM1 with the potential partner, STK38. ZSWIM1 antagonized the function of STK38. Mechanically, ZSWIM1 promoted the activation of MEKK2/ERK1/2 pathway through interacting with STK38, leading to the release of MEKK2. Taken together, ZSWIM1 can be annotated as an oncogene in lung adenocarcinoma, and the STK38/MEKK2/ERK1/2 axis mediates its promoting role in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qionghua Lian
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Baiye Guan
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu-Yu Liu
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Meng Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jingjie Jin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huihua Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Fluid Shear Stress Regulates Osteogenic Differentiation via AnnexinA6-Mediated Autophagy in MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms232415702. [PMID: 36555344 PMCID: PMC9779398 DOI: 10.3390/ijms232415702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fluid shear stress (FSS) facilitates bone remodeling by regulating osteogenic differentiation, and extracellular matrix maturation and mineralization. However, the underlying molecular mechanisms of how mechanical stimuli from FSS are converted into osteogenesis remain largely unexplored. Here, we exposed MC3T3-E1 cells to FSS with different intensities (1 h FSS with 0, 5, 10, and 20 dyn/cm2 intensities) and treatment durations (10 dyn/cm2 FSS with 0, 0.5, 1, 2 and 4 h treatment). The results demonstrate that the 1 h of 10 dyn/cm2 FSS treatment greatly upregulated the expression of osteogenic markers (Runx2, ALP, Col I), accompanied by AnxA6 activation. The genetic ablation of AnxA6 suppressed the autophagic process, demonstrating lowered autophagy markers (Beclin1, ATG5, ATG7, LC3) and decreased autophagosome formation, and strongly reduced osteogenic differentiation induced by FSS. Furthermore, the addition of autophagic activator rapamycin to AnxA6 knockdown cells stimulated autophagy process, and coincided with more expressions of osteogenic proteins ALP and Col I under both static and FSS conditions. In conclusion, the findings in this study reveal a hitherto unidentified relationship between FSS-induced osteogenic differentiation and autophagy, and point to AnxA6 as a key mediator of autophagy in response to FSS, which may provide a new target for the treatment of osteoporosis and other diseases.
Collapse
|
27
|
Yang J, Tong T, Zhu C, Zhou M, Jiang Y, Chen H, Que L, Liu L, Zhu G, Ha T, Chen Q, Li C, Xu Y, Li J, Li Y. Peli1 contributes to myocardial ischemia/reperfusion injury by impairing autophagy flux via its E3 ligase mediated ubiquitination of P62. J Mol Cell Cardiol 2022; 173:30-46. [PMID: 36179399 DOI: 10.1016/j.yjmcc.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy flux is impaired during myocardial ischemia/reperfusion (M-I/R) via the accumulation of autophagosome and insufficient clearance, which exacerbates cardiomyocyte death. Peli1 (Pellion1) is a RING finger domain-containing ubiquitin E3 ligase that could catalyze the polyubiquitination of substrate proteins. Peli1 has been demonstrated to play an important role in ischemic cardiac diseases. However, little is known about whether Peli1 is involved in the regulation of autophagy flux during M-I/R. The present study investigated whether M-I/R induced impaired autophagy flux could be mediated through Peli1 dependent mechanisms. We induced M-I/R injury in wild type (WT) and Peli1 knockout mice and observed that M-I/R significantly decreased cardiac function that was associated with increased cardiac Peli1 expression and upregulated autophagy-associated protein LC3II and P62. In contrast, Peli1 knockout mice exhibited significant improvement of M-I/R induced cardiac dysfunction and decreased LC3II and P62 expression. Besides, inhibitors of autophagy also increased the infarct size in Peli1 knockout mice after 24 h of reperfusion. Mechanistic studies demonstrated that in vivo I/R or in vitro hypoxia/reoxygenation (H/R) markedly increased the Peli1 E3 ligase activity which directly promoted the ubiquitination of P62 at lysine(K)7 via K63-linkage to inhibit its dimerization and autophagic degradation. Co-immunoprecipitation and GST-pull down assay indicated that Peli1 interacted with P62 via the Ring domain. In addition, Peli1 deficiency also decreased cardiomyocyte apoptosis. Together, our work demonstrated a critical link between increased expression and activity of Peli1 and autophagy flux blockage in M-I/R injury, providing insight into a promising strategy for treating myocardium M-I/R injury.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenghao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Miao Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuqing Jiang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Institute of Biomedical Research, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
28
|
Shen K, Miao J, Gao Q, Ling X, Liang Y, Zhou Q, Song Q, Luo Y, Wu Q, Shen W, Wang X, Li X, Liu Y, Zhou S, Tang Y, Zhou L. Annexin A2 plays a key role in protecting against cisplatin-induced AKI through β-catenin/TFEB pathway. Cell Death Discov 2022; 8:430. [PMID: 36307397 PMCID: PMC9616836 DOI: 10.1038/s41420-022-01224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is in high prevalence in the world. However, the therapeutic strategies for AKI are still in mystery. Studies have shown to improve autophagy and lysosomal function could inhibit AKI. But their modulators need to be explored in detail. Annexin A2 (ANXA2) is a phospholipid-binding protein involving in organelle membrane integrity function, suggesting its important role in autophagy and lysosome homeostasis. It implicates ANXA2 potentially protects against AKI. However, this has not been elucidated. Herein, we found that ANXA2 is increased in renal tubules in cisplatin-induced AKI mice. Ectopic expression of ANXA2 improved lysosomal functions and enhanced autophagic flux, further protecting against renal tubular cell apoptosis and kidney injury. Conversely, knockdown of ANXA2 inhibited lysosomal function and autophagy, which aggravated the progression of AKI. Transcriptome sequencing revealed β-catenin signaling is highly responsible for this process. In vitro, we found ANXA2 induced β-catenin activation, further triggering T-cell factor-4 (TCF4)-induced transcription factor EB (TFEB). Furthermore, TFEB promoted lysosome biogenesis to enhance autophagic flux, resulting in the alleviation of AKI. Our new findings underline ANXA2 is a new therapeutic potential for AKI through modulating autophagy and lysosomal function. The underlying mechanism is associated with its inductive effects on β-catenin/TFEB pathway.
Collapse
Affiliation(s)
- Kunyu Shen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Jinhua Miao
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Qiongdan Gao
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xian Ling
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Ye Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qirong Song
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuxin Luo
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Weiwei Shen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xiaonan Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xiaolong Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Shan Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| |
Collapse
|
29
|
Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022; 13:968755. [PMID: 36159815 PMCID: PMC9506679 DOI: 10.3389/fimmu.2022.968755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially found to be involved in antiviral responses and autoimmune diseases. Recently studies have reported that TRIM21 plays a dual role in cancer promoting and suppressing in the occurrence and development of various cancers. Despite the fact that TRIM21 has effects on multiple metabolic processes, inflammatory responses and the efficacy of tumor therapy, there has been no systematic review of these topics. Herein, we discuss the emerging role and function of TRIM21 in cancer metabolism, immunity, especially the immune response to inflammation associated with tumorigenesis, and also the cancer treatment, hoping to shine a light on the great potential of targeting TRIM21 as a therapeutic target.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Menghan Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| |
Collapse
|
30
|
Typiak M, Audzeyenka I, Dubaniewicz A. Presence and possible impact of Fcγ receptors on resident kidney cells in health and disease. Immunol Cell Biol 2022; 100:591-604. [DOI: 10.1111/imcb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of General and Medical Biochemistry, Faculty of Biology University of Gdansk Gdansk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of Molecular Biotechnology, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - Anna Dubaniewicz
- Department of Pulmonology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
31
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
32
|
Kawagishi H, Nakada T, Numaga-Tomita T, Larrañaga M, Guo A, Song LS, Yamada M. Cytokine receptor gp130 promotes postnatal proliferation of cardiomyocytes required for the normal functional development of the heart. Am J Physiol Heart Circ Physiol 2022; 323:H103-H120. [PMID: 35594067 DOI: 10.1152/ajpheart.00698.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian ventricular cardiomyocytes are premature at birth and exhibit substantial phenotypic changes before weaning. Mouse ventricular myocytes undergo cell division several times after birth; however, the regulatory mechanisms and roles of cardiomyocyte division in postnatal heart development remain unclear. Here, we investigated the physiological role of gp130, the main subunit of multifunctional receptors for the IL-6 family of cytokines, in postnatal cardiomyocyte proliferation. Pharmacological inhibition of gp130 within the first month after birth induced significant systolic dysfunction of the left ventricle in mice. Consistently, mice with postnatal cardiomyocyte-specific gp130 depletion exhibited impaired left ventricular contractility compared to control mice. In these mice, cardiomyocytes exhibited a moderately decreased size and dramatically inhibited proliferation in the left ventricle but not in the right ventricle. Stereological analysis revealed that this change significantly decreased the number of cardiomyocytes in the left ventricle. Furthermore, IL-6 was mainly responsible for promoting ventricular cardiomyocyte proliferation by activating the JAK/STAT3 pathway. Taken together, the IL-6/gp130/JAK/STAT3 axis plays a crucial role in the physiological postnatal proliferation and hypertrophy of left ventricular cardiomyocytes to ensure normal cardiac functional development.
Collapse
Affiliation(s)
- Hiroyuki Kawagishi
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.,Department of Molecular Pharmacology, Shinshu University School of Medicine, Nagano, Japan
| | - Tsutomu Nakada
- Department of Instrumental Analysis, Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Nagano, Japan
| | - Maite Larrañaga
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Catalunya, Spain
| | - Ang Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine,Iowa City, Iowa, United States
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
33
|
Wang B, Khan S, Wang P, Wang X, Liu Y, Chen J, Tu X. A Highly Selective GSK-3β Inhibitor CHIR99021 Promotes Osteogenesis by Activating Canonical and Autophagy-Mediated Wnt Signaling. Front Endocrinol (Lausanne) 2022; 13:926622. [PMID: 35923616 PMCID: PMC9339598 DOI: 10.3389/fendo.2022.926622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
The discovery and application of small molecules is one of the practical strategies of safe osteogenic drugs. The small molecule CHIR99021 (C91) is a highly specific, safe, and most effective GSK-3β Inhibitor. This study found that it efficiently activates the canonical Wnt signaling of bone marrow stromal cell ST2 and promotes osteoblast differentiation and mineralization. C91 increases the production and biochemical activity of osteoblast marker alkaline phosphatase, the expression of osteoblast marker genes Alpl, Bglap, Runx2, and Sp7, and the formation of bone nodules. Triptonide is a transcription inhibitor of Wnt target gene, which diminishes C91-induced osteoblast differentiation in a dose-dependent manner. Meanwhile, C91 also induces autophagy through autophagosome formation and conversion of autophagy biomarker LC-3I into LC-3II. Autophagy inhibitor 3MA partially reduces C91-induced osteoblast differentiation and mineralization; autophagy inducer Rapamycin increases the expression of β-catenin to promote osteogenic differentiation, but cannot alleviate the inhibition of Triptonide on C91-induced osteogenic differentiation, indicating the crosstalk of canonical Wnt signaling and autophagy regulates C91-induced osteoblast differentiation. Furthermore, in order to simulate the in vivo detection of C91 in osteogenesis process, we made a C91 slow-release hydrogel with our newly established polycaprolactone and cell-integrated 3D printing system (PCCI3D module). The sustained release C91 promotes the differentiation and mineralization of ST2 cells. C91 can also enhance the proliferative activity of ST2 cells. The release rate of C91 from hydrogel gradually decreases within 7 days. During this period, the C91 is released by 83.0% and the cell viability maintained at 96.4%. Therefore, the small molecule Wnt agonist C91 promotes osteogenesis through caonical and autophagy-mediated Wnt signaling pathway with an option for translational application.
Collapse
|