1
|
Ling LA, Boukhalfa A, Kung AH, Yang VK, Chen HH. Advances in Targeted Autophagy Modulation Strategies to Treat Cancer and Associated Treatment-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2025; 18:671. [PMID: 40430490 PMCID: PMC12114528 DOI: 10.3390/ph18050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in cellular homeostasis and human diseases. Cardiovascular dysfunction, which presents during cancer treatment or in cancer-free individuals years after treatment, is a growing clinical challenge. Millions of cancer survivors and patients face an unpredictable risk of developing cardiotoxicity. Cardiotoxicity due to cancer treatment, as well as cancer progression, has been linked to autophagy dysregulation. Modulating autophagy has been further proposed as a therapeutic treatment for both cancer and cardiovascular disorders. The safe and effective use of autophagy modulation as a cardioprotective strategy during cancer treatment especially requires careful consideration and experimentation to minimize the impact on cancer treatment. We focus here on recent advances in targeted autophagy modulation strategies that utilize interdisciplinary approaches in biomedical sciences and are potentially translatable to treat cardiotoxicity and improve cancer treatment outcomes. This review highlights non-small molecule autophagy modulators to enhance targeted therapy, nanomedicine for autophagy modulation and monitoring, and in vitro models and future experiments needed to bring novel autophagy discoveries from basic research to clinical translation.
Collapse
Affiliation(s)
- Lauren A. Ling
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Andrew H. Kung
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Vicky K. Yang
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA 01536, USA;
| | - Howard H. Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
2
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
3
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Kong K, Ding X, Wang Y, Xu S, Li G, Wang X, Zhang M, Ni Y, Xu G. Circular RNA expression profile and functional analysis of circUvrag in light-induced photoreceptor degeneration. Clin Exp Ophthalmol 2024; 52:558-575. [PMID: 38282307 DOI: 10.1111/ceo.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.
Collapse
Affiliation(s)
- Kangjie Kong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingchao Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Škubník J, Svobodová Pavlíčková V, Ruml T, Rimpelová S. Autophagy in cancer resistance to paclitaxel: Development of combination strategies. Biomed Pharmacother 2023; 161:114458. [PMID: 36889112 DOI: 10.1016/j.biopha.2023.114458] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Paclitaxel, a compound naturally occurring in yew, is a commonly used drug for the treatment of different types of cancer. Unfortunately, frequent cancer cell resistance significantly decreases its anticancer effectivity. The main reason for the resistance development is the paclitaxel-induced phenomenon of cytoprotective autophagy occurring by different mechanisms of action in dependence on a cell type and possibly even leading to metastases. Paclitaxel also induces autophagy in cancer stem cells, which greatly contributes to tumor resistance development. Paclitaxel anticancer effectivity can be predicted by the presence of several autophagy-related molecular markers, such as tumor necrosis factor superfamily member 13 in triple-negative breast cancer or cystine/glutamate transporter encoded by the SLC7A11 gene in ovarian cancer. Nevertheless, the undesired effects of paclitaxel-induced autophagy can be eliminated by paclitaxel co-administration with autophagy inhibitors, such as chloroquine. Interestingly, in certain cases, it is worthy of potentiating autophagy by paclitaxel combination with autophagy inducers, for instance, apatinib. A modern strategy in anticancer research is also to encapsulate chemotherapeutics into nanoparticle carriers or develop their novel derivatives with improved anticancer properties. Hence, in this review article, we summarize not only the current knowledge of paclitaxel-induced autophagy and its role in cancer resistance but mainly the possible drug combinations based on paclitaxel and their administration in nanoparticle-based formulations as well as paclitaxel analogs with autophagy-modulating properties.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| |
Collapse
|
8
|
Ghanavatian P, Salehi-Sedeh H, Ataei F, Hosseinkhani S. Bioluminescent RIPoptosome Assay for FADD/RIPK1 Interaction Based on Split Luciferase Assay in a Human Neuroblastoma Cell Line SH-SY5Y. BIOSENSORS 2023; 13:297. [PMID: 36832063 PMCID: PMC9954477 DOI: 10.3390/bios13020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Different programed cell death (PCD) modalities involve protein-protein interactions in large complexes. Tumor necrosis factor α (TNFα) stimulated assembly of receptor-interacting protein kinase 1 (RIPK1)/Fas-associated death domain (FADD) interaction forms Ripoptosome complex that may cause either apoptosis or necroptosis. The present study addresses the interaction of RIPK1 and FADD in TNFα signaling by fusion of C-terminal (CLuc) and N-terminal (NLuc) luciferase fragments to RIPK1-CLuc (R1C) or FADD-NLuc (FN) in a caspase 8 negative neuroblastic SH-SY5Y cell line, respectively. In addition, based on our findings, an RIPK1 mutant (R1C K612R) had less interaction with FN, resulting in increasing cell viability. Moreover, presence of a caspase inhibitor (zVAD.fmk) increases luciferase activity compared to Smac mimetic BV6 (B), TNFα -induced (T) and non-induced cell. Furthermore, etoposide decreased luciferase activity, but dexamethasone was not effective in SH-SY5Y. This reporter assay might be used to evaluate basic aspects of this interaction as well as for screening of necroptosis and apoptosis targeting drugs with potential therapeutic application.
Collapse
|
9
|
Degan S, May BL, Jin YJ, Hammouda MB, Sun H, Zhang G, Wang Y, Erdmann D, Warren W, Zhang JY. Co-Treatment of Chloroquine and Trametinib Inhibits Melanoma Cell Proliferation and Decreases Immune Cell Infiltration. Front Oncol 2022; 12:782877. [PMID: 35847840 PMCID: PMC9282877 DOI: 10.3389/fonc.2022.782877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is characterized as a cytoprotective process and inhibition of autophagy with medicinally active agents, such as chloroquine (CQ) is proposed as a prospective adjuvant therapy for cancer. Here, we examined the preclinical effects of CQ combined with the MEK inhibitor trametinib (TRA) on melanoma. We found that cotreatment of CQ and TRA markedly slowed melanoma growth induced in Tyr-CreER.BrafCa.Ptenfl/fl mice. Immunostaining showed that trametinib decreased Ki-67+ proliferating cells, and increased TUNEL+ apoptotic cells. The combo treatment induced a further decrease of Ki-67+ proliferating cells. Consistent with the in vivo findings, CQ and TRA inhibited melanoma cell proliferation in vitro, which was correlated by decreased cyclin D1 expression. In addition, we found that tissues treated with CQ and TRA had significantly decreased numbers of CD4+ and CD8+ T-lymphocytes and F4/80+ macrophages. Together, these results indicate that cotreatment of CQ and TRA decreases cancer cell proliferation, but also dampens immune cell infiltration. Further study is warranted to understand whether CQ-induced immune suppression inadvertently affects therapeutic benefits.
Collapse
Affiliation(s)
- Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Brian L. May
- Department of Surgery, Duke University, Durham, NC, United States
| | - Yingai J. Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Manel Ben Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Huiying Sun
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Guoqiang Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yan Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - Warren Warren
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Gonnella R, Zarrella R, Santarelli R, Germano CA, Gilardini Montani MS, Cirone M. Mechanisms of Sensitivity and Resistance of Primary Effusion Lymphoma to Dimethyl Fumarate (DMF). Int J Mol Sci 2022; 23:ijms23126773. [PMID: 35743211 PMCID: PMC9223506 DOI: 10.3390/ijms23126773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
PEL is a rare B cell lymphoma associated with KSHV that mainly arises in immune-deficient individuals. The search for new drugs to treat this cancer is still ongoing given its aggressiveness and the poor response to chemotherapies. In this study, we found that DMF, a drug known for its anti-inflammatory properties which is registered for the treatment of psoriasis and relapsing–remitting MS, could be a promising therapeutic strategy against PEL. Indeed, although some mechanisms of resistance were induced, DMF activated NRF2, reduced ROS and inhibited the phosphorylation of STAT3 and the release of the pro-inflammatory and immune suppressive cytokines IL-6 and IL-10, which are known to sustain PEL survival. Interestingly, we observed that DMF displayed a stronger cytotoxic effect against fresh PEL cells in comparison to PEL cell lines, due to the activation of ERK1/2 and autophagy in the latter cells. This finding further encourages the possibility of using DMF for the treatment of PEL.
Collapse
|
11
|
Lee S, Yang W, Kim DK, Kim H, Shin M, Choi KU, Suh DS, Kim YH, Hwang TH, Kim JH. Inhibition of MEK-ERK pathway enhances oncolytic vaccinia virus replication in doxorubicin-resistant ovarian cancer. Mol Ther Oncolytics 2022; 25:211-224. [PMID: 35592390 PMCID: PMC9096472 DOI: 10.1016/j.omto.2022.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Oncolytic vaccinia virus (OVV) has been reported to induce cell death in various types of cancer; however, the oncolytic activity of OVV in drug-resistant ovarian cancer remains limited. In the present study, we established doxorubicin-resistant ovarian cancer cells (A2780-R) from the A2780 human ovarian cancer cell line. Both A2780 and A2780-R cells were infected with OVV to explore its anticancer effects. Interestingly, OVV-infected A2780-R cells showed reduced viral replication and cell death compared with A2780 cells, suggesting their resistance against OVV-induced oncolysis; to understand the mechanism underlying this resistance, we explored the involvement of protein kinases. Among protein kinase inhibitors, PD0325901, an MEK inhibitor, significantly augmented OVV replication and cell death in A2780-R cells. PD0325901 treatment increased the phosphorylation of STAT3 in A2780-R cells. Moreover, cryptotanshinone, a STAT3 inhibitor, abrogated PD0325901-stimulated OVV replication. Furthermore, trametinib, a clinically approved MEK inhibitor, increased OVV replication in A2780-R cells. Transcriptomic analysis showed that the MEK inhibitor promoted OVV replication via increasing STAT3 activation and downregulating the cytosolic DNA-sensing pathway. Combined treatment with OVV and trametinib attenuated A2780-R xenograft tumor growth. These results suggest that pharmacological inhibition of MEK reinforces the oncolytic efficacy of OVV in drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Seoyul Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Wookyeom Yang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Hojun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Minjoo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Tae-Ho Hwang
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.,Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
12
|
Shenoy PS, Chakraborty S, Gaikwad SM, Sakpal A, Ray P. Developing Clinically Relevant Acquired Chemoresistance Models in Epithelial Ovarian Cancer Cell Lines. Bio Protoc 2022; 12:e4310. [PMID: 35284594 PMCID: PMC8855081 DOI: 10.21769/bioprotoc.4310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/21/2021] [Accepted: 12/05/2021] [Indexed: 12/22/2024] Open
Abstract
Chemoresistance, the ability of cancer cells to overcome therapeutic interventions, is an area of active research. Studies on intrinsic and acquired chemoresistance have partly succeeded in elucidating some of the molecular mechanisms in this elusive phenomenon. Hence, drug-resistant cellular models are routinely developed and used to mimic the clinical scenario in-vitro. In an attempt to identify the underlying molecular mechanisms that allow ovarian cancer cells to gradually acquire chemoresistance, we have developed isogenic cellular models of cisplatin and paclitaxel resistance (singularly and in combination) over six months, using a clinically relevant modified pulse method. These models serve as important tools to investigate the underlying molecular players, modulation in genetics, epigenetics, and relevant signaling pathways, as well as to understand the role of drug detoxification and drug influx-efflux pathways in development of resistance. These models can also be used as screening tools for new therapeutic molecules. Additionally, repurposing therapeutic agents approved for diseases other than cancer have gained significant attention in improving cancer therapy. To investigate the effect of metformin on acquirement of chemoresistance, we have also developed a combinatorial model of metformin and platinum-taxol, using two different strategies. All these models were subsequently used to study modulation in receptor tyrosine kinase pathways, cancer stem cell functionalities, autophagy, metastasis, metabolic signatures, and various biological processes during development of chemoresistance. Herein, we outline the protocols used for developing these intricate resistant cellular models.
Collapse
Affiliation(s)
- Priti S. Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Snehal M. Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Washington D.C., USA
| | - Asmita Sakpal
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
13
|
Deo AN, Thorat R, Dhadve AC, De A, Rekhi B, Ray P. IGF1R-α6 integrin-S100A4 network governs the organ-specific metastasis of chemoresistant epithelial ovarian cancer cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166282. [PMID: 34600083 DOI: 10.1016/j.bbadis.2021.166282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Recurrent metastatic epithelial ovarian cancer (EOC) is challenging and associated with treatment limitations, as the mechanisms governing the metastatic behavior of chemoresistant EOC cells remain elusive. Using orthotopic xenograft mouse models of sensitive and acquired platinum-taxol-resistant A2780 EOC cells, we studied the mechanistic role of insulin like growth factor 1 receptor (IGF1R) signaling in the regulation of organ-specific metastasis of EOC cells undergoing acquirement of chemoresistance. Biochemical assays and organ-specific fibroblast-EOC cell co-culture were used to study the differential metastatic characteristics of sensitive vs. chemoresistant EOC cells, and the key molecule/s underlying the organ-specific homing of chemoresistant EOC cells were identified through subtractive LC/MS profiling of the co-culture secretome. The role of the identified molecule was validated through genetic/pharmacologic perturbation experiments. Acquired chemoresistance augmented organ-specific metastasis of EOC cells and enhanced lung homing, particularly for the late-stage chemoresistant cells, which was abrogated after IGF1R silencing. Escalation of chemoresistance (intrinsic and acquired) conferred EOC cells with higher adhesion toward primary lung fibroblasts, largely governed by the α6 integrin-IGF1R dual signaling axes. Subtractive analysis of the co-culture secretome revealed that interaction with lung fibroblasts induced the secretion of S100A4 from highly resistant EOC cells, which reciprocally activated lung fibroblasts. Genetic and pharmacologic inhibition of S100A4 significantly lowered distant metastases and completely abrogated lung-tropic nature of late-stage chemoresistant EOC cells. These results indicate that chemoresistance exacerbates organ-specific metastasis of EOC cells via the IGF1R-α6 integrin-S100A4 molecular network, of which S100A4 may serve as a potential target for the treatment of recurrent metastatic EOC.
Collapse
Affiliation(s)
- Abhilash Nitin Deo
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Ajit Chandrakant Dhadve
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Bharat Rekhi
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai 400 012, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Pritha Ray
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India.
| |
Collapse
|
14
|
Bishnu A, Mehrotra M, Dhadve A, Dimri S, De A, Ray P. Predicting response to platinum and non-platinum drugs through bioluminescence resonance energy transfer (BRET) based bio-molecular interactions in platinum resistant epithelial ovarian cancer. Transl Oncol 2021; 14:101193. [PMID: 34365218 PMCID: PMC8353342 DOI: 10.1016/j.tranon.2021.101193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Therapy induced rewiring of signalling networks often lead to acquirement of platinum-resistance, thereby necessitating the use of non-platinum agents as second-line treatment particularly for epithelial ovarian cancer (EOC). A prior subject-specific assessment can guide the choice of optimal non-platinum agent/s and possible targeted therapeutic/s. Assessment of protein-protein interactions are superior to simple cytotoxicity assays to determine therapeutic efficacy and associated molecular responses. Utilizing improved PIP3-AKT and ERK1/2 activation Bioluminescence Resonance Energy Transfer (BRET) sensors, we report chemotherapy-induced ERK1/2 activation predominantly in cisplatin-paclitaxel resistant EOC cells and increased activation of both ERK1/2 and AKT in malignant ascites derived cancer cells from platinum-resistant patients but not from treatment-naive or platinum-sensitive relapse patients. Further, majority of the non-platinum drugs except irinotecan increased ERK1/2 activation in platinum-taxol resistant cells as observed by live-cell BRET assessment which were associated with p90RSK1/2 and BAD activation along with upregulation of multidrug transporter gene ABCC1 and cell survival genes like cyclin D1 and Bcl2. Interestingly, only irinotecan was able to sensitize these resistant cells. Altogether, this first report of BRET based sensing of molecular pathway activations in platinum resistant cell lines and patient's derived cancer cells highlight the clinical potential of BRET sensors in management of therapy resistant cancer.
Collapse
Affiliation(s)
- Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ajit Dhadve
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Shalini Dimri
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India
| | - Abhijit De
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|