1
|
Ayyubova G, Madhu LN. Microglial NLRP3 Inflammasomes in Alzheimer's Disease Pathogenesis: From Interaction with Autophagy/Mitophagy to Therapeutics. Mol Neurobiol 2025; 62:7124-7143. [PMID: 39951189 DOI: 10.1007/s12035-025-04758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, discovered 20 years ago, is crucial in controlling innate immune reactions in Alzheimer's disease (AD). By initiating the release of inflammatory molecules (including caspases, IL-1β, and IL-18), the excessively activated inflammasome complex in microglia leads to chronic inflammation and neuronal death, resulting in the progression of cognitive deficiencies. Even though the involvement of NLRP3 has been implicated in neuroinflammation and widely explored in several studies, there are plenty of controversies regarding its precise roles and activation mechanisms in AD. Another prominent feature of AD is impairment in microglial autophagy, which can be either the cause or the consequence of NLRP3 activation and contributes to the aggregation of misfolded proteins and aberrant chronic inflammatory state seen in the disease course. Studies also demonstrate that intracellular buildup of dysfunctional and damaged mitochondria due to defective mitophagy enhances inflammasome activation, further suggesting that restoration of impaired autophagy and mitophagy can effectively suppress it, thereby reducing inflammation and protecting microglia and neurons. This review is primarily focused on the role of NLRP3 inflammasome in the etiopathology of AD, its interactions with microglial autophagy/mitophagy, and the latest developments in NLRP3 inflammasome-targeted therapeutic interventions being implicated for AD treatment.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
2
|
McGroarty J, Salinas S, Evans H, Jimenez B, Tran V, Kadavakollu S, Vashist A, Atluri V. Inflammasome-Mediated Neuroinflammation: A Key Driver in Alzheimer's Disease Pathogenesis. Biomolecules 2025; 15:676. [PMID: 40427569 DOI: 10.3390/biom15050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by memory loss, cognitive decline, and functional impairment. While hallmark pathological features include extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, increasing evidence points to chronic neuroinflammation as a key driver of disease progression. Among inflammatory mechanisms, the activation of the NLRP3 (nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3) inflammasome in microglia plays a pivotal role by amplifying neuroinflammatory cascades, exacerbating synaptic dysfunction, and accelerating neuronal loss. This review examines the molecular underpinnings of AD with a focus on NLRP3 inflammasome-mediated neuroinflammation, detailing the crosstalk between Aβ, tau pathology, and innate immune responses. Finally, we highlight emerging therapeutic strategies targeting NLRP3 inflammasome activation as promising avenues for mitigating neuroinflammation and slowing AD progression.
Collapse
Affiliation(s)
- Julie McGroarty
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, USA
| | - Shelbi Salinas
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, USA
| | - Hayden Evans
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, USA
| | - Bryan Jimenez
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, USA
| | - Vincent Tran
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, USA
| | - Samuel Kadavakollu
- The Office of Academic Affairs, Meritus School of Osteopathic Medicine, 11120 Health Drive, Hagerstown, MD 21742, USA
| | - Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Venkata Atluri
- Department of Biomedical Sciences, Meritus School of Osteopathic Medicine, 11120 Health Drive, Hagerstown, MD 21742, USA
| |
Collapse
|
3
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Zou X, Du O, Yang YR, Yang YX, Zheng ZX, Li MY, Wu AG, Du JR. Alpha protein kinase 1 knockout mitigates microglial pyroptosis and cognition deficits in ADP-heptose-stimulated mice. FASEB J 2025; 39:e70371. [PMID: 39902886 DOI: 10.1096/fj.202402162rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Microglial activation and pyroptosis are central to neuroinflammation and significantly contribute to cognitive decline associated with neurodegenerative diseases. Alpha protein kinase 1 (ALPK1) is recently identified as a critical mediator of inflammatory responses in response to ADP-heptose (a pathogen-associated molecular pattern). However, its specific role in microglial pyroptosis and cognitive dysfunction remains unclear. In this study, we investigated the effects of ALPK1 on cognitive function and pyroptosis in wild-type (WT) and ALPK1 KO mice by intracerebroventricular administration of ADP-heptose to induce neuroinflammation. Cognitive performance was evaluated using behavioral tests (the Y-Maze, Morris Water Maze, and step-down passive avoidance), while Western blot, immunofluorescence, transmission electron microscopy, and enzyme-linked immunosorbent assay were used to evaluate the expression of pyroptosis markers such as NLRP3, Caspase-1, and gasdermin D (GSDMD) in vivo and in vitro. Our results reveal that the absence of ALPK1 significantly attenuated ADP-heptose-induced cognitive deficits and neuronal injury, and inhibited the NLRP3/Caspase-1/GSDMD pathway of pyroptosis and the secretion of pro-inflammatory cytokines IL-1β and IL-18. Notably, ADP-heptose-stimulated conditioned media from primary microglial cells of ALPK1 KO mice significantly enhanced neuronal cell viability, suggesting a protective role for ALPK1 deficiency in supporting neuronal health. These findings suggest the pivotal role of ALPK1 in ADP-heptose-induced microglial pyroptosis and cognitive impairment, thereby highlighting its potential as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xiao Zou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ou Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zi-Xing Zheng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meng-Yang Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
9
|
Zhang Z, Chen H, Han L, Liu K, Du S, Gao R. Inhibition of the NLRP3/caspase-1 cascade related pyroptosis relieved propofol-induced neuroinflammation and cognitive impairment in developing rats. Free Radic Biol Med 2024; 225:87-97. [PMID: 39341300 DOI: 10.1016/j.freeradbiomed.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Numerous preclinical studies have demonstrated that prolonged exposure to propofol (A general anaesthetics) can lead to hippocampus injury in immature brains and impact long-term learning and memory functions. Neuroinflammation plays a pivotal role in the impairment of brain function associated with early exposure to anesthetic drugs. Nevertheless, the involvement of hippocampal pyroptosis and neuroinflammation mediated by the NLRP3/caspase-1 signaling cascade in propofol-induced developmental neurotoxicity remains unclear. METHODS Postnatal day (PND) 7 SD rats, PC12 cells, and HAPI cells were used to establish propofol neurotoxicity models in vivo and in vitro, respectively. We examined the potential hippocampal injury and cognitive dysfunction caused by propofol in neonatal rats through the NLRP3/caspase-1 signaling pathway using MCC950 and VX765 to inhibit the pathway. This investigation involved assessing histological changes in the hippocampus, behavioral performance in adulthood, NLRP3-related pyroptosis indicators, and neuroinflammatory cytokines. RESULTS Both in vivo and in vitro studies have demonstrated that exposure to propofol activates the NLRP3/caspase-1 signaling cascade in the hippocampus of PND7 rats, leading to pyroptosis, neuroinflammation, and subsequent hippocampal injury and behavioral changes in adulthood. However, MCC950 and VX765 inhibit the NLRP3/caspase-1 signaling cascade, reversing the developmental neurotoxicity of propofol. CONCLUSION Our study findings suggest that negative regulation of NLRP3/caspase-1 activation may serve as a potential therapeutic strategy for developmental neuroinflammation induced by propofol.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Han
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Kai Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
10
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 DOI: 10.4103/1673-5374.391311if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
11
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
12
|
Coler-Reilly A, Pincus Z, Scheller EL, Civitelli R. Six drivers of aging identified among genes differentially expressed with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606402. [PMID: 39149379 PMCID: PMC11326176 DOI: 10.1101/2024.08.02.606402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (csp-3/CASP1 and spch-2/RSRC1) and four age-downregulated genes (C42C1.8/DIRC2, ost-1/SPARC, fzy-1/CDC20, and cah-3/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.
Collapse
Affiliation(s)
- Ariella Coler-Reilly
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Aljohani NB, Qusti SY, Alsiny M, Aljoud F, Aljohani NB, Alsolami ES, Alamry KA, Hussein MA. Carboxymethylcellulose encapsulated fingolimod, siRNA@ZnO hybrid nanocomposite as a new anti-Alzheimer's material. RSC Adv 2024; 14:22044-22055. [PMID: 39006767 PMCID: PMC11240087 DOI: 10.1039/d4ra01965b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurological disorder that causes cognitive and memory function to deteriorate. A critical pathogenic event that speeds up the development of AD is the interaction between dysfunctional microglia and amyloid-β (Aβ). We have developed a hybrid nanocomposite material to treat AD by normalizing the dysfunctional microglia. The material is based on carboxymethylcellulose (CMC) encapsulated fingolimod, siRNA, and zinc oxide (ZnO) with variable loading (CMC-Fi-siRNA@ZnO a-d ). The material was characterized using different techniques including FTIR, XRD, thermal analysis, SEM with EDX, and TEM micrographs. The chemical structure was confirmed by FTIR and XRD analyses, which indicated the successful integration of ZnO nanoparticles (NPs) into the polymer matrix, signifying a well-formed composite structure. The thermal stability order at 10% weight loss was CMC-Fi-siRNA@ZnO c > CMC-Fi-siRNA@ZnO b > CMC-Fi-siRNA@ZnO d > CMC-Fi-siRNA@ZnO a . The CMC-Fi-siRNA@ZnO d dramatically alleviates the priming of microglia by lowering the level of proinflammatory mediators and increasing the secretion of BDNF. This considerably improves the phagocytosis of Aβ. In the cell viability test in immortalized microglia cells (IMG), the hybrid nanocomposite (NP) exhibited no significant effect on cell survival after 48 hours of incubation. The NP also decreased the cytotoxicity caused by Aβ. Therefore, the CMC-hybrid NP has high potential as a drug delivery system in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Nuha B Aljohani
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Science, University of Tabuk Tabuk Kingdom of Saudi Arabia
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Madeeha Alsiny
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdul Aziz University Jeddah 21589 Saudi Arabia
| | | | - Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
14
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
15
|
Shadab A, Abbasi-Kolli M, Saharkhiz M, Ahadi SH, Shokouhi B, Nahand JS. The interplay between mitochondrial dysfunction and NLRP3 inflammasome in multiple sclerosis: Therapeutic implications and animal model studies. Biomed Pharmacother 2024; 175:116673. [PMID: 38713947 DOI: 10.1016/j.biopha.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1β & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.
Collapse
Affiliation(s)
- Alireza Shadab
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Abbasi-Kolli
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoore Saharkhiz
- Department of immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and molecular research center, Birjand University of medical sciences, Birjand, Iran
| | | | - Behrooz Shokouhi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
18
|
Belviranlı M, Okudan N. Coconut oil ameliorates behavioral and biochemical alterations induced by D-GAL/AlCl 3 in rats. Brain Res 2024; 1823:148704. [PMID: 38052316 DOI: 10.1016/j.brainres.2023.148704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the effects of coconut oil on spatial cognitive ability and non-cognitive functions in a rat model of AD induced by G-galactose (D-GAL) and aluminum chloride (AlCl3), and examined the changes in synaptic transmission, cholinergic activity, neurotrophic factors and oxidative stress in this process. The AD model was established by administering D-GAL and AlCl3 for 90 days, while also supplementing with coconut oil during this time. Cognitive and non-cognitive abilities of the rats were evaluated at the end of the 90-day supplementation period. In addition, biochemical markers related to the pathogenesis of the AD were measures in the hippocampus tissue. Exposure to D-GAL/AlCl3 resulted in a reduction in locomotor activity, an elevation in anxiety-like behavior, and an impairment of spatial learning and memory (P < 0.05). The aforementioned behavioral disturbances were observed to coincide with increased oxidative stress and cholinergic impairment, as well as reduced synaptic transmission and levels of neurotrophins in the hippocampus (P < 0.05). Interestingly, treatment with coconut oil attenuated all the neuropathological changes mentioned above (P < 0.05). These findings suggest that coconut oil shows protective effects against cognitive and non-cognitive impairment, AD pathology markers, oxidative stress, synaptic transmission, and cholinergic function in a D-GAL/AlCl3-induced AD rat model.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
19
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
20
|
Tuckey AN, Brandon A, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Sutherland E, Williams V, Spadafora D, Barrington RA, Alvarez DF, Mulekar MS, Simmons JD, Fouty BW, Audia JP. Amyloid-β and caspase-1 are indicators of sepsis and organ injury. ERJ Open Res 2024; 10:00572-2023. [PMID: 38410714 PMCID: PMC10895426 DOI: 10.1183/23120541.00572-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 02/28/2024] Open
Abstract
Background Sepsis is a life-threatening condition that results from a dysregulated host response to infection, leading to organ dysfunction. Despite the prevalence and associated socioeconomic costs, treatment of sepsis remains limited to antibiotics and supportive care, and a majority of intensive care unit (ICU) survivors develop long-term cognitive complications post-discharge. The present study identifies a novel regulatory relationship between amyloid-β (Aβ) and the inflammasome-caspase-1 axis as key innate immune mediators that define sepsis outcomes. Methods Medical ICU patients and healthy individuals were consented for blood and clinical data collection. Plasma cytokine, caspase-1 and Aβ levels were measured. Data were compared against indices of multiorgan injury and other clinical parameters. Additionally, recombinant proteins were tested in vitro to examine the effect of caspase-1 on a functional hallmark of Aβ, namely aggregation. Results Plasma caspase-1 levels displayed the best predictive value in discriminating ICU patients with sepsis from non-infected ICU patients (area under the receiver operating characteristic curve=0.7080). Plasma caspase-1 and the Aβ isoform Aβx-40 showed a significant positive correlation and Aβx-40 associated with organ injury. Additionally, Aβ plasma levels continued to rise from time of ICU admission to 7 days post-admission. In silico, Aβ harbours a predicted caspase-1 cleavage site, and in vitro studies demonstrated that caspase-1 cleaved Aβ to inhibit its auto-aggregation, suggesting a novel regulatory relationship. Conclusions Aβx-40 and caspase-1 are potentially useful early indicators of sepsis and its attendant organ injury. Additionally, Aβx-40 has emerged as a potential culprit in the ensuing development of post-ICU syndrome.
Collapse
Affiliation(s)
- Amanda N. Tuckey
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Arcole Brandon
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Yasaman Eslaamizaad
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Waqar Siddiqui
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Talha Nawaz
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Christopher Clarke
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Erica Sutherland
- Department of Internal Medicine, University of South Alabama College of Medicine
| | - Veronica Williams
- Department of Laboratory Medicine, University of South Alabama University Hospital
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, University of South Alabama College of Arts and Sciences
| | - Jon D. Simmons
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
- Department of Surgery, University of South Alabama College of Medicine
| | - Brian W. Fouty
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| |
Collapse
|
21
|
He Z, Botchway BOA, Zhang Y, Liu X. Triptolide activates the Nrf2 signaling pathway and inhibits the NF-κB signaling pathway to improve Alzheimer disease. Metab Brain Dis 2024; 39:173-182. [PMID: 37624431 DOI: 10.1007/s11011-023-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.
Collapse
Affiliation(s)
- Zuoting He
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, Kensington, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China.
| |
Collapse
|
22
|
Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med 2023; 29:996-1013. [PMID: 37716905 DOI: 10.1016/j.molmed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.
Collapse
Affiliation(s)
- Pavel I Volik
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Alexey V Zamaraev
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia.
| |
Collapse
|
23
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
24
|
Zhou X, Jin W, Ma J. Lung inflammation perturbation by engineered nanoparticles. Front Bioeng Biotechnol 2023; 11:1199230. [PMID: 37304133 PMCID: PMC10248179 DOI: 10.3389/fbioe.2023.1199230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, the unique and diverse physicochemical properties of nanoparticles have brought about their wide use in many fields; however, it is necessary to better understand the possible human health risks caused by their release in the environment. Although the adverse health effects of nanoparticles have been proposed and are still being clarified, their effects on lung health have not been fully studied. In this review, we focus on the latest research progress on the pulmonary toxic effects of nanoparticles, and we summarized their disturbance of the pulmonary inflammatory response. First, the activation of lung inflammation by nanoparticles was reviewed. Second, we discussed how further exposure to nanoparticles aggravated the ongoing lung inflammation. Third, we summarized the inhibition of the ongoing lung inflammation by nanoparticles loaded with anti-inflammatory drugs. Forth, we introduced how the physicochemical properties of nanoparticles affect the related pulmonary inflammatory disturbance. Finally, we discussed the main gaps in current research and the challenges and countermeasures in future research.
Collapse
Affiliation(s)
| | | | - Jingjun Ma
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
25
|
Osteocalcin ameliorates cognitive dysfunctions in a mouse model of Alzheimer's Disease by reducing amyloid β burden and upregulating glycolysis in neuroglia. Cell Death Dis 2023; 9:46. [PMID: 36746932 PMCID: PMC9902399 DOI: 10.1038/s41420-023-01343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the accumulation of amyloid β peptides (Aβ) and impaired glucose metabolism in the brain. Osteocalcin (OCN), an osteoblast-derived protein, has been shown to modulate brain functions but whether it has any effect on AD is undetermined. In this study, daily intraperitoneal injection of OCN for 4 weeks ameliorated the anxiety-like behaviors and cognitive dysfunctions in the APP/PS1 transgenic AD mice model, as shown in the increased entries into the central area in open field test, the increased time and entries into open arms in elevated plus maze test, the increased time spent in the light chamber in light-dark transition test, as well as the reduced escape latency and the increased preference for target quadrant in Morris water maze test. Aβ burden in the hippocampus and cortex of AD mice was ameliorated by OCN. Besides, OCN improved the neural network function of the brain, mainly in the enhanced power of high gamma band in the medial prefrontal cortex of AD mice. The proliferation of astrocytes in the hippocampus in AD mice was also inhibited by OCN as demonstrated by immunofluorescence. Furthermore, OCN enhanced glycolysis in astrocytes and microglia, as evidenced by elevated glucose consumption, lactate production, and increased extracellular acidification rate. Such an effect was abolished when the receptor of OCN - Gpr158 was knockdown in astrocytes. Our study revealed OCN as a novel therapeutic factor for AD potentially through reducing Aβ burden and upregulation of glycolysis in neuroglia.
Collapse
|