1
|
Xia J, Chen X, Dong M, Liu S, Zhang L, Pan J, Wang J. Antigen self-presenting dendrosomes swallowing nanovaccines boost antigens and STING agonists codelivery for cancer immunotherapy. Biomaterials 2025; 316:122998. [PMID: 39657509 DOI: 10.1016/j.biomaterials.2024.122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Cancer vaccines show promise by eliciting tumor-specific cytotoxic T lymphocytes (CTL) responses. Efficient cytosolic co-delivery of antigens and adjuvants to dendritic cells (DCs) is crucial for vaccines to induce anti-tumor immunity. However, peptide- or nucleic acid-based biomolecules like tumor antigens and STING agonist cyclic-di-GMP (cdGMP) are prone to endosomal degradation, resulting in low cytosolic delivery and CTL response rates. Cationic nanocarriers can improve cytosolic delivery, but their positive charges induce off-target effects. Here, we develop cationic poly(ester amide) based nanoparticles co-loaded with antigens and adjuvant cdGMP (NP(cG, OVA)) for efficient cytosolic delivery and swallow them within antigen self-presenting DCs-derived dendrosomes (ODs) for lymph nodes (LNs) homing. The constructed dendrosomes swallowing nanovaccines ODs/NP(cG, OVA) demonstrated significantly reduced liver accumulation and enhanced LNs and DCs targeting compared to NP(cG, OVA). ODs/NP(cG, OVA) effectively cross-dressed the antigen epitopes on the shell to DCs and facilitated internalization of NP(cG, OVA), realizing DCs cytosolic co-delivery of antigens and adjuvants, thereby promoting antigen presentation, maturation and inflammatory cytokines secretion of DCs. Consequently, DCs stimulated by ODs/NP(cG, OVA) effectively induced activation, proliferation, and differentiation of antigen-specific CTLs that provided robust immune protection against tumor invasion. This work presents a powerful vaccine strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Meichen Dong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Shengyao Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China; Quzhou Fudan Institute, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
2
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Qiao Y, Wei L, Su Y, Tan Q, Yang X, Li S. Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:5429-5456. [PMID: 40308645 PMCID: PMC12042967 DOI: 10.2147/ijn.s515893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in triggering innate and adaptive immune responses through type I interferon activation and immune cell recruitment, holding significant promise for cancer therapy. While STING activators targeting this pathway have been developed, their clinical application is hindered by challenges such as poor membrane permeability, rapid degradation, suboptimal pharmacokinetics, off-target biodistribution, and toxicity. Nanoparticle-based delivery systems offer a promising solution by enhancing the stability, circulation time, tumor accumulation, and intracellular release of STING activators. Furthermore, combining nanoparticle-delivered STING activators with radiotherapy, chemotherapy, phototherapy, and other immunotherapies enables synergistic antitumor effects through multimodal mechanisms, addressing resistance to monotherapies and reducing risks of recurrence and metastasis. This review outlines the immunomodulatory mechanisms of the cGAS-STING pathway, surveys current STING-targeted activators, and comprehensively discusses recent advances in nanoparticle-mediated delivery strategies for STING activation. Additionally, we explore combinatorial approaches that integrate STING-targeted nanotherapies with conventional and emerging treatments. Finally, we highlight the current status, prospects, and challenges of nanoparticle-based STING activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingyu Wei
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yinjie Su
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qinyuan Tan
- Department of Urology, The People’s Hospital of Jimo, Qingdao, People’s Republic of China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shengxian Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
He J, Yin L, Yuan Q, Su X, Shen Y, Deng Z. DCC-2036 inhibits osteosarcoma via targeting HCK and the PI3K/AKT-mTORC1 axis to promote autophagy. World J Surg Oncol 2025; 23:115. [PMID: 40176057 PMCID: PMC11963706 DOI: 10.1186/s12957-025-03778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Osteosarcoma is a common bone tumor in adolescents and children, characterized by rapid progression, high malignancy, poor prognosis, and a tendency for pulmonary metastasis. Despite extensive research efforts, the specific driver gene associated with osteosarcoma remains unidentified, underscoring the urgent need for novel therapeutic targets and targeted treatment options. METHODS In vitro studies were conducted to assess the effects of DCC-2036 on the proliferation, migration, and invasion of osteosarcoma (OS) cell lines, employing cloning and Transwell experiments. Network pharmacological analysis, complemented by in vitro experimental validation, indicated the critical target responsible for the inhibitory effects of DCC-2036. RNA sequencing analysis demonstrated that DCC-2036 could induce autophagy in OS cells, with relative protein levels assessed using Western blotting following treatment with the autophagy inhibitor 3-MA and the mTOR agonist MHY1485. In vivo studies further confirmed the role of DCC-2036 in cell proliferation through subcutaneous tumorigenesis. RESULTS In this study, we demonstrated that the small molecule tyrosine kinase inhibitor DCC-2036 effectively inhibited osteosarcoma (OS) cells in both cellular and animal models. We found that DCC-2036 significantly suppressed the proliferation of osteosarcoma cells and induced apoptosis; additionally, it notably inhibited cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). HCK was identified as the key target mediating the effects of DCC-2036 on osteosarcoma. Mechanistically, DCC-2036 was shown to inhibit the expression of phosphorylated AKT (p-AKT), phosphorylated S6 kinase (p-S6K), and phosphorylated 4E-binding protein 1 (p-4EBP1) within the downstream PI3K/AKT/mTORC1 signaling pathway. Furthermore, in vivo experiments utilizing subcutaneous tumor xenografts in mice demonstrated that DCC-2036 effectively inhibited the growth of xenografted 143B cells in BALB/C-nude mice. CONCLUSIONS Collectively, these findings indicate that DCC-2036 promotes autophagy in osteosarcoma (OS) cells by targeting the HCK/AKT/mTORC1 axis and exerts anti-tumor effects without significant toxicity. Consequently, DCC-2036 emerges as a promising therapeutic agent for the treatment of HCK-overexpressing osteosarcoma.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400072, PR China
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liyang Yin
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Qiong Yuan
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Xiaotao Su
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingying Shen
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China.
| | - Zhongliang Deng
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400072, PR China.
| |
Collapse
|
6
|
Hu WS, Lin CL. Beneficial effect of sodium-glucose cotransporter-2 inhibitors on mortality among patients with cancer and diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4355-4360. [PMID: 39466440 DOI: 10.1007/s00210-024-03553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
The work attempts to describe mortality outcomes of sodium-glucose cotransporter-2 inhibitor (SGLT2I) in patients with diabetes mellitus (DM) and cancer. Using Taiwan's National Health Insurance Research Database to analyze the prognosis of cancer patients with coexisting DM, comparing those receiving SGLT2I with those who do not. After index-year and matching (age, sex, some comorbidities and medications), we obtain two groups of 20,339 patients. After further adjustment for age, sex and comorbidities, those with SGLT2I had a lower adjusted hazard ratio of mortality (aHR: 0.64 [95% CI: 0.60-0.68]). We conclude that SGLT2I medication should be considered first choice in patients suffering from DM and cancer.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, 2, Yuh-Der Road, Taichung, 40447, Taiwan.
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
7
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
8
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Guan C, Yang K, Ma C, Hao W, An J, Liu J, Jiang N, Fu S, Zhen D, Tang X. STING1 targets MYH9 to drive adipogenesis through the AKT/GSK3β/β-catenin pathway. Biochem Biophys Res Commun 2025; 749:151352. [PMID: 39847995 DOI: 10.1016/j.bbrc.2025.151352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1), as an innate immune adaptor protein that mediates DNA sensing, has attracted tremendous biomedical interest. However, several recent researches have revealed the key role of STING1 in regulating the metabolic pathway. Here, we investigated its role in adipocyte differentiation. Preadipocytes with lentivirus-mediated Sting1 knockdown or overexpression were constructed to examine the effect of STING1 on adipocyte differentiation in vitro. Proteomics was performed in adipocytes to explore the mechanisms by which STING1 exerts pro-adipogenesis effects. Coimmunoprecipitation (CoIP)/mass spectrometry (MS) assay were used to identify the interacting partners of STING1. Our results showed that STING1 was upregulated during adipogenic differentiation of 3T3-L1 and white adipose tissue-derived stromal vascular precursor cells (WAT-SVF), accompanied by upregulation of adipocyte marker genes, peroxisome proliferator-activated receptor gamma (Pparg) and CCAAT/enhancer-binding protein beta (Cebpβ). Knockdown or overexpression of Sting1 altered adipogenesis in adipocytes. Mechanistically, proteomics and CoIP/MS assay revealed that STING1 targets non-muscle myosin protein (MYH9) to block its expression, which enhances AKT/GSK3β signaling and mediates β-catenin accumulation, affecting adipogenesis-related genes in adipocytes. These findings suggest that STING1 targeting combined with MYH9 regulates adipocyte differentiation through the AKT/GSK3β/β-catenin pathway. This is a new potential target for the treatment of hypertrophic adipose tissue, or obesity.
Collapse
Affiliation(s)
- Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Kuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wankun Hao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jinyang An
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Na Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Wang J, Yang W. Advances in sodium-glucose transporter protein 2 inhibitors and tumors. Front Oncol 2025; 15:1522059. [PMID: 40007997 PMCID: PMC11850236 DOI: 10.3389/fonc.2025.1522059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor is a major challenge to global health and has received extensive attention worldwide due to its high degree of malignancy and poor prognosis. Although the clinical application of targeted therapy and immunotherapy has improved the status quo of tumor treatment, the development of new therapeutic tools for tumors is still necessary. Sodium-glucose transporter protein 2 (SGLT2) inhibitors are a new type of glycemic control drugs, which are widely used in clinical practice because of their effects on weight reduction and protection of cardiac and renal functions. SGLT2 has been found to be overexpressed in many tumors and involved in tumorigenesis, progression and metastasis, suggesting that SGLT2i has a wide range of applications in tumor therapy. The aim of this article is to provide a comprehensive understanding of the research progress of SGLT2i in different tumors by integrating the latest studies and to encourage further exploration of SGLT2i therapies in clinical trials. This could pave the way for more effective management strategies and improved outcomes for tumor patients.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oncology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Wenyong Yang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| |
Collapse
|
11
|
Li B, Zhang C, Xu X, Shen Q, Luo S, Hu J. Manipulating the cGAS-STING Axis: advancing innovative strategies for osteosarcoma therapeutics. Front Immunol 2025; 16:1539396. [PMID: 39991153 PMCID: PMC11842356 DOI: 10.3389/fimmu.2025.1539396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
This paper explored the novel approach of targeting the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway for the treatment of osteosarcoma (OS). Osteosarcoma is a common malignancy in adolescents. Most patients die from lung metastasis. It reviewed the epidemiology and pathological characteristics of OS, highlighting its highly malignant nature and tendency for pulmonary metastasis, underscoring the importance of identifying new therapeutic targets. The cGAS-STING pathway was closely associated with the malignant biological behaviors of OS cells, suggesting that targeting this pathway could be a promising therapeutic strategy. Currently, research on the role of the cGAS-STING pathway in OS treatment has been limited, and the underlying mechanisms remain unclear. Therefore, further investigation into the mechanisms of the cGAS-STING pathway in OS and the exploration of therapeutic strategies based on this pathway are of great significance for developing more effective treatments for OS. This paper offered a fresh perspective on the treatment of OS, providing hope for new therapeutic options for OS patients by targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- BingBing Li
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Cheng Zhang
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - XiaoJuan Xu
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - QiQin Shen
- Department of Orthopedics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - ShuNan Luo
- Department of Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - JunFeng Hu
- Department of Pain, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
12
|
Camilli M, Viscovo M, Maggio L, Bonanni A, Torre I, Pellegrino C, Lamendola P, Tinti L, Teofili L, Hohaus S, Lanza GA, Ferdinandy P, Varga Z, Crea F, Lombardo A, Minotti G. Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. Basic Res Cardiol 2025; 120:241-262. [PMID: 38935171 PMCID: PMC11790819 DOI: 10.1007/s00395-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Ilaria Torre
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Claudio Pellegrino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Luciana Teofili
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | | |
Collapse
|
13
|
Pandey A, Alcaraz M, Saggese P, Soto A, Gomez E, Jaldu S, Yanagawa J, Scafoglio C. Exploring the Role of SGLT2 Inhibitors in Cancer: Mechanisms of Action and Therapeutic Opportunities. Cancers (Basel) 2025; 17:466. [PMID: 39941833 PMCID: PMC11815934 DOI: 10.3390/cancers17030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer cells utilize larger amounts of glucose than their normal counterparts, and the expression of GLUT transporters is a known diagnostic target and a prognostic factor for many cancers. Recent evidence has shown that sodium-glucose transporters are also expressed in different types of cancer, and SGLT2 has raised particular interest because of the current availability of anti-diabetic drugs that block SGLT2 in the kidney, which could be readily re-purposed for the treatment of cancer. The aim of this article is to perform a narrative review of the existing literature and a critical appraisal of the evidence for a role of SGLT2 inhibitors for the treatment and prevention of cancer. SGLT2 inhibitors block Na-dependent glucose uptake in the proximal kidney tubules, leading to glycosuria and the improvement of blood glucose levels and insulin sensitivity in diabetic patients. They also have a series of systemic effects, including reduced blood pressure, weight loss, and reduced inflammation, which also make them effective for heart failure and kidney disease. Epidemiological evidence in diabetic patients suggests that individuals treated with SGLT2 inhibitors may have a lower incidence and better outcomes of cancer. These studies are confirmed by pre-clinical evidence of an effect of SGLT2 inhibitors against cancer in xenograft and genetically engineered models, as well as by in vitro mechanistic studies. The action of SGLT2 inhibitors in cancer can be mediated by the direct inhibition of glucose uptake in cancer cells, as well as by systemic effects. In conclusion, there is evidence suggesting a potential role of SGLT2 inhibitors against different types of cancer. The most convincing evidence exists for lung and breast adenocarcinomas, hepatocellular carcinoma, and pancreatic cancer. Several ongoing clinical trials will provide more information on the efficacy of SGLT2 inhibitors against cancer.
Collapse
Affiliation(s)
- Aparamita Pandey
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Martín Alcaraz
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Pasquale Saggese
- Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Soto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Estefany Gomez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Shreya Jaldu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA;
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| |
Collapse
|
14
|
Huang Z, Huang R, Zhu J, Zhou Y, Shi J. PRKDC regulates cGAMP to enhance immune response in lung cancer treatment. Front Immunol 2024; 15:1497570. [PMID: 39660143 PMCID: PMC11628376 DOI: 10.3389/fimmu.2024.1497570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Background Despite its involvement in nucleotide metabolism, tumor immune landscape, and immunotherapy response, the role of 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in lung adenocarcinoma (LUAD) remails unelucidated. This study aimed to investigate the antitumor effects of 2',3'-cGAMP in LUAD. Method Herein, patients with LUAD were screened for prognostic biomarkers, which were then assessed for sensitivity to immunotherapy and chemotherapy utilizing the "TIDE" algorithm and CellMiner database. The results were validated using a mouse xenograft model. Additionally, macrophages and lung cancer cells were co-cultured, and macrophage polarization and apoptosis levels in the lung cancer cells were detected through flow cytometry. Protein levels were analyzed through western blotting and immunofluorescence. Finally, drug-encapsulated nanoparticles were designed to systematically examine the antitumor efficacy of the treatment against LUAD. Result Notably, 2',3'-cGAMP-mediated protein kinase, DNA-activated, catalytic subunit (PRKDC) inhibition induced macrophage polarization toward the M1 phenotype, thereby triggering apoptosis in LUAD cells. Furthermore, in vivo experiments showed that M1 macrophage infiltration enhancement and apoptosis induction in lung cancer cells were achieved by suppressing PRKDC expression via 2',3'-cGAMP, which inhibited lung cancer growth. The machine-learning approaches revealed SB505124 to be an effective antitumor agent in LUAD cells with high PRKDC levels owing to its ability to promote 2',3'-cGAMP-mediated apoptosis. Encapsulation of 2',3'-cGAMP, and SB505124 within a nano-delivery system markedly reduced tumor volumes in murine lung cancer tissues compared with that by individual agents. Conclusion The findings of this study reveal that PRKDC can predict poor survival of patients with LUAD. Additionally, SB505124 enhances the efficacy of 2',3'-cGAMP-based immunotherapy in patients exhibiting a high PRKDC expression.
Collapse
Affiliation(s)
- Zhanghao Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Runqi Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Medical School of Nantong University, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Wei M, Li Q, Li S, Wang D, Wang Y. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation. PeerJ 2024; 12:e18559. [PMID: 39588006 PMCID: PMC11587877 DOI: 10.7717/peerj.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer (LC) remains one of the most prevalent and lethal malignancies globally, with a 5-year survival rate for advanced cases persistently below 10%. Despite the significant advancements in immunotherapy, a substantial proportion of patients with advanced LC fail to respond effectively to these treatments, highlighting an urgent need for novel immunotherapeutic targets. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has gained prominence as a potential target for improving LC immunotherapy due to its pivotal role in enhancing anti-tumor immune responses, augmenting tumor antigen presentation, and promoting T cell infiltration. However, emerging evidence also suggests that the cGAS-STING pathway may have pro-tumorigenic effects in the context of LC. This review aims to provide a comprehensive analysis of the cGAS-STING pathway, including its biological composition, activation mechanisms, and physiological functions, as well as its dual roles in LC and the current and emerging LC treatment strategies that target the pathway. By addressing these aspects, we intend to highlight the potential of the cGAS-STING pathway as a novel immunotherapeutic target, while also considering the challenges and future directions for its clinical application.
Collapse
Affiliation(s)
- Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
17
|
Ren K, Wang X, Ma R, Chen H, Min T, Ma Y, Xie X, Wang W, Deng X, Zhou Z, Li K, Zhu K, Hao N, Dang C, Sun T, Zhang H. Dapagliflozin suppressed gastric cancer growth via regulating OTUD5 mediated YAP1 deubiquitination. Eur J Pharmacol 2024; 983:177002. [PMID: 39293571 DOI: 10.1016/j.ejphar.2024.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Gastric cancer (GC) is a common malignant disease that has a fifth highest incidence and fourth highest mortality worldwide. The Warburg effect is a common phenomenon observed in tumors, which suggests that tumor cells would enhance glucose uptake by overexpressing multiple glucose transporters. Sodium glucose transporter 2 (SGLT2) is one of glucose transporters which highly expressed in several cancers, but its role in gastric cancer is still unclear. Our research found that there was a high expression level of SGLT2 in gastric cancer tissues. We found that Dapagliflozin (a SGLT2 inhibitor) could suppress gastric cancer cell proliferation and migration in vitro and tumor growth in vivo. In present study, we revealed how dapagliflozin would suppress gastric cancer progression in a novel mechanism. We proved that dapagliflozin decreased the expression level of OTU deubiquitinase 5 (OTUD5), which further increased the ubiquitination and degradation of YAP1. Overexpression of OTUD5 in gastric cancer cells partly reversed the anti-tumor effect of dapagliflozin. Our findings revealed a novel mechanism by which dapagliflozin has an antitumor effect on gastric cancer and proposed a beneficial strategy for the application of dapagliflozin in gastric cancer patients.
Collapse
Affiliation(s)
- Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoyuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Nan Hao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Clinical Medicine and Cancer Research Center of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
18
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Mohammadi S, Khorasani M. Implications of the cGAS-STING pathway in diabetes: Risk factors and therapeutic strategies. Int J Biol Macromol 2024; 278:134210. [PMID: 39069057 DOI: 10.1016/j.ijbiomac.2024.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus is an increasingly prevalent metabolic disorder characterized by chronic hyperglycemia and impaired insulin action. Although the pathogenesis of diabetes is multifactorial, emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development and progression of the disease. The cyclic GMP-AMP synthase (cGAS) and its downstream signaling pathway, the stimulator of interferon genes (STING), have recently gained attention in the field of diabetes research. This article aims to provide an overview of the role of cGAS-STING in diabetes, focusing on its involvement in the regulation of immune responses, inflammation, insulin resistance, and β-cell dysfunction. Understanding the contribution of cGAS-STING signaling in diabetes may lead to the development of targeted therapeutic strategies for this prevalent metabolic disorder. The results section presents key findings from multiple studies on the impact of STING in diabetes. It discusses the influence of STING on inflammation levels within a diabetic environment, its effect on insulin resistance, and its implications for the development and progression of diabetes. The cGAS-STING signaling pathway plays a crucial role in the development and progression of diabetes.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, 611, Oman
| | - Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Biochemistry and Nutrition, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Xu B, Kang B, Li S, Fan S, Zhou J. Sodium-glucose cotransporter 2 inhibitors and cancer: a systematic review and meta-analysis. J Endocrinol Invest 2024; 47:2421-2436. [PMID: 38530620 DOI: 10.1007/s40618-024-02351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/24/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on cancer has yet to be fully elucidated. OBJECTIVE This systematic review and meta-analysis investigated the effects of SGLT2 inhibitors on cancer. METHODS We searched the PubMed and ClinicalTrials.gov databases up to July 15, 2023, to identify eligible randomized, double-blind, placebo-controlled trials that lasted at least ≥24 weeks. The primary outcome was the overall cancer incidence, and the secondary outcomes were the incidences of various types of cancer. We used the Mantel-Haenszel method, fixed effects model, risk ratio (RR) and 95% confidence interval (CI) to analyze dichotomous variables. Subgroup analysis was performed based on the SGLT2 inhibitor type, baseline conditions, and follow-up duration. All meta-analyses were performed using RevMan5.4.1 and Stata MP 16.0. RESULTS A total of 58 publications (59 trials) were included, comprising 113,909 participants with type 2 diabetes mellitus and/or chronic kidney disease and/or high cardiovascular risk and/or heart failure (SGLT2 inhibitor group, 63864; placebo group, 50045). Compared to the placebo SGLT2 inhibitors did not significantly increase the overall incidence of cancer (RR 1.01; 95% CI 0.94-1.08; p = 0.82). However, ertugliflozin did significantly increase the overall incidence of cancer (RR 1.29; 95% CI 1.01-1.64; p = 0.04). SGLT2 inhibitors did not increase the risks of bladder or breast cancer. However, dapagliflozin did significantly reduce the risk of bladder cancer by 47% (RR 0.53; 95% CI 0.35-0.81; p = 0.003). SGLT2 inhibitors had no significant effect on the risks of gastrointestinal, thyroid, skin, respiratory, prostate, uterine/endometrial, hepatic and pancreatic cancers. Dapagliflozin reduced the risk of respiratory cancer by 26% (RR 0.74; 95% CI 0.55-1.00; p = 0.05). SGLT2 inhibitors (particularly mediated by dapagliflozin and ertugliflozin but not statistically significant) were associated with a greater risk of renal cancer than the placebo (RR 1.39; 95% CI 1.04-1.87; p = 0.03). CONCLUSION SGLT2 inhibitors did not significantly increase the overall risk of cancer or the risks of bladder and breast cancers. However, the higher risk of renal cancer associated with SGLT2 inhibitors warrants concern.
Collapse
Affiliation(s)
- B Xu
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - B Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - S Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Affiliated Nanhua Hospital, Department of Docimasiology, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - S Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - J Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
21
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
22
|
O'Hara DV, Lam CSP, McMurray JJV, Yi TW, Hocking S, Dawson J, Raichand S, Januszewski AS, Jardine MJ. Applications of SGLT2 inhibitors beyond glycaemic control. Nat Rev Nephrol 2024; 20:513-529. [PMID: 38671190 DOI: 10.1038/s41581-024-00836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors were initially developed for their glucose-lowering effects and have shown a modest glycaemic benefit in people with type 2 diabetes mellitus (T2DM). In the past decade, a series of large, robust clinical trials of these therapies have demonstrated striking beneficial effects for various care goals, transforming the chronic disease therapeutic landscape. Cardiovascular safety studies in people with T2DM demonstrated that SGLT2 inhibitors reduce cardiovascular death and hospitalization for heart failure. Subsequent trials in participants with heart failure with reduced or preserved left ventricular ejection fraction demonstrated that SGLT2 inhibitors have beneficial effects on heart failure outcomes. In dedicated kidney outcome studies, SGLT2 inhibitors reduced the incidence of kidney failure among participants with or without diabetes. Post hoc analyses have suggested a range of other benefits of these drugs in conditions as diverse as metabolic dysfunction-associated steatotic liver disease, kidney stone prevention and anaemia. SGLT2 inhibitors have a generally favourable adverse effect profile, although patient selection and medication counselling remain important. Concerted efforts are needed to better integrate these agents into routine care and support long-term medication adherence to close the gap between clinical trial outcomes and those achieved in the real world.
Collapse
Affiliation(s)
- Daniel V O'Hara
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
- Baim Institute for Clinical Research, Boston, MA, USA
| | - John J V McMurray
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Tae Won Yi
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia
| | - Samantha Hocking
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Boden Initiative, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jessica Dawson
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nutrition and Dietetics, St George Hospital, Kogarah, New South Wales, Australia
| | - Smriti Raichand
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Centre for the Health Economy (MUCHE), Macquarie University, Macquarie Park, New South Wales, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medicine (St. Vincent's Hospital), The University of Melbourne, Fitzroy, Victoria, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Meg J Jardine
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia.
| |
Collapse
|
23
|
Jiang YC, Xu QT, Wang HB, Ren SY, Zhang Y. A novel prognostic signature related to programmed cell death in osteosarcoma. Front Immunol 2024; 15:1427661. [PMID: 39015570 PMCID: PMC11250594 DOI: 10.3389/fimmu.2024.1427661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes-CLTCL1, EDIL3, and SQLE-resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion The five genes constituting the OS-PCDS model-CLTCL1, MTM1, MLH1, EDIL3, and SQLE-were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Affiliated Zhongshan Hospital Of Dalian University, Dalian, China
| | - Qi-Tong Xu
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Bin Wang
- Affiliated Zhongshan Hospital Of Dalian University, Dalian, China
| | - Si-Yuan Ren
- Affiliated Zhongshan Hospital Of Dalian University, Dalian, China
| | - Yao Zhang
- Affiliated Zhongshan Hospital Of Dalian University, Dalian, China
| |
Collapse
|
24
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Paccone A, Maurea C, Scherillo M, Merola A, Giordano V, Palma G, Luciano A, Bruzzese F, Zito Marino F, Montella M, Franco R, Berretta M, Gabrielli D, Gallucci G, Maurea N. Sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents ejection fraction reduction, reduces myocardial and renal NF-κB expression and systemic pro-inflammatory biomarkers in models of short-term doxorubicin cardiotoxicity. Front Cardiovasc Med 2024; 11:1289663. [PMID: 38818214 PMCID: PMC11138344 DOI: 10.3389/fcvm.2024.1289663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1β, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - M. L. Canale
- Cardiology Division, Azienda USL Toscana Nord-Ovest, Versilia Hospital, Lido di Camaiore, Italy
| | - I. Bisceglia
- Integrated Cardiology Services, Department of Cardio-Thoracic-Vascular, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - C. Maurea
- ASL NA1, UOC Neurology and Stroke Unit, Ospedale del Mare, Naples, Italy
| | - M. Scherillo
- Cardiology Department, San Pio Hospital, Benevento, Italy
| | - A. Merola
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - V. Giordano
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - G. Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - A. Luciano
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Bruzzese
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Montella
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - R. Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlani-ni, Roma—Fondazione per il Tuo Cuore—Heart Care Foundation, Firenze, Italy
| | - G. Gallucci
- Cardio-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| |
Collapse
|
25
|
Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, Moudgil R. Cancer and Cardiovascular Disease: The Conjoined Twins. Cancers (Basel) 2024; 16:1450. [PMID: 38672532 PMCID: PMC11048405 DOI: 10.3390/cancers16081450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer and cardiovascular disease are the two most common causes of death worldwide. As the fields of cardiovascular medicine and oncology continue to expand, the area of overlap is becoming more prominent demanding dedicated attention and individualized patient care. We have come to realize that both fields are inextricably intertwined in several aspects, so much so that the mere presence of one, with its resultant downstream implications, has an impact on the other. Nonetheless, cardiovascular disease and cancer are generally approached independently. The focus that is granted to the predominant pathological entity (either cardiovascular disease or cancer), does not allow for optimal medical care for the other. As a result, ample opportunities for improvement in overall health care are being overlooked. Herein, we hope to shed light on the interconnected relationship between cardiovascular disease and cancer and uncover some of the unintentionally neglected intricacies of common cardiovascular therapeutics from an oncologic standpoint.
Collapse
Affiliation(s)
- Mohammad Zmaili
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Jafar Alzubi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Motasem Alkhayyat
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Almaza Albakri
- Jordanian Royal Medical Services, Department of Internal Medicine, King Abdullah II Ben Al-Hussein Street, Amman 11855, Jordan
| | - Feras Alkhalaileh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joshua Longinow
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rohit Moudgil
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
28
|
Elian V, Popovici V, Karampelas O, Pircalabioru GG, Radulian G, Musat M. Risks and Benefits of SGLT-2 Inhibitors for Type 1 Diabetes Patients Using Automated Insulin Delivery Systems-A Literature Review. Int J Mol Sci 2024; 25:1972. [PMID: 38396657 PMCID: PMC10888162 DOI: 10.3390/ijms25041972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The primary treatment for autoimmune Diabetes Mellitus (Type 1 Diabetes Mellitus-T1DM) is insulin therapy. Unfortunately, a multitude of clinical cases has demonstrated that the use of insulin as a sole therapeutic intervention fails to address all issues comprehensively. Therefore, non-insulin adjunct treatment has been investigated and shown successful results in clinical trials. Various hypoglycemia-inducing drugs such as Metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, amylin analogs, and Sodium-Glucose Cotransporters 2 (SGLT-2) inhibitors, developed good outcomes in patients with T1DM. Currently, SGLT-2 inhibitors have remarkably improved the treatment of patients with diabetes by preventing cardiovascular events, heart failure hospitalization, and progression of renal disease. However, their pharmacological potential has not been explored enough. Thus, the substantial interest in SGLT-2 inhibitors (SGLT-2is) underlines the present review. It begins with an overview of carrier-mediated cellular glucose uptake, evidencing the insulin-independent transport system contribution to glucose homeostasis and the essential roles of Sodium-Glucose Cotransporters 1 and 2. Then, the pharmacological properties of SGLT-2is are detailed, leading to potential applications in treating T1DM patients with automated insulin delivery (AID) systems. Results from several studies demonstrated improvements in glycemic control, an increase in Time in Range (TIR), a decrease in glycemic variability, reduced daily insulin requirements without increasing hyperglycemic events, and benefits in weight management. However, these advantages are counterbalanced by increased risks, particularly concerning Diabetic Ketoacidosis (DKA). Several clinical trials reported a higher incidence of DKA when patients with T1DM received SGLT-2 inhibitors such as Sotagliflozin and Empagliflozin. On the other hand, patients with T1DM and a body mass index (BMI) of ≥27 kg/m2 treated with Dapagliflozin showed similar reduction in hyperglycemia and body weight and insignificantly increased DKA incidence compared to the overall trial population. Additional multicenter and randomized studies are required to establish safer and more effective long-term strategies based on patient selection, education, and continuous ketone body monitoring for optimal integration of SGLT-2 inhibitors into T1DM therapeutic protocol.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Research Institute, University of Bucharest, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology IV, “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
29
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
30
|
Huang YM, Chen WM, Jao AT, Chen M, Shia BC, Wu SY. Effects of SGLT2 inhibitors on clinical cancer survival in patients with type 2 diabetes. DIABETES & METABOLISM 2024; 50:101500. [PMID: 38036054 DOI: 10.1016/j.diabet.2023.101500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE According to the preclinical data, sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2is) may exert anticancer effects. Here, we clarified the cancer-specific mortality (primary outcome) and all-cause mortality (secondary outcome) of SGLT2is and their dose-dependency in patients with cancer undergoing standard curative treatments. METHODS We analyzed data from patients with type 2 diabetes mellitus (T2DM) diagnosed with cancer between January 1, 2016, and December 31, 2018, enrolled from the Taiwan Cancer Registry database. Kaplan-Meier method was used to estimate all-cause mortality and cancer-specific mortality, comparing survival curves between SGLT2i users and nonusers using the stratified log-rank test. Cox proportional hazards regression was conducted to identify independent predictors for all-cause and cancer-specific mortality among the covariates. RESULTS We performed 1:2 propensity score matching of our data, which yielded a final cohort of 50,133 patients with cancer; of them, 16,711 and 33,422 were in the SGLT2i user and nonuser groups, respectively. The adjusted hazard ratio (aHR) for cancer-specific and all-cause mortality in SGLT2i users compared with nonusers was 0.21 (95 % confidence interval [CI]: 0.20-0.22) and 0.22 (95 % CI: 0.21-0.23). We divided the patients into four subgroups stratified by quartiles (Q) of cumulative defined daily doses per year (cDDDs), and all-cause and cancer-specific mortality was noted to significantly decrease with increases in dosage (from Q1 to Q4 cDDDs) in SGLT2i users compared with in nonusers (P < 0.001). CONCLUSION SGLT2is increase overall survival and cancer-specific survival in patients with cancer in a dose-dependent manner.
Collapse
Affiliation(s)
- Yen-Min Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Hemophilia and Thrombosis Treatment Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - An-Tzu Jao
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Management, College of Management, Fo Guang University, Yilan, Taiwan.
| |
Collapse
|
31
|
Fan T, Xiao C, Liu H, Liu Y, Wang L, Tian H, Li C, He J. CXXC finger protein 1 (CFP1) bridges the reshaping of genomic H3K4me3 signature to the advancement of lung adenocarcinoma. Signal Transduct Target Ther 2023; 8:369. [PMID: 37735441 PMCID: PMC10514036 DOI: 10.1038/s41392-023-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a canonical chromatin modification associated with active gene transcription, playing a pivotal role in regulating various cellular functions. Components of the H3K4me3 methyltransferase complex, known as the proteins associated with SET1 (COMPASS), have been implicated in exerting cancer-protective or cancer-inhibitory effects through inducive H3K4me3 modification. However, the role of the indispensable non-catalytic component of COMPASS CXXC-type zinc finger protein 1 (CFP1) in malignant progression remains unclear. We have unveiled that CFP1 promote lung adenocarcinoma (LUAD) cell proliferation, migration, and invasion while impairing cell apoptosis through in vitro and in vivo models. In addition, high CFP1 expression was identified as emerged as an adverse prognostic indicator across multiple public and in-house LUAD datasets. Notably, CFP1 deficiency led to dual effects on cancer cell transcriptome including extensive inactivation of cancer-promoting as well as activation of cancer repressors. Combining this with the chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we showed that CFP1 ablation reshaped the genomic H3K4me3 distribution signature, with prominent effects on TGF-β and WNT signaling pathways. Collectively, our study proposes that CFP1 mediates tumorigenesis by genomic histone methylation reprogramming, offering insights for future investigations into epigenetic modifications in cancer progression and potential therapeutic advancements.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Intervention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
32
|
Pan X, Zhang W, Guo H, Wang L, Wu H, Ding L, Yang B. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Biochem Pharmacol 2023; 213:115596. [PMID: 37201875 DOI: 10.1016/j.bcp.2023.115596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Recent studies have expanded the known functions of cGAS-STING in inflammation to a role in cancer due to its participation in activating immune surveillance. In cancer cells, the cGAS-STING pathway can be activated by cytosolic dsDNA derived from genomic, mitochondrial and exogenous origins. The resulting immune-stimulatory factors from this cascade can either attenuate tumor growth or recruit immune cells for tumor clearance. Furthermore, STING-IRF3-induced type I interferon signaling can enforce tumor antigen presentation on dendritic cells and macrophages and thus cross-prime CD8+ T cells for antitumor immunity. Given the functions of the STING pathway in antitumor immunity, multiple strategies are being developed and tested with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells to elicit immunostimulatory effects, either alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. Based on the canonical molecular mechanism of STING activation, numerous strategies for inducing mitochondrial and nuclear dsDNA release have been used to activate the cGAS-STING signaling pathway. Other noncanonical strategies that activate cGAS-STING signaling, including the use of direct STING agonists and STING trafficking facilitation, also show promise in type I interferon release and antitumor immunity priming. Here, we review the key roles of the STING pathway in different steps of the cancer-immunity cycle and characterize the canonical and noncanonical mechanisms of cGAS-STING pathway activation to understand the potential of cGAS-STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
33
|
Basak D, Gamez D, Deb S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines 2023; 11:1867. [PMID: 37509506 PMCID: PMC10376602 DOI: 10.3390/biomedicines11071867] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) serves as a critical glucose transporter that has been reported to be overexpressed in cancer models, followed by increased glucose uptake in both mice and humans. Inhibition of its expression can robustly thwart tumor development in vitro and in vivo. SGLT2 inhibitors are a comparatively new class of antidiabetic drugs that have demonstrated anticancer effects in several malignancies, including breast, liver, pancreatic, thyroid, prostate, and lung cancers. This review aims to assess the extent of SGLT involvement in different cancer cell lines and discuss the pharmacology, mechanisms of action, and potential applications of SGLT2 inhibitors to reduce tumorigenesis and its progression. Although these agents display a common mechanism of action, they exhibit distinct affinity towards the SGLT type 2 transporter compared to the SGLT type 1 transporter and varying extents of bioavailability and half-lives. While suppression of glucose uptake has been attributed to their primary mode of antidiabetic action, SGLT2 inhibitors have demonstrated several mechanistic ways to combat cancer, including mitochondrial membrane instability, suppression of β-catenin, and PI3K-Akt pathways, increase in cell cycle arrest and apoptosis, and downregulation of oxidative phosphorylation. Growing evidence and ongoing clinical trials suggest a potential benefit of combination therapy using an SGLT2 inhibitor with the standard chemotherapeutic regimen. Nevertheless, further experimental and clinical evidence is required to characterize the expression and role of SGLTs in different cancer types, the activity of different SGLT subtypes, and their role in tumor development and progression.
Collapse
Affiliation(s)
- Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - David Gamez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
34
|
Dabour MS, Abdelgawad IY, Grant MKO, El-Sawaf ES, Zordoky BN. Canagliflozin mitigates carfilzomib-induced endothelial apoptosis via an AMPK-dependent pathway. Biomed Pharmacother 2023; 164:114907. [PMID: 37247463 DOI: 10.1016/j.biopha.2023.114907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Carfilzomib (CFZ) is a proteasome inhibitor approved for relapsed/refractory multiple myeloma (MM) but its clinical use is limited by cardiovascular toxicity. The mechanisms of CFZ-induced cardiovascular toxicity are not fully understood but endothelial dysfunction may be a common denominator. Here, we first characterized the direct toxic effects of CFZ on endothelial cells (HUVECs and EA.hy926 cells) and tested whether SGLT2 inhibitors, known to have cardioprotective effects, can protect against CFZ-induced toxicity. To determine the chemotherapeutic effect of CFZ in the presence of SGLT2 inhibitors, MM and lymphoma cells were treated with CFZ with or without canagliflozin. CFZ decreased cell viability and induced apoptotic cell death in endothelial cells in a concentration-dependent manner. CFZ also upregulated ICAM-1 and VCAM-1 and downregulated VEGFR-2. These effects were associated with the activation of Akt and MAPK pathways, inhibition of p70s6k, and downregulation of AMPK. Canagliflozin, but not empagliflozin or dapagliflozin, protected endothelial cells from CFZ-induced apoptosis. Mechanistically, canagliflozin abrogated CFZ-induced JNK activation and AMPK inhibition. AICAR (an AMPK activator) protected from CFZ-induced apoptosis, and compound C (an AMPK inhibitor) abrogated the protective effect of canagliflozin, strongly suggesting that AMPK mediates these effects. Canagliflozin did not interfere with the anticancer effect of CFZ in cancer cells. In conclusion, our findings demonstrate for the first time the direct toxic effects of CFZ in endothelial cells and the associated signaling changes. Canagliflozin abrogated the apoptotic effects of CFZ in endothelial cells in an AMPK-dependent mechanism, without interfering with its cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Mohamed S Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, 31111 Tanta, Egypt
| | - Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Engie S El-Sawaf
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Yaribeygi H, Maleki M, Jamialahmadi T, Moallem SA, Sahebkar A. Hepatic benefits of sodium-glucose cotransporter 2 inhibitors in liver disorders. EXCLI JOURNAL 2023; 22:403-414. [PMID: 37346806 PMCID: PMC10279968 DOI: 10.17179/excli2023-6022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 06/23/2023]
Abstract
Diabetic patients are at higher risk of liver dysfunction compared with the normal population. Thus, using hypoglycemic agents to improve liver efficiency is important in these patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are newly developed antidiabetic drugs with potent glucose-lowering effects. However, recent limited evidence suggests that they have extra-glycemic benefits and may be able to exert protective effects on the liver. Hence, these drugs could serve as promising pharmacological agents with multiple benefits against different hepatic disorders. In this review, the current knowledge about the possible effects of SGLT2 inhibitors on different forms of liver complications and possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Gallo M, Monami M, Ragni A, Renzelli V. Cancer related safety with SGLT2-i and GLP1-RAs: Should we worry? Diabetes Res Clin Pract 2023; 198:110624. [PMID: 36906235 DOI: 10.1016/j.diabres.2023.110624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| |
Collapse
|
37
|
Li Y, Li X, Yi J, Cao Y, Qin Z, Zhong Z, Yang W. Nanoparticle-Mediated STING Activation for Cancer Immunotherapy. Adv Healthc Mater 2023:e2300260. [PMID: 36905358 DOI: 10.1002/adhm.202300260] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Indexed: 03/12/2023]
Abstract
As the first line of host defense against pathogenic infections, innate immunity plays a key role in antitumor immunotherapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) pathway has attracted much attention because of the secretion of various proinflammatory cytokines and chemokines. Many STING agonists have been identified and applied into preclinical or clinical trials for cancer immunotherapy. However, the fast excretion, low bioavailability, nonspecificity, and adverse effects of the small molecule STING agonists limit their therapeutic efficacy and in vivo application. Nanodelivery systems with appropriate size, charge, and surface modification are capable of addressing these dilemmas. In this review, the mechanism of the cGAS-STING pathway is discussed and the STING agonists, focusing on nanoparticle-mediated STING therapy and combined therapy for cancers, are summarized. Finally, the future direction and challenges of nano-STING therapy are expounded, emphasizing the pivotal scientific problems and technical bottlenecks and hoping to provide general guidance for its clinical application.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
38
|
Hattinger CM, Salaroglio IC, Fantoni L, Godel M, Casotti C, Kopecka J, Scotlandi K, Ibrahim T, Riganti C, Serra M. Strategies to Overcome Resistance to Immune-Based Therapies in Osteosarcoma. Int J Mol Sci 2023; 24:ijms24010799. [PMID: 36614241 PMCID: PMC9821333 DOI: 10.3390/ijms24010799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Martina Godel
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Casotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
- Correspondence: (C.R.); (M.S.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (C.R.); (M.S.)
| |
Collapse
|
39
|
Zheng K, Hou Y, Zhang Y, Wang F, Sun A, Yang D. Molecular features and predictive models identify the most lethal subtype and a therapeutic target for osteosarcoma. Front Oncol 2023; 13:1111570. [PMID: 36874110 PMCID: PMC9980341 DOI: 10.3389/fonc.2023.1111570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone tumor. The existing treatment regimens remained essentially unchanged over the past 30 years; hence the prognosis has plateaued at a poor level. Precise and personalized therapy is yet to be exploited. Methods One discovery cohort (n=98) and two validation cohorts (n=53 & n=48) were collected from public data sources. We performed a non-negative matrix factorization (NMF) method on the discovery cohort to stratify osteosarcoma. Survival analysis and transcriptomic profiling characterized each subtype. Then, a drug target was screened based on subtypes' features and hazard ratios. We also used specific siRNAs and added a cholesterol pathway inhibitor to osteosarcoma cell lines (U2OS and Saos-2) to verify the target. Moreover, PermFIT and ProMS, two support vector machine (SVM) tools, and the least absolute shrinkage and selection operator (LASSO) method, were employed to establish predictive models. Results We herein divided osteosarcoma patients into four subtypes (S-I ~ S-IV). Patients of S- I were found probable to live longer. S-II was characterized by the highest immune infiltration. Cancer cells proliferated most in S-III. Notably, S-IV held the most unfavorable outcome and active cholesterol metabolism. SQLE, a rate-limiting enzyme for cholesterol biosynthesis, was identified as a potential drug target for S-IV patients. This finding was further validated in two external independent osteosarcoma cohorts. The function of SQLE to promote proliferation and migration was confirmed by cell phenotypic assays after the specific gene knockdown or addition of terbinafine, an inhibitor of SQLE. We further employed two machine learning tools based on SVM algorithms to develop a subtype diagnostic model and used the LASSO method to establish a 4-gene model for predicting prognosis. These two models were also verified in a validation cohort. Conclusion The molecular classification enhanced our understanding of osteosarcoma; the novel predicting models served as robust prognostic biomarkers; the therapeutic target SQLE opened a new way for treatment. Our results served as valuable hints for future biological studies and clinical trials of osteosarcoma.
Collapse
Affiliation(s)
- Kun Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
40
|
Xia Y, Wang D, Piao Y, Chen M, Wang D, Jiang Z, Liu B. Modulation of immunosuppressive cells and noncoding RNAs as immunotherapy in osteosarcoma. Front Immunol 2022; 13:1025532. [PMID: 36457998 PMCID: PMC9705758 DOI: 10.3389/fimmu.2022.1025532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 07/21/2023] Open
Abstract
The most common bone cancer is osteosarcoma (OS), which mostly affects children and teenagers. Early surgical resection combined with chemotherapy significantly improves the prognosis of patients with OS. Existing chemotherapies have poor efficacy in individuals with distant metastases or inoperable resection, and these patients may respond better to novel immunotherapies. Immune escape, which is mediated by immunosuppressive cells in the tumour microenvironment (TME), is a major cause of poor OS prognosis and a primary target of immunotherapy. Myeloid-derived suppressor cells, regulatory T cells, and tumour-associated macrophages are the main immunosuppressor cells, which can regulate tumorigenesis and growth on a variety of levels through the interaction in the TME. The proliferation, migration, invasion, and epithelial-mesenchymal transition of OS cells can all be impacted by the expression of non-coding RNAs (ncRNAs), which can also influence how immunosuppressive cells work and support immune suppression in TME. Interferon, checkpoint inhibitors, cancer vaccines, and engineered chimeric antigen receptor (CAR-T) T cells for OS have all been developed using information from studies on the metabolic properties of immunosuppressive cells in TME and ncRNAs in OS cells. This review summarizes the regulatory effect of ncRNAs on OS cells as well as the metabolic heterogeneity of immunosuppressive cells in the context of OS immunotherapies.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yuting Piao
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022; 13:968755. [PMID: 36159815 PMCID: PMC9506679 DOI: 10.3389/fimmu.2022.968755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially found to be involved in antiviral responses and autoimmune diseases. Recently studies have reported that TRIM21 plays a dual role in cancer promoting and suppressing in the occurrence and development of various cancers. Despite the fact that TRIM21 has effects on multiple metabolic processes, inflammatory responses and the efficacy of tumor therapy, there has been no systematic review of these topics. Herein, we discuss the emerging role and function of TRIM21 in cancer metabolism, immunity, especially the immune response to inflammation associated with tumorigenesis, and also the cancer treatment, hoping to shine a light on the great potential of targeting TRIM21 as a therapeutic target.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Menghan Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| |
Collapse
|