1
|
Yang LX, Li H, Cheng ZH, Sun HY, Huang JP, Li ZP, Li XX, Hu ZG, Wang J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int J Mol Sci 2025; 26:3055. [PMID: 40243658 PMCID: PMC11988403 DOI: 10.3390/ijms26073055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNAs that largely lack the capacity to encode proteins. They have garnered significant attention due to their central regulatory functions across numerous cellular and physiological processes at transcriptional, post-transcriptional, and translational levels. Over the past decade, ncRNA-based therapies have gained considerable attention in the diagnosis, treatment, and prevention of diseases, and many studies have revealed a significant relationship between ncRNAs and diseases. At the same time, due to their tissue specificity, an increasing number of projects have focused on the application of ncRNAs as biomarkers in diseases, as well as the design and development of novel ncRNA-based vaccines and therapies for clinical use. These ncRNAs may also drive research into the potential molecular mechanisms and complex pathogenesis of related diseases. However, new biomarkers need to be validated for their clinical effectiveness. Additionally, to produce safe and stable RNA products, factors such as purity, precise dosage, and effective delivery methods must be ensured to achieve optimal bioactivity. These challenges remain key issues in the clinical application of ncRNAs. This review summarizes the prospects of ncRNAs as potential biomarkers, as well as the current research status and clinical applications of ncRNAs in therapies and vaccines, and discusses the challenges and expectations of ncRNAs in disease diagnosis and drug therapy.
Collapse
Affiliation(s)
- Lu-Xuan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Hui Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - He-Yue Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Jie-Ping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Peng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Xin-Xin Li
- Institute of Scientific Research, Guangxi University, Nanning 530004, China;
| | - Zhi-Gang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| |
Collapse
|
2
|
Tao XY, Li QQ, Dong SS, Wang H, Yang YQ, Yang X, Zeng Y. Long noncoding HOXD-AS1: a crucial regulator of malignancy. Front Cell Dev Biol 2025; 13:1543915. [PMID: 40206400 PMCID: PMC11979210 DOI: 10.3389/fcell.2025.1543915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in the occurrence and progression of various cancers. HOXD-AS1, an antisense RNA 1 of the lncRNA HOXD cluster, (also known as HAGLR, MIR7704HG, Mdgt, and STEEL), is located at human chromosome 2q31.1. Recent studies have demonstrated that the abnormal expression of HOXD-AS1 is significantly correlated with the clinicopathological features of patients with various tumors. The expression of HOXD-AS1 is abnormal in various tumors, affecting tumor cell proliferation, apoptosis, metastasis, invasion, metabolism, and drug resistance. HOXD-AS1 is important for cancer diagnosis and prognosis evaluation. Detecting its expression level helps judge cancer progression and predict patient survival. It is a therapeutic target and biomarker for early diagnosis and prognosis, with good clinical application prospects. This article reviews the role, molecular mechanisms, and potential clinical value of HOXD-AS1 in malignant tumor development.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian-Qian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan-Shan Dong
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Wang
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu-Qing Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Tang S, Cheng H, Zang X, Tian J, Ling Z, Wang L, Xu W, Jiang J. Small extracellular vesicles: crucial mediators for prostate cancer. J Nanobiotechnology 2025; 23:230. [PMID: 40114183 PMCID: PMC11927207 DOI: 10.1186/s12951-025-03326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a critical role in the progression, diagnosis, and treatment of prostate cancer (PCa), particularly within the tumor microenvironment (TME). Acting as novel biomarkers and agents for targeted biological therapy, sEVs contribute significantly to improving patient survival. These vesicles transport a variety of biomolecules, including proteins, nucleic acids, and lipids, which are instrumental in remodeling the TME, facilitating intercellular communication, and influencing key processes such as tumor growth, metastasis, and therapy resistance. A thorough understanding of sEV heterogeneity, including their biogenesis, characteristics, and potential applications, is essential. Recent advances have illuminated the origins, formation processes, and molecular cargo of PCa-derived sEVs (PCa-sEVs), enhancing our understanding of their role in disease progression. Furthermore, sEVs show promise as diagnostic markers, with potential applications in early detection and prognostic assessment in PCa. Therapeutically, natural and engineered sEVs offer versatile applications, including drug delivery, gene therapy, and immunomodulation, underscoring their potential in PCa management. This review delves into the substantial potential of sEVs in clinical practices for PCa.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xueyan Zang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jiawei Tian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Lingling Wang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Wenrong Xu
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
5
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
6
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
7
|
Xu R, Bai M, Fan Y, Zhu Y, Wang Z, Hui T, Zhang Q, Liu X, Zhang J, Shen J, Bai W. Knockdown of miR-361-5p promotes the induced activation of SHF-stem cells through FOXM1 mediated Wnt/β-catenin pathway in cashmere goats. Anim Biotechnol 2024; 35:2356110. [PMID: 38804592 DOI: 10.1080/10495398.2024.2356110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/β-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/β-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/β-catenin pathway in cashmere goats.
Collapse
Affiliation(s)
- Ruqing Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Man Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yubo Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Qi Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Xingwang Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jialiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jincheng Shen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
8
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
9
|
Yu J, Yu C, Jiang K, Yang G, Yang S, Tan S, Li T, Liang H, He Q, Wei F, Li Y, Cheng J, Wang F. Unveiling potential: urinary exosomal mRNAs as non-invasive biomarkers for early prostate cancer diagnosis. BMC Urol 2024; 24:163. [PMID: 39090720 PMCID: PMC11292860 DOI: 10.1186/s12894-024-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study investigated the use of urinary exosomal mRNA as a potential biomarker for the early detection of prostate cancer (PCa). METHODS Next-generation sequencing was utilized to analyze exosomal RNA from 10 individuals with confirmed PCa and 10 individuals without cancer. Subsequent validation through qRT-PCR in a larger sample of 43 PCa patients and 92 healthy controls revealed distinct mRNA signatures associated with PCa. RESULTS Notably, mRNAs for RAB5B, WWP1, HIST2H2BF, ZFY, MARK2, PASK, RBM10, and NRSN2 showed promise as diagnostic markers, with AUC values between 0.799 and 0.906 and significance p values. Combining RAB5B and WWP1 in an exoRNA diagnostic model outperformed traditional PSA tests, achieving an AUC of 0.923, 81.4% sensitivity, and 89.1% specificity. CONCLUSIONS These findings highlight the potential of urinary exosomal mRNA profiling, particularly focusing on RAB5B and WWP1, as a valuable strategy for improving the early detection of PCa.
Collapse
Affiliation(s)
- Jiayin Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Chifei Yu
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, No.71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, P.R. China
| | - Kangxian Jiang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, No. 34 Zhongshan North Road, Quanzhou, Fujian, 362000, P.R. China
| | - Guanglin Yang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, No.71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, P.R. China
| | - Shubo Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Shuting Tan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Tingting Li
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, No.71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, P.R. China
| | - Haiqi Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Qihuan He
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Faye Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Yujian Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu, Nanning, Guangxi, 530021, P.R. China.
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, No.22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, P.R. China.
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, No.22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, P.R. China.
| |
Collapse
|
10
|
Liu Z, Zhang Y, Yu L, Zhang Z, Li G. A miR-361-5p/ ORC6/ PLK1 axis regulates prostate cancer progression. Exp Cell Res 2024; 440:114130. [PMID: 38885805 DOI: 10.1016/j.yexcr.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.
Collapse
Affiliation(s)
- Zhiqi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Anhui Public Health Clinical Center, Hefei, 230000, China; Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Lin Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Anhui Public Health Clinical Center, Hefei, 230000, China.
| |
Collapse
|
11
|
Liao C, Huang Z, Liu J, Deng M, Wang L, Chen Y, Li J, Zhao J, Luo X, Zhu J, Wu Q, Fu W, Sun B, Zheng J. Role of extracellular vesicles in castration-resistant prostate cancer. Crit Rev Oncol Hematol 2024; 197:104348. [PMID: 38588967 DOI: 10.1016/j.critrevonc.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.
Collapse
Affiliation(s)
- Chaoyu Liao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingui Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Leyi Wang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yutong Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
12
|
Lin S, Sun C, Li R, Lu C, Li X, Wen Z, Ge Z, Chen W, Li Y, Li H, Lai Y. The value of a three-microRNA panel in serum for prostate cancer screening. Int J Biol Markers 2024; 39:70-79. [PMID: 37960876 DOI: 10.1177/03936155231213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Globally, prostate cancer is the second most common malignancy in males. Serum microRNAs (miRNAs) may function as non-invasive and innovative biomarkers for various cancers. Our study aimed to determine potential miRNAs for prostate cancer screening. METHODS A three-stage study was accomplished to ascertain crucial miRNAs as markers. In the screening stage, we searched PubMed for aberrantly expressed miRNAs relevant to prostate cancer and selected them as candidate miRNAs. In training and validation stages, with serum specimens from 112 prostate cancer patients and 112 healthy controls, expressions of candidate miRNAs were identified through quantitative reverse transcription-polymerase chain reaction. The diagnostic capabilities of miRNAs were determined by receiver operating characteristic curves. Bioinformatic analysis was utilized to explore the function of the critical miRNAs. RESULTS Expression of six serum miRNAs (miR-34b-3p, miR-556-5p, miR-200c-3p, miR-361-5p, miR-369-3p, miR-485-3p) were significantly altered in prostate cancer patients contrasted with healthy controls. The optimal combination of critical miRNAs is a three-miRNA panel (miR-34b-3p, miR-200c-3p, and miR-361-5p) with good diagnostic capability. FLRT2, KIAA1755, LDB3, and NTRK3 were identified as the potential genes targeted by the three-miRNA panel. CONCLUSIONS The three-miRNA panel may perform as an innovative and promising serum marker for prostate cancer screening.
Collapse
Affiliation(s)
- Shengjie Lin
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chen Sun
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenjian Ge
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yingqi Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Hang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Yang Z, Luo Y, Zhang F, Ma L. Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Div 2024; 19:5. [PMID: 38351022 PMCID: PMC10863231 DOI: 10.1186/s13008-024-00110-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Exosome-derived long non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) modifications of lncRNAs have been shown crucial functions in prostate cancer (PCa). Herein, we aim to investigate the detailed mechanism of exosome-derived lncRNA A1BG-AS1 in PCa process. METHODS PCa cell exosomes were extracted, exosomal marker proteins (CD63, CD9) were detected utilizing western blotting, and exosomes with overexpressing A1BG-AS1 were co-cultured with targeted PCa cells. qRT-PCR was used to detect A1BG-AS1 expression and m6A methyltransferase ZC3H13 in PCa. Transwell, colony formation and CCK-8 assays were utilized to assess the invasion, migration, and proliferation ability of PCa cells. Then, we performed actinomycin D and MeRIP assays to analyze the regulatory effect of ZC3H13 on A1BG-AS1 mRNA stability and m6A modification level. RESULTS We observed that A1BG-AS1 and ZC3H13 expression was restricted in PCa tumors. The invasion, proliferation and migratory capacities of PCa cells could be inhibited by up-regulating A1BG-AS1 or by co-culturing with exosomes that up-regulate A1BG-AS1. Additionally, ZC3H13 promoted stable A1BG-AS1 expression by regulating the m6A level of A1BG-AS1. CONCLUSION Exosomal A1BG-AS1 was m6A-modified by the m6A methyltransferase ZC3H13 to stabilize expression and thus prevent PCa cell malignancy. These findings offer a possible target for clinical therapy of PCa.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Yu Luo
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Fan Zhang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Likun Ma
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
14
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Sekar M, Abida. The emerging role of non-coding RNAs in the Wnt/β-catenin signaling pathway in Prostate Cancer. Pathol Res Pract 2024; 254:155134. [PMID: 38277746 DOI: 10.1016/j.prp.2024.155134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia; Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
15
|
Lee DY, Chun JN, So I, Jeon JH. Oncogenic role of FOXM1 in human prostate cancer (Review). Oncol Rep 2024; 51:15. [PMID: 38038123 PMCID: PMC10739992 DOI: 10.3892/or.2023.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Prostate cancer is the leading cause of cancer‑related mortality among men worldwide. In particular, castration‑resistant prostate cancer presents a formidable clinical challenge and emphasizes the need to develop novel therapeutic strategies. Forkhead box M1 (FOXM1) is a multifaceted transcription factor that is implicated in the acquisition of the multiple cancer hallmark capabilities in prostate cancer cells, including sustaining proliferative signaling, resisting cell death and the activation of invasion and metastasis. Elevated FOXM1 expression is frequently observed in prostate cancer, and in particular, FOXM1 overexpression is closely associated with poor clinical outcomes in patients with prostate cancer. In the present review, recent advances in the understanding of the oncogenic role of deregulated FOXM1 expression in prostate cancer were highlighted. In addition, the molecular mechanisms by which FOXM1 regulates prostate cancer development and progression were described, thereby providing knowledge and a conceptual framework for FOXM1. The present review also provided valuable insight into the inherent challenges associated with translating biomedical knowledge into effective therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
16
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Xia Z, Wu J, Li Y, Yuan X, Sun J, Lv C, Huang P. LncRNA TYMSOS is a novel prognostic biomarker associated with immune infiltration in prostate cancer. Am J Cancer Res 2023; 13:4531-4546. [PMID: 37970350 PMCID: PMC10636683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/21/2023] [Indexed: 11/17/2023] Open
Abstract
The long noncoding RNA thymidylate synthetase opposite strand (lncRNA TYMSOS) plays an important role in cancers; however, its impact on prostate cancer (PCa) is still unclear. By analyzing the online data, we found that lncRNA TYMSOS was highly expressed in PCa and associated with T stage, Gleason score, age, and primary therapy outcome. The results of the ROC curve showed that lncRNA TYMSOS has a significant diagnostic ability. Furthermore, Kaplan-Meier analyses suggested that lncRNA TYMSOS plays an important role in progression-free survival (PFS). Increased lncRNA TYMSOS expression was an independent risk factor correlated with PFS in PCa patients. GSEA and GSVA indicated that the lncRNA TYMSOS was involved in the cell cycle, neurodegenerative diseases, oxidative phosphorylation, spliceosomes, and adaptive immune system pathways. Additionally, lncRNA TYMSOS expression was also associated with immune cell infiltrates and tumor mutational burden in PCa. Functional experiments were further conducted, and we verified that lncRNA TYMSOS played an oncogenic role in regulating PCa aggressiveness. Specifically, silencing of lncRNA TYMSOS suppressed cell proliferation, division and epithelial-mesenchymal transition (EMT) but promoted cell apoptosis in PCa cells, and conversely, lncRNA TYMSOS overexpression had the opposite effects. In summary, our study revealed that the lncRNA TYMSOS could be a biomarker and therapeutic target in PCa and participate in tumor-immune cell infiltration.
Collapse
Affiliation(s)
- Zhongyou Xia
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University)Nanchong 637000, Sichuan, China
| | - Ji Wu
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University)Nanchong 637000, Sichuan, China
| | - Yunxiang Li
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University)Nanchong 637000, Sichuan, China
| | - Xinzhu Yuan
- Department of Nephrology, Blood Purification Center, Nanchong Central Hospital, The Second Clinical College, North Sichuan College (University)Nanchong 637000, Sichuan, China
| | - Jing Sun
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University)Nanchong 637000, Sichuan, China
| | - Chen Lv
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University)Nanchong 637000, Sichuan, China
| | - Peng Huang
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, Guizhou, China
| |
Collapse
|
18
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Jiang F, Huang X, Ling L, Tang S, Zhou H, Cai X, Wang Y. Long Noncoding RNA ZBED5-AS1 Facilitates Tumor Progression and Metastasis in Lung Adenocarcinoma via ZNF146/ATR/Chk1 Axis. Int J Mol Sci 2023; 24:13925. [PMID: 37762228 PMCID: PMC10530271 DOI: 10.3390/ijms241813925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in tumorigenesis, including lung adenocarcinoma (LUAD). However, the functional and regulatory mechanisms of lncRNAs in LUAD remain poorly understood. In this study, we investigated the role of lncRNA ZBED5-AS1 in LUAD. We found that ZBED5-AS1 was upregulated in LUAD specimens and overexpressed in LUAD cell lines. ZBED5-AS1 promoted LUAD cell proliferation, migration, and invasion in vitro and promoted LUAD cell growth in vivo. ZBED5-AS1 promoted ZNF146 expression, activating the ATR/Chk1 pathway and leading to LUAD progression. We observed that exosomes from LUAD cells have a higher expression of ZBED5-AS1 compared with exosomes from the normal cell line BEAS-2B. Coculture experiments with exosomes showed that ZBED5-AS1 expression was downregulated after coculture with Si-ZBED5-AS1 exosomes, and coculture with exosomes with low ZBED5-AS1 expression inhibited proliferation and invasion of LUAD cells. Our results indicate that ZBED5-AS1 functions as an oncogenic factor in LUAD cells by targeting the ZNF146/ATR/Chk1 axis.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325015, China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
| | - Liqun Ling
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
| | - Shiyi Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
| | - Huixin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
| | - Xueding Cai
- Department of Respiration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; (F.J.)
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325015, China
| |
Collapse
|
21
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
22
|
Bu H, Tang S, Liu G, Miao C, Zhou X, Yang H, Liu B. In silico, in vitro and in vivo studies: Dibutyl phthalate promotes prostate cancer cell proliferation by activating Forkhead Box M1 and remission after Natura-α pretreatment. Toxicology 2023; 488:153465. [PMID: 36828243 DOI: 10.1016/j.tox.2023.153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Dibutyl phthalate (DBP) is widely used in perfumes, cosmetics, shampoos and medical devices. It is ubiquitous in the environment and greatly endangers people's health. Several studies have reported that being exposed to it can promote the development of lung cancer, breast cancer, hepatoma, and multiple myeloma. However, there are still few studies on the specific molecular mechanism and prevention methods of DBP promoting the progression of prostate cancer. This study, in silico, in vitro and in vivo, aims to explore the promoting effect of DBP on prostate cancer cell proliferation. In silico analysis, we obtained a set of DBP interactive genes by utilizing TCGA, CTD and GEO database. These genes are mainly enriched in cell cycle regulatory pathways and they have high degree of homogeneity. We found that these genes shared one transcription factor - Forkhead Box M1 (FOXM1) by performing Chip-X Enrichment Analysis (Version 3.0). FOXM1, once called the 2010 Molecule of the Year, aberrantly expressed in up to 20 kinds of tumors. In vitro experiments, we used DBP at concentrations of 10-8 M and 5 * 10-7 M to treat C4-2 and PC3 cells for 6 days, respectively. Cell viability was promoted significantly. When Natura-α was added in the background of above-mentioned concentration of DBP, this effect was significantly inhibited. In addition, we also found that DBP can interfering with the efficacy of enzalutamide therapy. The introduction of Natura-α can also reverse this phenomenon. In vivo, subcutaneous tumor formation experiments in nude mice, 800 mg/kg/day DBP can promote the growth of prostate cancer. This phenomenon was suppressed when Natura-α (100 mg/kg/day) was added. Based on the results of the above three levels, we confirmed that DBP can target FOXM1 to promote prostate cancer cell proliferation. Natura-α can reverse its cancer-promoting effect. This study provides new insights into the impact of DBP on prostate cancer.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sensheng Tang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guiting Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenkui Miao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Bianjiang Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
23
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
24
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Yang G, Li T, Liu J, Quan Z, Liu M, Guo Y, Wu Y, Ou L, Wu X, Zheng Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 2023; 115:110599. [PMID: 36889366 DOI: 10.1016/j.ygeno.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Prostate cancer (PCa) is a common malignant cancer in elderly males in Western countries. Whole-genome sequencing confirmed that long non-coding RNAs (lncRNAs) are frequently altered in castration-resistant prostate cancer (CRPC) and promote drug resistance to cancer therapy. Therefore, elucidating the prospective role of lncRNAs in PCa oncogenesis and progression is of remarkable clinical significance. In this study, gene expression in prostate tissues was determined using RNA-sequencing datasets, and the gene diagnostic and prognostic values of CRPC were analyzed using bioinformatics. Further, the expression levels and clinical significance of MAGI2 Antisense RNA 3 (MAGI2-AS3) in PCa clinical specimens were evaluated. The tumor-suppressive activity of MAGI2-AS3 was functionally explored in PCa cell lines and animal xenograft models. MAGI2-AS3 was found to be aberrantly decreased in CRPC and was negatively correlated with Gleason score and lymph node status. Notably, low MAGI2-AS3 expression positively correlated with poorer survival in patients with PCa. The overexpression of MAGI2-AS3 significantly inhibited the proliferation and migration of PCa in vitro and in vivo. Mechanistically, MAGI2-AS3 could play a tumor suppressor function in CRPC through a novel miR-106a-5p/RAB31 regulatory network and could be a target for future cancer therapy.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 400030 Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Liping Ou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
26
|
The diagnostic role and mechanistic functions of exosomal lncRNAs in prostate cancer. Clin Transl Oncol 2023; 25:592-600. [PMID: 36266385 DOI: 10.1007/s12094-022-02982-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022]
Abstract
Exosomes are small membrane-enclosed vesicles that are released by most living cells and harbor a diverse array of proteins, nucleic acids, and lipid cargos. These exosomes offer valuable biomarkers that may offer insights regarding as a range of physiological and pathological processes, including immune responses, cancer development, pregnancy, and diseases of the central nervous system. With the development of high-throughput technologies, the vital functions of long non-coding RNAs (lncRNAs) have been gradually entered people's vision and become new research hotspots. Nowadays, lncRNAs can play important roles in cancer progression by combining with miRNAs, activating molecular targets and other ways, and are also related to the diagnosis, treatment and prognosis for cancer, such as prostate cancer. Current review focused on the summary of diagnostic roles and mechanistic functions about exosomal lncRNAs in prostate cancer.
Collapse
|
27
|
Al-Awsi GRL, Alsaikhan F, Margiana R, Ahmad I, Patra I, Najm MAA, Yasin G, Rasulova I, Hammid AT, Kzar HH, Al-Gazally ME, Siahmansouri H. Shining the light on mesenchymal stem cell-derived exosomes in breast cancer. Stem Cell Res Ther 2023; 14:21. [PMID: 36750912 PMCID: PMC9906907 DOI: 10.1186/s13287-023-03245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
In women, breast cancer (BC) is the second most frequently diagnosed cancer and the leading cause of cancer death. Mesenchymal stem cells (MSCs) are a subgroup of heterogeneous non-hematopoietic fibroblast-like cells that have the ability to differentiate into multiple cell types. Recent studies stated that MSCs can migrate into the tumor sites and exert various effect on tumor growth and development. Multiple researches have demonstrated that MSCs can favor tumor growth, while other groups have indicated that MSCs inhibit tumor development. Emerging evidences showed exosomes (Exo) as a new mechanism of cell communication which are essential for the crosstalk between MSCs and BC cells. MSC-derived Exo (MSCs-Exo) could mimic the numerous effects on the proliferation, metastasis, and drug response through carrying a wide scale of molecules, such as proteins, lipids, messenger RNAs, and microRNAs to BC cells. Consequently, in the present literature, we summarized the biogenesis and cargo of Exo and reviewed the role of MSCs-Exo in development of BC.
Collapse
Affiliation(s)
- Ghaidaa Raheem Lateef Al-Awsi
- grid.517728.e0000 0004 9360 4144Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- grid.449553.a0000 0004 0441 5588College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Irfan Ahmad
- grid.412144.60000 0004 1790 7100Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin A. A. Najm
- grid.513203.6Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ghulam Yasin
- grid.411501.00000 0001 0228 333XDepartment of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Iroda Rasulova
- Independent Researcher, “Kasmed” Private Medical Centre, Tashkent, Uzbekistan
| | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
29
|
Song S, Zhu Y, Zhang X, Chen S, Liu S. Prognostic values of long noncoding RNA in bone metastasis of prostate cancer: A systematic review and meta-analysis. Front Oncol 2023; 13:1085464. [PMID: 36890836 PMCID: PMC9986415 DOI: 10.3389/fonc.2023.1085464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Recent studies have shown that long non-coding RNAs are closely related to the occurrence and development of prostate cancer bone metastasis, and can be used as biomarkers to predict the prognosis of patients. Therefore, this study aimed to systematically evaluate the relationship between the expression levels of long non-coding RNAs and the prognosis of patients. Methods The studies of lncRNA in prostate cancer bone metastasis from Pubmed, Cochrane library, Embase, Ebsco, Web of science, Scopus, Ovid databases were analyzed, and Stata 15 was used for meta-analysis. Associations between lncRNA expression and patients' overall survival (OS) and bone metastasis-free survival (BMFS) were assessed by correlation analysis with pooled hazard ratios (HR) and 95% confidence intervals (CI). Furthermore, the results were validated using GEPIA2 and UALCAN, online database based on TCGA. Subsequently, the molecular mechanisms of the included lncRNAs were predicted based on the LncACTdb 3.0 database and the lnCAR database. Finally, we used clinical samples to validate lncRNAs that were significantly different in both databases. Results A total of 5 published studies involving 474 patients were included in this meta-analysis. The results showed that lncRNA overexpression was significantly associated with lower OS (HR = 2.55, 95% CI: 1.69 - 3.99, p < 0.05) and lower BMFS (OR = 3.16, 95% CI: 1.90 - 5.27, p < 0.05) in patients with prostate cancer bone metastasis. Based on validation from the GEPIA2 and UALCAN online databases, SNHG3 and NEAT1 were significantly up-regulated in prostate cancer. Further functional prediction showed that the lncRNAs included in the study were involved in regulating the occurrence and development of prostate cancer through the ceRNA axis. The result of clinical samples showed that SNHG3 and NEAT1 were expressed in prostate cancer bone metastasis at higher levels than in primary tumors. Conclusions LncRNA can be used as a novel predictive biomarker for predicting poor prognosis in patients with prostate cancer bone metastasis, which is worthy of clinical validation.
Collapse
Affiliation(s)
- Silu Song
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Department of Basic Medical, Jiamusi University, Jiamusi, China
| | - Yanli Zhu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Department of Basic Medical, Jiamusi University, Jiamusi, China
| | - Xue Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Department of Basic Medical, Jiamusi University, Jiamusi, China
| | - Siyu Chen
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Department of Basic Medical, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Department of Basic Medical, Jiamusi University, Jiamusi, China
| |
Collapse
|
30
|
Zhang M, Lu Y, Wang L, Mao Y, Hu X, Chen Z. Current Status of Research on Small Extracellular Vesicles for the Diagnosis and Treatment of Urological Tumors. Cancers (Basel) 2022; 15:cancers15010100. [PMID: 36612097 PMCID: PMC9817817 DOI: 10.3390/cancers15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.
Collapse
Affiliation(s)
- Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-150-8373-7280
| |
Collapse
|
31
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
32
|
Extracellular vesicle isolation, purification and evaluation in cancer diagnosis. Expert Rev Mol Med 2022; 24:e41. [PMID: 36268744 DOI: 10.1017/erm.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Strategies for non-invasive biomarker discovery in early detection of cancer are an urgent need. Extracellular vesicles (EVs) have generated increasing attention from the scientific community and are under intensive investigations due to their unique biological profiles and their non-invasive nature. EVs are membrane-enclosed vesicles with variable sizes and function. Such vesicles are actively secreted from multiple cell types and are considered as key vehicles for inter-cellular communications and signalling. The stability and potential to easily cross biological barriers enable EVs for exerting durable effects on target cells. These along with easy access to such vesicles, the consistent secretion from tumour during all stages of tumorigenesis and their content providing a reservoir of molecules as well as mirroring the identity of the cell of origin are virtues that have made EVs appealing to be assessed in liquid biopsy approaches and for using as a promising resource of biomarkers in cancer diagnosis and therapy and monitoring targeted cancer therapy. Early detection of EVs will guide time-scheduled personalised therapy. Surveying reliable and sensitive methods for rapid isolation of EVs from biofluids, the purity of isolated vesicles and their molecular profiling and marker specification for clinical translation in patients with cancer are issues in the area and the hot topics of many recent studies. Here, the focus is over methods for EV isolation and stratification for digging more information about liquid biopsy-based diagnosis. Extending knowledge regarding EV-based strategies is a key to validate independent patient follow-up for cancer diagnosis at early stages and inspecting the efficacy of therapeutics.
Collapse
|
33
|
Khan N, Umar MS, Haq M, Rauf T, Zubair S, Owais M. Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks. Front Genet 2022; 13:1022734. [PMID: 36338993 PMCID: PMC9632295 DOI: 10.3389/fgene.2022.1022734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tumorigenesis is a multifaceted process, where multiple physiological traits serving as cancer’s distinctive characteristics are acquired. “Hallmarks of cancer” is a set of cognitive abilities acquired by human cells that are pivotal to their tumor-forming potential. With limited or no protein-coding ability, non-coding RNAs (ncRNAs) interact with their target molecules and yield significant regulatory effects on several cell cycle processes. They play a “yin” and “yang” role, thereby functioning both as oncogenic and tumor suppressor and considered important in the management of various types of cancer entities. ncRNAs serve as important post-transcriptional and translational regulators of not only unrestricted expansion and metastasis of tumor cells but also of various biological processes, such as genomic mutation, DNA damage, immune escape, and metabolic disorder. Dynamical attributes such as increased proliferative signaling, migration, invasion, and epithelial–mesenchymal transition are considered to be significant determinants of tumor malignancy, metastatic dissemination, and therapeutic resistance. Furthermore, these biological attributes engage tumor cells with immune cells within the tumor microenvironment to promote tumor formation. We elaborate the interaction of ncRNAs with various factors in order to regulate cancer intra/intercellular signaling in a specific tumor microenvironment, which facilitates the cancer cells in acquiring malignant hallmarks. Exosomes represent a means of intercellular communication and participate in the maintenance of the tumor hallmarks, adding depth to the intricate, multifactorial character of malignant neoplasia. To summarize, ncRNAs have a profound impact on tumors, affecting their microcirculation, invasiveness, altered metabolism, microenvironment, and the capacity to modify the host immunological environment. Though the significance of ncRNAs in crosstalk between the tumor and its microenvironment is being extensively explored, we intend to review the hallmarks in the light of exosome-derived non-coding RNAs and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohamed Haq
- University of Houston, Houston, TX, United States
| | - Talha Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Owais,
| |
Collapse
|
34
|
Androgen-Responsive Oncogenic lncRNA RP11-1023L17.1 Enhances c-Myc Protein Stability in Prostate Cancer. Int J Mol Sci 2022; 23:ijms232012219. [PMID: 36293081 PMCID: PMC9603324 DOI: 10.3390/ijms232012219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been found as novel participants in the pathophysiology of prostate cancer (PCa), which is predominantly regulated by androgen and its receptor. The biological function of androgen-responsive lncRNAs remains poorly understood. Here, we identified that lncRNA RP11-1023L17.1, which is highly expressed in PCa. RP11-1023L17.1 expression, can be directly repressed by the androgen receptor in PCa cells. RP11-1023L17.1 depletion inhibited the proliferation, migration, and cell cycle progression, and promoted the apoptosis of PCa cells, indicating that RP11-1023L17.1 acts as an oncogene in PCa cells. Microarray results revealed that RP11-1023L17.1 depletion downregulated the c-Myc transcription signature in PCa cells. RP11-1023L17.1 depletion-induced cellular phenotypes can be overcome by ectopically overexpressed c-Myc. Mechanistically, RP11-1023L17.1 represses FBXO32 mRNA expression, thereby enhancing c-Myc protein stability by blocking FBXO32-mediated c-Myc degradation. Our findings reveal the previously unrecognized roles of RP11-1023L17.1 in c-Myc-dependent PCa tumorigenesis.
Collapse
|
35
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song X, Jiang Q, Huang C, Wang J. Significance of HOXD transcription factors family in progression, migration and angiogenesis of cancer. Crit Rev Oncol Hematol 2022; 179:103809. [PMID: 36108961 DOI: 10.1016/j.critrevonc.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022] Open
Abstract
The transcription factors (TFs) of the HOX family play significant roles during early embryonic development and cellular processes. They also play a key role in tumorigenesis as tumor oncogenes or suppressors. Furthermore, TFs of the HOXD geFIne cluster affect proliferation, migration, and invasion of tumors. Consequently, dysregulated activity of HOXD TFs has been linked to clinicopathological characteristics of cancer. HOXD TFs are regulated by non-coding RNAs and methylation of DNA on promoter and enhancer regions. In addition, HOXD genes modulate the biological function of cancer cells via the MEK and AKT signaling pathways, thus, making HOXD TFs, a suitable molecular marker for cancer prognosis and therapy. In this review, we summarized the roles of HOXD TFs in different cancers and highlighted its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chenyang Qiao
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xinqiu Song
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Jinhai Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
36
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
37
|
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel Potential Biomarkers for Diseases-A Review. Int J Mol Sci 2022; 23:2461. [PMID: 35269604 PMCID: PMC8910301 DOI: 10.3390/ijms23052461] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Exosomes are a subset of nano-sized extracellular vesicles originating from endosomes. Exosomes mediate cell-to-cell communication with their cargos, which includes mRNAs, miRNAs, lncRNAs, and circRNAs. Exosomal RNAs have cell specificity and reflect the conditions of their donor cells. Notably, their detection in biofluids can be used as a diagnostic marker for various diseases. Exosomal RNAs are ideal biomarkers because their surrounding membranes confer stability and they are detectable in almost all biofluids, which helps to reduce trauma and avoid invasive examinations. However, knowledge of exosomal biomarkers remains scarce. The present review summarizes the biogenesis, secretion, and uptake of exosomes, the current researches exploring exosomal mRNAs, miRNAs, lncRNAs, and circRNAs as potential biomarkers for the diagnosis of human diseases, as well as recent techniques of exosome isolation.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Bing-Lin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China;
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Xian-Yong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
38
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077 India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| |
Collapse
|
39
|
Noncoding-RNA-Based Therapeutics with an Emphasis on Prostatic Carcinoma—Progress and Challenges. Vaccines (Basel) 2022; 10:vaccines10020276. [PMID: 35214734 PMCID: PMC8877701 DOI: 10.3390/vaccines10020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNAs (ncRNAs) defy the central dogma by representing a family of RNA molecules that are not translated into protein but can convey information encoded in their DNA. Elucidating the exact function of ncRNA has been a focus of discovery in the last decade and remains challenging. Nevertheless, the importance of understanding ncRNA is apparent since these molecules regulate gene expression at the transcriptional and post-transcriptional level exerting pleiotropic effects critical in development, oncogenesis, and immunity. NcRNAs have been referred to as “the dark matter of the nucleus”, and unraveling their role in physiologic and pathologic processes will provide vast opportunities for basic and translational research with the potential for significant therapeutic progress. Consequently, strong efforts are underway to exploit the therapeutic utility of ncRNA, some of which have been approved by the US Food and Drug Administration and the European Medicines Agency. The use of ncRNA therapeutics (or “vaccines” if defined as anti-disease agents) may result in improved curative strategies when used alone or in combination with existing treatments. This review will focus on the role of ncRNA therapeutics in prostatic carcinoma while exploring basic biological aspects of these molecules that represent about 97% of the transcriptome in humans.
Collapse
|