1
|
Zheng J, Ma Z, Liu P, Wei J, Min S, Shan Y, Zhang J, Li Y, Xue L, Tan Z, Wang D. EZH2 inhibits senescence-associated inflammation and attenuates intervertebral disc degeneration by regulating the cGAS/STING pathway via H3K27me3. Osteoarthritis Cartilage 2025; 33:548-559. [PMID: 39938633 DOI: 10.1016/j.joca.2025.02.771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Senescent nucleus pulposus mesenchymal stem cells (NPMSCs) are key instigators of local chronic inflammation and disruptions in nucleus pulposus tissue repair in intervertebral disc degeneration (IVDD). This study aimed to investigate the interplay between EZH2 and NPMSCs senescence-associated inflammation. METHODS Nucleus pulposus samples were collected from IVDD patients (n = 15, F/M = 7/8, average age 47.9 (21-72) year-old). Multiplex immunohistochemistry was conducted to detect the expression of EZH2 and the cGAS/STING pathway. Subsequently, NPMSCs were isolated from 7 patients (n = 7, F/M = 4/3, average age 49.4 (36-68) year-old). After treatment with tert-butyl hydroperoxide and lentivirus-overexpression-EZH2 (Lv-OE-EZH2), real time fluorescent quantitative PCR, immunofluorescence, western blot, and ChIP were used to detect the expression of EZH2 and the cGAS/STING pathway. Micro-CT, magnetic resonance imaging, and histological staining were performed to assess the therapeutic effects of Lv-OE-EZH2 and a STING inhibitor on rat IVDD. All experiment designs were independent. RESULTS In both human nucleus pulposus tissues and an in vitro cell model, EZH2 expression decreased while the cGAS/STING pathway became activated in senescent NPMSCs. ChIP assays and Lv-OE-EZH2 experiments validated that EZH2 epigenetically inhibited STING expression via H3K27me3, thereby impairing the cGAS/STING pathway and attenuating senescence-associated inflammation. Moreover, overexpression of EZH2 (Pfirrmann grade means difference -1.375, p = 0.0089) and inhibition of STING effectively attenuated rat IVDD. CONCLUSION The decreased expression of EZH2 in senescent NPMSCs promotes senescence-associated inflammation and the progression of IVDD, possibly by relieving the transcriptional inhibition of STING and enabling the activation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Pei Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jiewen Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China; Shantou University Medical College, Shantou 515000, PR China.
| | - Shaoxiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jianlin Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Ye Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| |
Collapse
|
2
|
Junyent M, Noori H, De Schepper R, Frajdenberg S, Elsaigh RKAH, McDonald PH, Duckett D, Maudsley S. Unravelling Convergent Signaling Mechanisms Underlying the Aging-Disease Nexus Using Computational Language Analysis. Curr Issues Mol Biol 2025; 47:189. [PMID: 40136443 PMCID: PMC11941692 DOI: 10.3390/cimb47030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Multiple lines of evidence suggest that multiple pathological conditions and diseases that account for the majority of human mortality are driven by the molecular aging process. At the cellular level, aging can largely be conceptualized to comprise the progressive accumulation of molecular damage, leading to resultant cellular dysfunction. As many diseases, e.g., cancer, coronary heart disease, Chronic obstructive pulmonary disease, Type II diabetes mellitus, or chronic kidney disease, potentially share a common molecular etiology, then the identification of such mechanisms may represent an ideal locus to develop targeted prophylactic agents that can mitigate this disease-driving mechanism. Here, using the input of artificial intelligence systems to generate unbiased disease and aging mechanism profiles, we have aimed to identify key signaling mechanisms that may represent new disease-preventing signaling pathways that are ideal for the creation of disease-preventing chemical interventions. Using a combinatorial informatics approach, we have identified a potential critical mechanism involving the recently identified kinase, Dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) and the epidermal growth factor receptor (EGFR) that may function as a regulator of the pathological transition of health into disease via the control of cellular fate in response to stressful insults.
Collapse
Affiliation(s)
- Marina Junyent
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- IMIM, Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Haki Noori
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Chemistry, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Robin De Schepper
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | - Shanna Frajdenberg
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | | | - Patricia H. McDonald
- Lexicon Pharmaceuticals Inc., 2445 Technology Forest Blvd Fl 1, The Woodlands, TX 77381, USA;
| | - Derek Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Stuart Maudsley
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
3
|
Wang X, Wang Y, Xie M, Ma S, Zhang Y, Wang L, Ge Y, Li G, Zhao M, Chen S, Yan C, Zhang H, Sun W. Hypermethylation of CDKN2A CpG island drives resistance to PRC2 inhibitors in SWI/SNF loss-of-function tumors. Cell Death Dis 2024; 15:794. [PMID: 39500892 PMCID: PMC11538500 DOI: 10.1038/s41419-024-07109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes the writing of the tri-methylated histone H3 at Lys27 (H3K27me3) epigenetic marker and suppresses the expression of genes, including tumor suppressors. The function of the complex can be partially antagonized by the SWI/SNF chromatin-remodeling complex. Previous studies have suggested that PRC2 is important for the proliferation of tumors with SWI/SNF loss-of-function mutations. In the present study, we have developed an EED-directed allosteric inhibitor of PRC2 termed BR0063, which exhibits anti-proliferative properties in a subset of solid tumor cell lines harboring mutations of the SWI/SNF subunits, SMARCA4 or ARID1A. Tumor cells sensitive to BR0063 exhibited several distinct phenotypes, including cell senescence, which was mediated by the up-regulation of CDKN2A/p16. Further experiments revealed that the expression of p16 was suppressed in the BR0063-resistant cells via DNA hypermethylation in the CpG island (CGI) promoter region, rather than via PRC2 occupancy. The expression of TET1, which is required for DNA demethylation, was found to be inversely correlated with p16 CGI methylation, and this may serve as a biomarker for the prediction of resistance to PRC2 inhibitors in SWI/SNF LOF tumors.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Min Xie
- Blueray Biopharma Inc., Shanghai, China
| | | | | | - Lele Wang
- Blueray Biopharma Inc., Shanghai, China
| | | | - Guobin Li
- Blueray Biopharma Inc., Shanghai, China
| | | | | | - Chenxi Yan
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Haefliger S, Chervova O, Davies C, Loh C, Tirabosco R, Amary F, Pillay N, Horvath S, Beck S, Flanagan AM, Lyskjær I. Epigenetic age acceleration is a distinctive trait of epithelioid sarcoma with potential therapeutic implications. GeroScience 2024; 46:5203-5209. [PMID: 38879847 PMCID: PMC11336154 DOI: 10.1007/s11357-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/05/2024] [Indexed: 08/22/2024] Open
Abstract
Recently, DNA methylation clocks have been proven to be precise age predictors, and the application of these clocks in cancer tissue has revealed a global age acceleration in a majority of cancer subtypes when compared to normal tissue from the same individual. The polycomb repressor complex 2 plays a pivotal role in the aging process, and its targets have been shown to be enriched in CpG sites that gain methylation with age. This complex is further regulated by the chromatin remodeling complex SWItch/Sucrose Non-Fermentable and its core subunit, notably the tumor suppressor gene SMARCB1, which under physiological conditions inhibits the activity of the polycomb repressor complex 2. Hence, the loss of function of core members of the SWItch/sucrose non-fermentable complex, such as the tumor suppressor gene SMARCB1, results in increased activity of polycomb repressor complex 2 and interferes with the aging process. SMARCB1-deficient neoplasms represent a family of rare tumors, including amongst others malignant rhabdoid tumors, atypical teratoid and rhabdoid tumors, and epithelioid sarcomas. As aging pathways have recently been proposed as therapeutic targets for various cancer types, these tumors represent candidates for testing such treatments. Here, by deriving epigenetic age scores from more than 1000 tumor samples, we identified epigenetic age acceleration as a hallmark feature of epithelioid sarcoma. This observation highlights the potential of targeting aging pathways as an innovative treatment approach for patients with epithelioid sarcoma.
Collapse
Affiliation(s)
- Simon Haefliger
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Olga Chervova
- Medical Genomics Research Group, University College London, UCL Cancer Institute, London, UK
| | - Christopher Davies
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Chet Loh
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Nischalan Pillay
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Steve Horvath
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Stephan Beck
- Medical Genomics Research Group, University College London, UCL Cancer Institute, London, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, London, UK.
| | - Iben Lyskjær
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Zhao J, Qian H, An Y, Chu L, Tan D, Qin C, Sun Q, Wang Y, Qi W. PPARγ and C/EBPα enable adipocyte differentiation upon inhibition of histone methyltransferase PRC2 in malignant tumors. J Biol Chem 2024; 300:107765. [PMID: 39276936 PMCID: PMC11533084 DOI: 10.1016/j.jbc.2024.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
Loss of terminal differentiation is a hallmark of cancer and offers a potential mechanism for differentiation therapy. Polycomb repressive complex 2 (PRC2) serves as the methyltransferase for K27 of histone H3 that is crucial in development. While PRC2 inhibitors show promise in treating various cancers, the underlying mechanisms remain incompletely understood. Here, we demonstrated that the inhibition or depletion of PRC2 enhanced adipocyte differentiation in malignant rhabdoid tumors and mesenchymal stem cells, through upregulation of peroxisome proliferator-activated receptor gamma (PPARG) and CEBPA. Mechanistically, PRC2 directly represses their transcription through H3K27 methylation, as both genes exhibit a bivalent state in mesenchymal stem cells. KO of PPARG compromised C/EBPα expression and impeded the PRC2 inhibitor-induced differentiation into adipocytes. Furthermore, the combination of the PPARγ agonist rosiglitazone and the PRC2 inhibitor MAK683 exhibited a higher inhibition on Ki67 positivity in tumor xenograft compared to MAK683 alone. High CEBPA, PLIN1, and FABP4 levels positively correlated with favorable prognosis in sarcoma patients in The Cancer Genome Atlas cohort. Together, these findings unveil an epigenetic regulatory mechanism for PPARG and highlight the essential role of PPARγ and C/EBPα in the adipocyte differentiation of malignant rhabdoid tumors and sarcomas with a potential clinical implication.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Qian
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liping Chu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dongxia Tan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenyang Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianying Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunpeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
7
|
Xiong J, Dong L, Lv Q, Yin Y, Zhao J, Ke Y, Wang S, Zhang W, Wu M. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes. Clin Transl Med 2024; 14:e1772. [PMID: 39270064 PMCID: PMC11398298 DOI: 10.1002/ctm2.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/15/2024] Open
Abstract
Tumour cell senescence can be induced by various factors, including DNA damage, inflammatory signals, genetic toxins, ionising radiation and nutrient metabolism. The senescence-associated secretory phenotype (SASP), secreted by senescent tumour cells, possesses the capacity to modulate various immune cells, including macrophages, T cells, natural killer cells and myeloid-derived suppressor cells, as well as vascular endothelial cells and fibroblasts within the tumour microenvironment (TME), and this modulation can result in either the promotion or suppression of tumorigenesis and progression. Exploring the impact of SASP on the TME could identify potential therapeutic targets, yet limited studies have dissected its functions. In this review, we delve into the causes and mechanisms of tumour cell senescence. We then concentrate on the influence of SASP on the tumour immune microenvironment, angiogenesis, extracellular matrix and the reprogramming of cancer stem cells, along with their associated tumour outcomes. Last, we present a comprehensive overview of the diverse array of senotherapeutics, highlighting their prospective advantages and challenge for the treatment of cancer patients. KEY POINTS: Senescence-associated secretory phenotype (SASP) secretion from senescent tumour cells significantly impacts cancer progression and biology. SASP is involved in regulating the remodelling of the tumour microenvironment, including immune microenvironment, vascular, extracellular matrix and cancer stem cells. Senotherapeutics, such as senolytic, senomorphic, nanotherapy and senolytic vaccines, hold promise for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Dong
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Yin
- The First Clinical College of Wuhan University, Wuhan, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youning Ke
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Yu W, Lin X, Leng S, Hou Y, Dang Z, Xue S, Li N, Zhang F. The PRC2 complex epigenetically silences GATA4 to suppress cellular senescence and promote the progression of breast cancer. Transl Oncol 2024; 46:102014. [PMID: 38843657 PMCID: PMC11214403 DOI: 10.1016/j.tranon.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The transcription factor GATA4 is pivotal in cancer development but is often silenced through mechanisms like DNA methylation and histone modifications. This silencing suppresses the transcriptional activity of GATA4, disrupting its normal functions and promoting cancer progression. However, the precise molecular mechanisms and implications of GATA4 silencing in tumorigenesis remain unclear. Here, we aim to elucidate the mechanisms underlying GATA4 silencing and explore its role in breast cancer progression and its potential as a therapeutic target. METHODS The GATA4-breast cancer prognosis link was explored via bioinformatics analyses, with GATA4 expression measured in breast tissues. Functional gain/loss experiments were performed to gauge GATA4's impact on breast cancer cell malignancy. GATA4-PRC2 complex interaction was analyzed using silver staining and mass spectrometry. Chromatin immunoprecipitation, coupled with high-throughput sequencing, was used to identify GATA4-regulated downstream target genes. The in vitro findings were validated in an in situ breast cancer xenograft mouse model. RESULTS GATA4 mutation and different breast cancer subtypes were correlated, suggesting its involvement in disease progression. GATA4 suppressed cell proliferation, invasion, and migration while inducing apoptosis and senescence in breast cancer cells. The GATA4-PRC2 complex interaction silenced GATA4 expression, which altered the regulation of FAS, a GATA4 downstream gene. In vivo experiments verified that GATA4 inhibits tumor growth, suggesting its regulatory function in tumorigenesis. CONCLUSIONS This comprehensive study highlights the epigenetic regulation of GATA4 and its impact on breast cancer development, highlighting the PRC2-GATA4-FAS pathway as a potential target for therapeutic interventions in breast cancers.
Collapse
Affiliation(s)
- Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaona Lin
- Department of Cardiovascular Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China
| | - Shuai Leng
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yiming Hou
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Zhiqiao Dang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4, Duanxin West Road, Jinan, Shandong 250022, China; Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Fengquan Zhang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
9
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
10
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Liu D, Li Z, Tan D, An Y, Chu L, Chen T, Li W, Zhou A, Xiang R, Zhang L, Qu Y, Qi W. BMP-ACVR1 Axis is Critical for Efficacy of PRC2 Inhibitors in B-Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306499. [PMID: 38229201 DOI: 10.1002/advs.202306499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Indexed: 01/18/2024]
Abstract
EZH2 is the catalytic subunit of the histone methyltransferase Polycomb Repressive Complex 2 (PRC2), and its somatic activating mutations drive lymphoma, particularly the germinal center B-cell type. Although PRC2 inhibitors, such as tazemetostat, have demonstrated anti-lymphoma activity in patients, the clinical efficacy is not limited to EZH2-mutant lymphoma. In this study, Activin A Receptor Type 1 (ACVR1), a type I Bone Morphogenetic Protein (BMP) receptor, is identified as critical for the anti-lymphoma efficacy of PRC2 inhibitors through a whole-genome CRISPR screen. BMP6, BMP7, and ACVR1 are repressed by PRC2-mediated H3K27me3, and PRC2 inhibition upregulates their expression and signaling in cell and patient-derived xenograft models. Through BMP-ACVR1 signaling, PRC2 inhibitors robustly induced cell cycle arrest and B cell lineage differentiation in vivo. Remarkably, blocking ACVR1 signaling using an inhibitor or genetic depletion significantly compromised the in vitro and in vivo efficacy of PRC2 inhibitors. Furthermore, high levels of BMP6 and BMP7, along with ACVR1, are associated with longer survival in lymphoma patients, underscoring the clinical relevance of this study. Altogether, BMP-ACVR1 exhibits anti-lymphoma function and represents a critical PRC2-repressed pathway contributing to the efficacy of PRC2 inhibitors.
Collapse
Affiliation(s)
- Dongdong Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhen Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Dongxia Tan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Liping Chu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Tiancheng Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Weijia Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ailin Zhou
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ruijie Xiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Liye Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yuxiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
12
|
Glaser K, Schepers EJ, Zwolshen HM, Lake CM, Timchenko NA, Karns RA, Cairo S, Geller JI, Tiao GM, Bondoc AJ. EZH2 is a key component of hepatoblastoma tumor cell growth. Pediatr Blood Cancer 2024; 71:e30774. [PMID: 37990130 PMCID: PMC10842061 DOI: 10.1002/pbc.30774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including β-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with β-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and β-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with β-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.
Collapse
Affiliation(s)
- Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Harrison M Zwolshen
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charissa M Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah A Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stefano Cairo
- Champions Oncology, US Research Headquarters, Rockville, Maryland, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
14
|
Li R, Teng Y, Guo Y, Ren J, Li R, Luo H, Chen D, Feng Z, Fu Z, Zou X, Wang W, Zhou C. Aging-related decrease of histone methyltransferase SUV39H1 in adipose-derived stem cells enhanced SASP. Mech Ageing Dev 2023; 215:111868. [PMID: 37666472 DOI: 10.1016/j.mad.2023.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhicai Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zheng Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
15
|
Yadav P, Ahmed T, Park S, Sidler M, Schröder A, Aitken KJ, Bägli D. EZH2 and matrix co-regulate phenotype and KCNB2 expression in bladder smooth muscle cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:293-303. [PMID: 37645613 PMCID: PMC10461034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/17/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (PBO) is a widespread cause of urinary dysfunction and patient discomfort, resulting in immense health care costs. Previously, we found that obstruction is associated with altered regulation of epigenetic machinery and altered function. Here we examined if PBO and chronic bladder obstructive disease (COBD) affect epigenetic marks in a proof of principle gene and explored mechanisms of its epigenetic regulation using in vitro models. METHODS Archival obstruction tissues from COBD had been created in 200-250 g female Sprague-Dawley rats by surgical ligation of the urethra for 6 weeks, followed by removal of the suture and following animals for 6 more weeks. Obstruction (PBO) is the 6-week ligation only. Sham ligations comprise passing the suture behind the urethra. Histone3 lysine27 trimethylation (H3K27me3) was studied by immunostaining and Chromatin immunoprecipitation (ChIP)/PCR. The interaction of matrix with KCNB2 regulation was studied in human bladder SMC plated on damaged matrix and native collagen and treated with vehicle or UNC1999. Cells were analyzed by immunostaining for cell phenotype, and western blotting for KCNB2, H3K27me3 and EZH2. Effects of conditioned media from these cells were also examined on cell phenotype. siRNA against KCNB2 was examined for effects on cell phenotype and gene expression by RT-qPCR. RESULTS H3K27me3 increased by immunofluorescence during PBO, and by ChIP/PCR during COBD in the CpG Island (CGI) as well as 350 bp upstream. Obstruction vs. sham also showed an increase in H3K27me3 deposition. In SMC in vitro, EZH2 inhibition restored KCNB2 expression and partially restored SMC phenotype. CONCLUSIONS Regulation of KCNB2 at the promoter demonstrated dynamic changes in H3K27me3 during COBD and obstruction. In vitro models suggest that matrix plays a role in regulation of EZH2, H3K27me3 and KCNB2, which may play a role in the regulation of smooth muscle phenotype in vivo.
Collapse
Affiliation(s)
- Priyank Yadav
- The Hospital for Sick ChildrenToronto, Ontario, Canada
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical SciencesLucknow, Uttar Pradesh, India
| | - Tabina Ahmed
- The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Suejean Park
- The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Martin Sidler
- Paediatric and Neonatal Surgery, Klinikum StuttgartStuttgart, Baden-Württemberg, Germany
| | - Annette Schröder
- Department of Urology and Pediatric Urology of The University Medical Center MainzMainz, Rheinland-Pfalz, Germany
| | | | - Darius Bägli
- The Hospital for Sick ChildrenToronto, Ontario, Canada
- Division of Urology, Department of Surgery, University of TorontoToronto, Ontario, Canada
| |
Collapse
|
16
|
Aldana J, Gardner ML, Freitas MA. Integrative Multi-Omics Analysis of Oncogenic EZH2 Mutants: From Epigenetic Reprogramming to Molecular Signatures. Int J Mol Sci 2023; 24:11378. [PMID: 37511137 PMCID: PMC10380343 DOI: 10.3390/ijms241411378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Somatic heterozygous mutations in the active site of the enhancer of zeste homolog 2 (EZH2) are prevalent in diffuse large B-cell lymphoma (DLBCL) and acute myeloid leukemia (AML). The methyltransferase activity of EZH2 towards lysine 27 on histone H3 (H3K27) and non-histone proteins is dysregulated by the presence of gain-of-function (GOF) and loss-of-function (LOF) mutations altering chromatin compaction, protein complex recruitment, and transcriptional regulation. In this study, a comprehensive multi-omics approach was carried out to characterize the effects of differential H3K27me3 deposition driven by EZH2 mutations. Three stable isogenic mutants (EZH2Y641F, EZH2A677G, and EZH2H689A/F667I) were examined using EpiProfile, H3K27me3 CUT&Tag, ATAC-Seq, transcriptomics, label-free proteomics, and untargeted metabolomics. A discrete set of genes and downstream targets were identified for the EZH2 GOF and LOF mutants that impacted pathways involved in cellular proliferation, differentiation, and migration. Disruption of protein networks and metabolic signatures able to sustain aberrant cell behavior was observed in response to EZH2 mutations. This systems biology-based analysis sheds light on EZH2-mediated cell transformative processes, from the epigenetic to the phenotypic level. These studies provide novel insights into aberrant EZH2 function along with targets that can be explored for improved diagnostics/treatment in hematologic malignancies with mutated EZH2.
Collapse
Affiliation(s)
- Julian Aldana
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Miranda L. Gardner
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A. Freitas
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Abstract
Epigenetic alterations during ageing are manifested with altered gene expression linking it to lifespan regulation, genetic instability, and diseases. Diet and epigenetic modifiers exert a profound effect on the lifespan of an organism by modulating the epigenetic marks. However, our understanding of the multifactorial nature of the epigenetic process during ageing and the onset of disease conditions as well as its reversal by epidrugs, diet, or environmental factors is still mystifying. This review covers the key findings in epigenetics related to ageing and age-related diseases. Further, it holds a discussion about the epigenetic clocks and their implications in various age-related disease conditions including cancer. Although, epigenetics is a reversible process how fast the epigenetic alterations can revert to normal is an intriguing question. Therefore, this paper touches on the possibility of utilizing nutrition and MSCs secretome to accelerate the epigenetic reversal and emphasizes the identification of new therapeutic epigenetic modifiers to counter epigenetic alteration during ageing.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, 429164, Bangalore, India;
| | - Ramesh Bhonde
- Dr D Y Patil Vidyapeeth University, 121766, Pune, Maharashtra, India;
| |
Collapse
|
18
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
19
|
Chen J, Feng D, Lu Y, Zhang Y, Jiang H, Yuan M, Xu Y, Zou J, Zhu Y, Zhang J, Ge C, Wang Y. A Novel Phenazine Analog, CPUL1, Suppresses Autophagic Flux and Proliferation in Hepatocellular Carcinoma: Insight from Integrated Transcriptomic and Metabolomic Analysis. Cancers (Basel) 2023; 15:cancers15051607. [PMID: 36900398 PMCID: PMC10001020 DOI: 10.3390/cancers15051607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND CPUL1, a phenazine analog, has demonstrated potent antitumor properties against hepatocellular carcinoma (HCC) and indicates a promising prospect in pharmaceutical development. However, the underlying mechanisms remain largely obscure. METHODS Multiple HCC cell lines were used to investigate the in vitro effects of CPUL1. The antineoplastic properties of CPUL1 were assessed in vivo by establishing a xenograft nude mice model. After that, metabolomics, transcriptomics, and bioinformatics were integrated to elucidate the mechanisms underlying the therapeutic efficacy of CPUL1, highlighting an unanticipated involvement of autophagy dysregulation. RESULTS CPUL1 suppressed HCC cell proliferation in vitro and in vivo, thereby endorsing the potential as a leading agent for HCC therapy. Integrative omics characterized a deteriorating scenario of metabolic debilitation with CPUL1, presenting an issue in the autophagy contribution of autophagy. Subsequent observations indicated that CPUL1 treatment could impede autophagic flow by suppressing autophagosome degradation rather than its formation, which supposedly exacerbated cellular damage triggered by metabolic impairment. Moreover, the observed late autophagosome degradation may be attributed to lysosome dysfunction, which is essential for the final stage of autophagy and cargo disposal. CONCLUSIONS Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.
Collapse
Affiliation(s)
- Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yanjun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Man Yuan
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Xu
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Correspondence: (C.G.); (Y.W.)
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (C.G.); (Y.W.)
| |
Collapse
|
20
|
Chu L, Tan D, Zhu M, Qu Y, Ma X, Song BL, Qi W. EZH2 W113C is a gain-of-function mutation in B cell lymphoma enabling both PRC2 methyltransferase activation and tazemetostat resistance. J Biol Chem 2023; 299:103073. [PMID: 36858198 PMCID: PMC10066557 DOI: 10.1016/j.jbc.2023.103073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Polycomb Repressive Complex2 (PRC2) suppresses gene transcription by methylating lysine 27 of histone H3 (H3K27) and plays critical roles in embryonic development. Among the core PRC2 subunits, EZH2 is the catalytic subunit and EED allosterically activates EZH2 upon binding trimethylated H3K27 (H3K27me3). Activating mutations on Y641, A677, and A687 within the enzymatic SET domain of EZH2 have been associated with enhanced H3K27me3 and tumorigenicity of many cancers including B-cell lymphoma and melanoma. To tackle the critical residues outside the EZH2 SET domain, we examined EZH2 mutations in lymphoma from cancer genome databases and identified a novel gain-of-function (GoF) mutation W113C, which increases H3K27me3 in vitro and in vivo and promotes CDKN2A silencing to a similar level as the EZH2 Y641F. Different from other GoF mutations, this mutation is located in the SAL motif at the EZH2 N-terminus, which stabilizes the SET domain and facilitates substrate binding. This may explain how the W113C mutation increases PRC2 activity. Tazemetostat is an FDA-approved EZH2 binding inhibitor for follicular lymphoma treatment. Intriguingly, the W113C mutation leads to tazemetostat-resistance in cell and in vivo in both H3K27 methylation and tumor proliferation. Another class of allosteric PRC2 inhibitor binding EED overcomes the resistance, effectively decreases H3K27me3, and blocks tumor proliferation in cells expressing EZH2 W113C. As this mutation is originally identified from lymphoma samples, our results demonstrated its activating characteristic and the deleterious consequence, provide insights on PRC2 regulation, and support the continued exploration of treatment optimization for lymphoma patients.
Collapse
Affiliation(s)
- Liping Chu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dongxia Tan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Meimei Zhu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuxiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xin Ma
- Jing Medicine, Shanghai, 201210, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
21
|
Qu HL, Sun LJ, Li X, Liu F, Sun HH, He XT, Gan D, Yin Y, Tian BM, Chen FM, Wu RX. Long non-coding RNA AC018926.2 regulates palmitic acid exposure-compromised osteogenic potential of periodontal ligament stem cells via the ITGA2/FAK/AKT pathway. Cell Prolif 2023:e13411. [PMID: 36720715 PMCID: PMC10392068 DOI: 10.1111/cpr.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Although obesity has been proposed as a risk factor for periodontitis, the influence of excessive fat accumulation on the development of periodontitis and periodontal recovery from disease remains largely unknown. This study investigated the cellular response of periodontal ligament stem cells (PDLSCs) to elevated levels of a specific fatty acid, namely, palmitic acid (PA). The mechanism by which PA exposure compromises the osteogenic potential of cells was also explored. It was found that exposure of PDLSCs to abundant PA led to decreased cell osteogenic differentiation. Given that long non-coding RNAs (lncRNAs) play a key role in the stem cell response to adverse environmental stimuli, we screened the lncRNAs that were differentially expressed in PDLSCs following PA exposure using lncRNA microarray analysis, and AC018926.2 was identified as the lncRNA that was most sensitive to PA. Next, gain/loss-of-function studies illustrated that AC018926.2 was an important regulator in PA-mediated osteogenic differentiation of PDLSCs. Mechanistically, AC018926.2 upregulated integrin α2 (ITGA2) expression and therefore activated ITGA2/FAK/AKT signalling. Further functional studies revealed that inactivation of ITGA2/FAK/AKT signalling by silencing ITGA2 counteracted the pro-osteogenic effect induced by AC018926.2 overexpression. Moreover, the results of bioinformatics analysis and RNA immunoprecipitation assay suggested that AC018926.2 might transcriptionally regulate ITGA2 expression by binding to PARP1 protein. Our data suggest that AC018926.2 may serve as a therapeutic target for the management of periodontitis in obese patients.
Collapse
Affiliation(s)
- Hong-Lei Qu
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Li-Juan Sun
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fen Liu
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hai-Hua Sun
- Department of General Dentistry and Emergency, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao-Tao He
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei-Min Tian
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
22
|
Dong G, Zuo J, Yu J, Xu J, Gao G, Li GB, Zhao W, Yu B. Structure-Based Design of the Indole-Substituted Triazolopyrimidines as New EED-H3K27me3 Inhibitors for the Treatment of Lymphoma. J Med Chem 2023; 66:1063-1081. [PMID: 36580346 DOI: 10.1021/acs.jmedchem.2c02028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interrupting the embryonic ectoderm development (EED)-H3K27me3 interaction represents a promising strategy to allosterically inhibit polycomb repressive complex 2 (PRC2) for cancer therapy. In this work, we report the structure-based design of new triazolopyrimidine-based EED inhibitors, which structurally feature the electron-rich indole ring at the C8 position. Particularly, ZJH-16 directly binds to EED (HTRF IC50 = 2.72 nM, BLI KD = 4.4 nM) and potently inhibits the growth of KARPAS422 and Pfeiffer cells. In both cells, ZJH-16 is selectively engaged with EED and reduces H3K27 trimethylation levels. ZJH-16 inhibits the gene silencing function of PRC2 in KARPAS422 cells. ZJH-16 possesses favorable pharmacokinetic (PK) profiles with an excellent oral bioavailability (F = 94.7%). More importantly, ZJH-16 shows robust tumor regression in the KARPAS422 xenograft model after oral administration with the tumor growth inhibition reaching nearly 100%. The robust antitumor efficacy and favorable PK profiles of ZJH-16 warrant further advanced preclinical development for lymphoma treatment.
Collapse
Affiliation(s)
- Guanjun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Jiahui Zuo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Junlin Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Jiale Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Bin Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
23
|
Wang J, Akter R, Shahriar MF, Uddin MN. Cancer-Associated Stromal Fibroblast-Derived Transcriptomes Predict Poor Clinical Outcomes and Immunosuppression in Colon Cancer. Pathol Oncol Res 2022; 28:1610350. [PMID: 35991839 PMCID: PMC9385976 DOI: 10.3389/pore.2022.1610350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022]
Abstract
Background: Previous studies revealed that colonic cancer-associated fibroblasts (CAFs) are associated with the modulation of the colon tumor microenvironment (TME). However, identification of key transcriptomes and their correlations with the survival prognosis, immunosuppression, tumor progression, and metastasis in colon cancer remains lacking. Methods: We used the GSE46824, GSE70468, GSE17536, GSE35602, and the cancer genome atlas (TCGA) colon adenocarcinoma (COAD) datasets for this study. We identified the differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, hub genes, and survival-associated genes in colon cancer. Finally, we investigated the correlation of key genes with the survival prognosis, immunosuppression, and metastasis. Results: We identified 246 common DEGs between the GSE46824 and GSE70468 datasets of colonic CAFs, which included 72 upregulated and 174 downregulated genes. The upregulated pathways are mainly involved with cancers and cellular signaling, and downregulated pathways are involved with immune regulation and cellular metabolism. The search tool for the retrieval of interacting genes (STRING)-based analysis identified 15 hub genes and 9 significant clusters in colonic CAFs. The upregulation of CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 and downregulation of FBN2 are correlated with a shorter survival time in colon cancer. The CTHRC1, PDGFC, PDLIM3, and NTM genes are positively correlated with the infiltration of tumor-associated macrophages (TAM), macrophages, M2 macrophages, the regulatory T cells (Tregs), T cell exhaustion, and myeloid-derived suppressor cells (MDSCs), indicating the immunosuppressive roles of these transcriptomes in colon cancer. Moreover, the CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 genes are gradually increased from normal tissue to the tumor and tumor to the metastatic tumor, and FBN2 showed the reverse pattern. Furthermore, the CTHRC1, FBN2, PDGFC, PDLIM3, and NTM genes are positively correlated with the metastatic scores in colon cancer. Then, we revealed that the expression value of CTHRC1, FBN2, PDGFC, PDLIM3, NTM, and SLC16A3 showed the diagnostic efficacy in colonic CAFs. Finally, the expression level of CTHRC1, PDGFC, and NTM genes are consistently altered in colon tumor stroma as well as in the higher CAFs-group of TCGA COAD patients. Conclusion: The identified colonic CAFs-derived key genes are positively correlated with survival prognosis, immunosuppression, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rehana Akter
- Bioinformatics Research Lab, Center for Research Innovation and Development (CRID), Dhaka, Bangladesh
| | | | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh,*Correspondence: Md. Nazim Uddin,
| |
Collapse
|
24
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|