1
|
Xu W, Wang Y, Wang N, Liu J, Zhou L, Guo J. Spatial immune remodeling of the liver metastases: discovering the path to antimetastatic therapy. J Immunother Cancer 2025; 13:e011002. [PMID: 40107672 PMCID: PMC11927485 DOI: 10.1136/jitc-2024-011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
The intrinsic characteristics of metastatic tumors are of great importance in terms of the development of antimetastatic treatment strategies. Elucidation from a spatial immune perspective has the potential to provide a more comprehensive understanding of the mechanisms underlying immune escape, effectively addressing the limitations of relying solely on the analysis of immune cell subpopulation transcriptional profiles. Advances in spatial omics technology enable researchers to precisely analyze precious liver metastasis samples in a high-throughput manner, revealing spatial alterations in immune cell distribution induced by metastasis and exploring the molecular basis of the remodeling process. The aggregation of specific cell subpopulations in distinct regions not only modifies local immune characteristics but also concurrently affects global biological behaviors of liver metastatic tumors. Identifying specific spatial immune characteristics in pretreatment or early-stage treatment tissue samples may achieve accurate clinical predictions. Moreover, developing strategies that target spatial immune remodeling is a promising avenue for future antimetastatic therapy.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Yibo Wang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Nanzhou Wang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianzhou Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| |
Collapse
|
2
|
Yang WL, Yang C, Pang N, Yu RH, Tong KY, Jiang F. The distinct characteristic of two peritoneal macrophage subsets in a mouse model of hepatocellular carcinoma presents a novel therapeutic strategy. Cell Immunol 2025; 409-410:104917. [PMID: 39824005 DOI: 10.1016/j.cellimm.2025.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
The peritoneal cavity (PerC) is a discrete anatomical compartment housing diverse peritoneal macrophage subpopulations. Nonetheless, there exists a paucity of knowledge concerning the distinct functions of these subpopulations in the context of hepatocellular carcinoma (HCC) and their evolution throughout tumor advancement. This investigation seeks to analyze the characteristics of two principal peritoneal macrophage subpopulations, specifically large peritoneal macrophage (LPM) and small peritoneal macrophage (SPM), in the context of HCC. The results of our research indicate a significant decrease in the proportion of LPM during the progression of HCC, accompanied by an increase in the quantity of SPM. Furthermore, SPM found in ascites exhibited a macrophage phenotype that supports tumor growth in HCC. Importantly, the dynamic decrease of LPM in murine models following lipopolysaccharide (LPS) stimulation led to a decrease in survival rate, highlighting the critical role of the altered LPM to SPM ratio in HCC survival. By employing clodronate liposomes (CL) to deplete peritoneal macrophage in murine models, followed by the adoptive transfer of LPM, we effectively prolonged the survival of HCC and attenuated tumor progression. Our results suggest that a decrease in the LPM to SPM ratio correlates with increased mortality in the HCC model. On the contrary, the maintenance of a high ratio of LPM to SPM has shown a positive effect on HCC survival. These findings have enhanced our understanding of the complex interaction between different subpopulations of peritoneal macrophage in the development of HCC. Furthermore, these results have important implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wan-Li Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Chao Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Nan Pang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Rui-Hua Yu
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Kui-Yuan Tong
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
| | - Feng Jiang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China.
| |
Collapse
|
3
|
Xu W, Xu J, Liu J, Wang N, Zhou L, Guo J. Liver Metastasis in Cancer: Molecular Mechanisms and Management. MedComm (Beijing) 2025; 6:e70119. [PMID: 40027151 PMCID: PMC11868442 DOI: 10.1002/mco2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Liver metastasis is a leading cause of mortality from malignant tumors and significantly impairs the efficacy of therapeutic interventions. In recent years, both preclinical and clinical research have made significant progress in understanding the molecular mechanisms and therapeutic strategies of liver metastasis. Metastatic tumor cells from different primary sites undergo highly similar biological processes, ultimately achieving ectopic colonization and growth in the liver. In this review, we begin by introducing the inherent metastatic-friendly features of the liver. We then explore the panorama of liver metastasis and conclude the three continuous, yet distinct phases based on the liver's response to metastasis. This includes metastatic sensing stage, metastatic stress stage, and metastasis support stage. We discuss the intricate interactions between metastatic tumor cells and various resident and recruited cells. In addition, we emphasize the critical role of spatial remodeling of immune cells in liver metastasis. Finally, we review the recent advancements and the challenges faced in the clinical management of liver metastasis. Future precise antimetastatic treatments should fully consider individual heterogeneity and implement different targeted interventions based on stages of liver metastasis.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Xu
- State Key Laboratory of Fine ChemicalsDepartment of Pharmaceutical SciencesSchool of Chemical EngineeringDalian University of TechnologyDalianChina
| | - Jianzhou Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nanzhou Wang
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Li Zhou
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junchao Guo
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Chen P, Cheng L, Zhao C, Tang Z, Wang H, Shi J, Li X, Zhou C. Machine learning identifies immune-based biomarkers that predict efficacy of anti-angiogenesis-based therapies in advanced lung cancer. Int Immunopharmacol 2024; 143:113588. [PMID: 39556888 DOI: 10.1016/j.intimp.2024.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND The anti-angiogenic drugs showed remarkable efficacy in the treatment of lung cancer. Nonetheless, the potential roles of the intra-tumoral immune cell abundances and peripheral blood immunological features in prognosis prediction of patients with advanced lung cancer receiving anti-angiogenesis-based therapies remain unknown. In this study, we aimed to develop an immune-based model for early identification of patients with advanced lung cancer who would benefit from anti-angiogenesis-based therapies. METHODS We assembled the real-world cohort of 1058 stage III-IV lung cancer patients receiving the anti-angiogenesis-based therapies. We comprehensively evaluated the tumor immune microenvironment characterizations (CD4, CD8, CD68, FOXP3, and PD-L1) by multiplex immunofluorescence (mIF), as well as calculated the systemic inflammatory index by flow cytometry and medical record review. Based on the light gradient boosting machine (LightGBM) algorithm, a machine-learning model with meaningful parameters was developed and validated in real-world populations. RESULTS In the first-line anti-angiogenic therapy plus chemotherapy cohort (n = 385), the intra-tumoral proportion of CD68 + Macrophages and several circulating inflammatory indexes were significantly related to drug response (p < 0.05). Further, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), the systemic inflammation response index (SIRI), and myeloid to lymphoid ratio (M:L) were identified to construct the non-invasive prediction model with high predictive performance (AUC: 0.799 for treatment response and 0.7006-0.915 for progression-free survival (PFS)). Additionally, based on the unsupervised hierarchical clustering results, the circulating cluster 3 with the highest levels of NLR, MLR, SIRI, and M: L had the worst PFS with the first-line anti-angiogenic therapy plus chemotherapy compared to other circulating clusters (2.5 months, 95 % confidence interval 2.3-2.7 vs. 6.0-9.7 months, 95 % confidence interval 4.9-11.1, p < 0.01). The predictive power of the machine-learning model in PFS was also validated in the anti-angiogenic therapy plus immunotherapy cohort (n = 103), the anti-angiogenic monotherapy cohort (n = 284), and the second-line anti-angiogenic therapy plus chemotherapy cohort (n = 286). CONCLUSIONS Integrating pre-treatment circulating inflammatory biomarkers could non-invasively and early forecast clinical outcomes for anti-angiogenic response in lung cancer. The immune-based prognostic model is a promising tool to reflect systemic inflammatory status and predict clinical prognosis for anti-angiogenic treatment in patients with stage III-IV lung cancer.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Lei Cheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chao Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China.
| |
Collapse
|
5
|
Li S, Hao L, Hu X. Biological Roles and Clinical Therapeutic Applications of Tumor-Associated Macrophages in Colorectal Liver Metastasis. J Inflamm Res 2024; 17:8429-8443. [PMID: 39529996 PMCID: PMC11552512 DOI: 10.2147/jir.s493656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) commonly metastasizes to the liver, and this poses a significant clinical challenge. Tumor-associated macrophages (TAMs), key players within the TME, play a significant role in promoting CRC metastasis by secreting various chemokines, growth factors, and cytokines. This review not only aims to enhance our knowledge of TAMs' functions in CRC progression and metastasis but also examines innovative therapeutic strategies to address the clinical problem of colorectal liver metastasis (CLM). By targeting TAMs, we may be able to develop more effective treatments and offer hope to patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
6
|
Patysheva MR, Kolegova ES, Khozyainova AA, Prostakishina EA, Korobeynikov VY, Menyailo ME, Iamshchikov PS, Loos DM, Kovalev OI, Zavyalova MV, Fedorova IK, Kulbakin DE, Larionova IV, Polyakov AP, Yakovleva LP, Kropotov MA, Sukortseva NS, Lu Y, Jia L, Arora R, Choinzonov EL, Bose P, Denisov EV. Revealing molecular mechanisms of early-onset tongue cancer by spatial transcriptomics. Sci Rep 2024; 14:26255. [PMID: 39482351 PMCID: PMC11528053 DOI: 10.1038/s41598-024-76044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Tongue cancer at a young age demonstrates an increase in incidence, aggressiveness, and poor response to therapy. Classic etiological factors for head and neck tumors such as tobacco, alcohol, and human papillomavirus are not related to early-onset tongue cancer. Mechanisms of development and progression of this cancer remain unclear. In this study, we performed spatial whole-transcriptome profiling of tongue cancer in young adults compared with older patients. Nine patients with tongue squamous cell carcinoma (T2-3N0-1M0) were included and divided into two groups: younger (n = 5) and older than 45 years (n = 4). Formalin-fixed paraffin-embedded (FFPE) and fresh frozen (FF) samples of tumor tissue from 4 young and 5 older patients, respectively, were used for spatial transcriptomic profiling using the 10 × Genomics Visium. The findings were validated using SeekGene single cell full-length RNA sequencing (1 young vs 1 older patient) and TCGA data (15 young vs 70 older patients). As a result, we performed the first successful integration of spatial transcriptomics data from FF and FFPE samples and revealed distinctive features of tongue cancer in young adults. Oxidative stress, vascular mimicry, and MAPK and JAK-STAT pathways were enriched in early-onset tongue cancer. Tumor microenvironment demonstrated increased gene signatures corresponding to myeloid-derived suppressor cells, tumor-associated macrophages, and plasma cells. The invasive front was accompanied by vascular mimicry with arrangement of tumor-associated macrophages and aggregations of plasma cells and lymphocytes organized into tertiary lymphoid structures. Taken together, these results indicate that early-onset tongue cancer has distinct transcriptomic features and molecular mechanisms compared to older patients.
Collapse
Affiliation(s)
- Marina R Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena S Kolegova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elizaveta A Prostakishina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav Y Korobeynikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Pavel S Iamshchikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Dmitry M Loos
- Department of Pathological Anatomy, Siberian State Medical University, Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Oleg I Kovalev
- Department of Pathological Anatomy, Siberian State Medical University, Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina V Zavyalova
- Department of Pathological Anatomy, Siberian State Medical University, Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina K Fedorova
- Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Denis E Kulbakin
- Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina V Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Molecular Cancer Therapy, Cancer Research Institute, Tomsk National Research Medical Center Tomsk, Russian Academy of Sciences, Tomsk, Russia
| | - Andrey P Polyakov
- Microsurgery Department, P.A. Herzen Moscow Oncology Research Institute - a branch of the National Medical Research Radiological Center, Moscow, Russia
| | - Liliya P Yakovleva
- Department of Head and Neck Tumors, A.S. Loginov Moscow Clinical Scientific Center, Moscow Healthcare Department, Moscow, Russia
| | - Mikhail A Kropotov
- Surgical Department N10 of Head and Neck Tumors, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalya S Sukortseva
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Lee Jia
- The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Evgeny L Choinzonov
- Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
7
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
8
|
Han T, Sun Y, Jiang X, Gong C, Kong F, Luo Y, Ge C, Liu C, Liu Y, Mou Y, Zhang H, Ju J, Chen Y, Qu D. Air bag-embedded MIL-101(Fe) metal-organic frameworks for an amplified tumor microenvironment activation loop through strategic delivery of iron ions and lentinan. Theranostics 2024; 14:5883-5902. [PMID: 39346539 PMCID: PMC11426244 DOI: 10.7150/thno.99303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background: Iron-based nanocarriers have demonstrated potential in redirecting tumor associated macrophages (TAMs) polarization towards the M1 phenotype, critical for activating the tumor microenvironment (TME) in triple negative breast cancer (TNBC). However, their real-world effectiveness is curtailed by insufficient Fe2+/3+ exposure and the absence of suitable synergists in tumors. Methods: We introduce an air bag-embedded iron-based MIL-101 metal-organic frameworks (MOFMIL-101(Fe)) for igniting the TME in TNBC through bubble-driven tumoral codelivery of Fe2+/3+ and lentinan. This system, named HM/Ef/LNT-MOFMIL-101(Fe), features nano-sized MOFMIL-101(Fe) as the core, embedded NaHCO3 as a pH-triggered air bag, electrostatically-adsorbed lentinan forming the inner shell, and a shield shell with 4T1&red blood cell hybrid membrane. Results: HM/Ef/LNT-MOFMIL-101(Fe) can mitigate non-specific capture in the bloodstream but respond to the acidic tumor milieu, rapidly generating a burst of CO2 bubbles to disassemble MOFMIL-101(Fe). Upon entering tumors, lentinan-induced interferon-γ (IFN-γ) enable Fe2+/3+ facilitating an enhanced ferroptosis and Fenton-like reaction, pushing TAMs towards M1 polarization via the "IFN-γ-ferroptosis-ROS-Caspase-3" pathway. Moreover, HM/Ef/LNT-MOFMIL-101(Fe) increases the infiltration of T lymphocytes and decreases regulatory T cells. These cascading immune responses synergistically foster a loop of amplified TME activation based on TAMs M1 polarization, showcasing notable advancements in anticancer effectiveness and promise for various combination therapies. Conclusion: This study utilizes an "embedded air-bag" strategy to achieve strategic codelivery of Fe2+/3+ and lentinan, providing a new tool for engineering the TME.
Collapse
Affiliation(s)
- Tao Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Sun
- Jiangsu Cancer Hospital, Nanjing, 210002, China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Chengming Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yi Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Chang Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yanfei Mou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| |
Collapse
|
9
|
Angelopoulou A. Nanostructured Biomaterials in 3D Tumor Tissue Engineering Scaffolds: Regenerative Medicine and Immunotherapies. Int J Mol Sci 2024; 25:5414. [PMID: 38791452 PMCID: PMC11121067 DOI: 10.3390/ijms25105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The evaluation of nanostructured biomaterials and medicines is associated with 2D cultures that provide insight into biological mechanisms at the molecular level, while critical aspects of the tumor microenvironment (TME) are provided by the study of animal xenograft models. More realistic models that can histologically reproduce human tumors are provided by tissue engineering methods of co-culturing cells of varied phenotypes to provide 3D tumor spheroids that recapitulate the dynamic TME in 3D matrices. The novel approaches of creating 3D tumor models are combined with tumor tissue engineering (TTE) scaffolds including hydrogels, bioprinted materials, decellularized tissues, fibrous and nanostructured matrices. This review focuses on the use of nanostructured materials in cancer therapy and regeneration, and the development of realistic models for studying TME molecular and immune characteristics. Tissue regeneration is an important aspect of TTE scaffolds used for restoring the normal function of the tissues, while providing cancer treatment. Thus, this article reports recent advancements in the development of 3D TTE models for antitumor drug screening, studying tumor metastasis, and tissue regeneration. Also, this review identifies the significant opportunities of using 3D TTE scaffolds in the evaluation of the immunological mechanisms and processes involved in the application of immunotherapies.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
Iwata M, Haraguchi R, Kitazawa R, Ito C, Ogawa K, Takada Y, Kitazawa S. Reduced chemokine C-C motif ligand 1 expression may negatively regulate colorectal cancer progression at liver metastatic sites. J Cell Mol Med 2024; 28:e18193. [PMID: 38506205 PMCID: PMC10952021 DOI: 10.1111/jcmm.18193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) liver metastasis, albeit a stage-IV disease, is completely curable by surgical resection in selected patients. In addressing the molecular basics of this phenomenon, differentially expressed genes at primary and liver metastatic sites were screened by RNA sequencing with the use of paraffin-embedded surgical specimens. Chemokine C-C motif ligand 1 (CCL1), a chemotactic factor for a ligand of the chemokine C-C motif receptor 8 (CCR8), was isolated as one of the differentially expressed genes. Histological analysis revealed that the number of CCL1-positive cells, mainly tumour associated macrophages (TAMs) located in the stroma of CRC, decreased significantly at liver metastatic sites, while the expression level of CCR8 on CRC remained unchanged. To explore the biological significance of the CCL1-CCR8 axis in CRC, CCR8-positive CRC cell line Colo320DM was used to assess the effect of the CCL1-CCR8 axis on major signalling pathways, epithelial mesenchymal transition induction and cell motility. Upon stimulation of recombinant CCL1 (rCCL1), phosphorylation of AKT was observed in Colo320DM cells; on the other hand, the corresponding significant increase in MMP-2 levels demonstrated by RT-qPCR was nullified by siRNA (siCCR8). In the scratch test, rCCL1 treatment significantly increased the motility of Colo320DM cells, which was similarly nullified by siCCR8. Thus, the activation of the CCL1-CCR8 axis is a positive regulator of CRC tumour progression. Reduced CCL1 expression of TAMs at liver metastatic sites may partly explain the unique slow tumour progression of CRC, thus providing for a grace period for radical resection of metastatic lesions.
Collapse
Affiliation(s)
- Miku Iwata
- Department of Molecular PathologyEhime University Graduate School of MedicineToon CityEhimeJapan
- Department of Hepato‐Biliary‐Pancreatic and Breast SurgeryEhime University Graduate School of MedicineToon CityEhimeJapan
| | - Ryuma Haraguchi
- Department of Molecular PathologyEhime University Graduate School of MedicineToon CityEhimeJapan
| | - Riko Kitazawa
- Division of Diagnostic PathologyEhime University HospitalToon CityEhimeJapan
| | - Chihiro Ito
- Department of Molecular PathologyEhime University Graduate School of MedicineToon CityEhimeJapan
- Department of Hepato‐Biliary‐Pancreatic and Breast SurgeryEhime University Graduate School of MedicineToon CityEhimeJapan
| | - Kohei Ogawa
- Department of Hepato‐Biliary‐Pancreatic and Breast SurgeryEhime University Graduate School of MedicineToon CityEhimeJapan
| | - Yasutsugu Takada
- Department of Hepato‐Biliary‐Pancreatic and Breast SurgeryEhime University Graduate School of MedicineToon CityEhimeJapan
| | - Sohei Kitazawa
- Department of Molecular PathologyEhime University Graduate School of MedicineToon CityEhimeJapan
| |
Collapse
|
11
|
Gao J, Tan W, Yuan L, Wang H, Wen J, Sun K, Chen X, Wang S, Deng W. Antitumour mechanisms of traditional Chinese medicine elicited by regulating tumour-associated macrophages in solid tumour microenvironments. Heliyon 2024; 10:e27220. [PMID: 38463777 PMCID: PMC10923716 DOI: 10.1016/j.heliyon.2024.e27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Tumour-associated macrophages (TAMs), particularly M2-TAMs, constitute the largest proportion of immune cells in the solid tumour microenvironment, playing a crucial role in tumour progression and correlating with poor prognosis. TAMs promote the proliferation, invasion, and metastasis of tumour cells by remodelling the extracellular matrix, inhibiting immunity, promoting immune escape and tumour angiogenesis, and affecting cell metabolism. Traditional Chinese medicine (TCM) has been used clinically in China for millennia. Chinese herbs exhibit potent antitumour effects with minimal to no toxicity, substantially contributing to prolonging the lives of patients with cancer and improving their quality of life. TCM has unique advantages in improving the solid tumour microenvironment, particularly in regulating TAMs to further inhibit tumour angiogenesis, reduce drug resistance, reverse immunosuppression, and enhance antitumour immunity. This review highlights the TAM-associated mechanisms within the solid tumour microenvironment, outlines the recent advancements in TCM targeting TAMs for antitumour effects, emphasises the superiority of combining TCM with standard treatments or new nano-drug delivery systems, and evaluates the safety and efficacy of TCM combined with conventional treatments via clinical trials to provide insights and strategies for future research and clinical treatment.
Collapse
Affiliation(s)
- Jiamin Gao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Weishan Tan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Luyun Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Haoyue Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Kexiang Sun
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Xin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Shuyun Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| |
Collapse
|
12
|
Cao L, Meng X, Zhang Z, Liu Z, He Y. Macrophage heterogeneity and its interactions with stromal cells in tumour microenvironment. Cell Biosci 2024; 14:16. [PMID: 38303024 PMCID: PMC10832170 DOI: 10.1186/s13578-024-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Macrophages and tumour stroma cells account for the main cellular components in the tumour microenvironment (TME). Current advancements in single-cell analysis have revolutionized our understanding of macrophage diversity and macrophage-stroma interactions. Accordingly, this review describes new insight into tumour-associated macrophage (TAM) heterogeneity in terms of tumour type, phenotype, metabolism, and spatial distribution and presents the association between these factors and TAM functional states. Meanwhile, we focus on the immunomodulatory feature of TAMs and highlight the tumour-promoting effect of macrophage-tumour stroma interactions in the immunosuppressive TME. Finally, we summarize recent studies investigating macrophage-targeted therapy and discuss their therapeutic potential in improving immunotherapy by alleviating immunosuppression.
Collapse
Affiliation(s)
- Liren Cao
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
13
|
Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. J Transl Med 2024; 22:62. [PMID: 38229160 PMCID: PMC10792812 DOI: 10.1186/s12967-024-04856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
14
|
Mani R, Martin CG, Balu KE, Wang Q, Rychahou P, Izumi T, Evers BM, Suzuki Y. A Novel Protozoa Parasite-Derived Protein Adjuvant Is Effective in Immunization with Cancer Cells to Activate the Cancer-Specific Protective Immunity and Inhibit the Cancer Growth in a Murine Model of Colorectal Cancer. Cells 2024; 13:111. [PMID: 38247803 PMCID: PMC10814441 DOI: 10.3390/cells13020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer-specific CD8+ cytotoxic T cells play important roles in preventing cancer growth, and IFN-γ, in addition to IL-12 and type I interferon, is critical for activating CD8+ cytotoxic T cells. We recently identified the capability of the amino-terminus region of dense granule protein 6 (GRA6Nt) of Toxoplasma gondii, an intracellular protozoan parasite, to activate IFN-γ production of microglia, a tissue-resident macrophage population. Therefore, in the present study, we examined whether recombinant GRA6Nt protein (rGRA6Nt) functions as an effective adjuvant to potently activate cancer-specific protective immunity using a murine model of MC38 colorectal cancer (CRC). When mice were immunized with non-replicable (either treated with mitomycin C or irradiated by X-ray) MC38 CRC cells in combination with rGRA6Nt adjuvant and received a challenge implantation of replication-capable MC38 tumor cells, those mice markedly inhibited the growth of the implanted tumors in association with a two-fold increase in CD8+ T cell density within the tumors. In addition, CD8+ T cells of the immunized mice secreted significantly increased amounts of granzyme B, a key mediator of the cytotoxic activity of CD8+ T cells, and IFN-γ in response to MC38 CRC cells in vitro when compared to the T cells from unimmunized mice. Notably, the protective effects of the immunization were specific to MC38 CRC cells, as the immunized mice did not exhibit a significantly inhibited growth of EL4 lymphoma tumors. These results indicate that rGRA6Nt is a novel and effective protein adjuvant when used in immunizations with non-replicable cancer cells to potently activate the protective immunity specifically against the cancer cells employed in the immunization.
Collapse
Affiliation(s)
- Rajesh Mani
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Chloe G. Martin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Kanal E. Balu
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Qingding Wang
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Tadahide Izumi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Qin S, Chen Y, Wang Y, Li F, Cui R, Liu G. Contrast-enhanced ultrasound with microbubbles containing sulfur hexafluoride and perfluorobutane with Kupffer phase for the detection of colorectal liver metastases. Eur Radiol 2024; 34:622-631. [PMID: 37566263 DOI: 10.1007/s00330-023-10051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To compare contrast-enhanced ultrasound (CEUS) with microbubbles containing sulfur hexafluoride (SHF) and perfluorobutane (PFB) for the detection of colorectal liver metastasis (CRLM). METHODS In this prospective study, conducted from September to November 2021, patients with colorectal cancer were consecutively recruited and underwent same-day ultrasound, SHF-CEUS, and PFB-CEUS. The reference standard was contrast-enhanced MRI and follow-up imaging. The size, depth, echogenicity, and calcification of each focal liver lesion were recorded. The number and conspicuity of CRLMs, based on washout appearance during the late phase (LP) (> 120 s)/Kupffer phase (KP), were evaluated offsite by two blinded readers. RESULTS Overall, 230 lesions (CRLMs, n = 219; benign lesions, n = 11) in 78 patients were evaluated. Lesion conspicuity (p = 0.344) and accuracy in the detection of CRLM were comparable for SHF- and PFB-CEUS (0.877 for SHF vs. 0.770 for PFB, p = 0.087). More CRLMs ≥ 10 mm were identified by LP contrast washout in SHF-CEUS than in KP PFB-CEUS (p < 0.001). More CRLMs < 10 mm were identified by KP washout in PFB-CEUS than in LP SHF-CEUS (p < 0.001). Conspicuity was better on PFB-CEUS than on SHF-CEUS (p = 0.027). In hyperechoic lesions, lesions located deeper than 80 mm, and calcified lesions, CRLM conspicuity on PFB-CEUS was inferior to that on SHF-CEUS (p < 0.05). CONCLUSIONS The overall accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF and PFB-CEUS. PFB-CEUS has the advantage of identifying washout in small CRLMs. However, larger, hyperechogenic, deep-seated, or calcified lesions were better identified using SHF-CEUS. CLINICAL RELEVANCE STATEMENT Accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF- and PFB-CEUS. PFB-CEUS has the advantage in detecting small CRLMs, whereas SHF-CEUS is better for detecting larger, hyperechogenic, deep-seated, or calcified lesions. KEY POINTS Contrast-enhanced ultrasound with sulfur hexafluoride in the late phase and perfluorobutane microbubbles in the Kupffer phase were comparable in terms of accuracy in the detection and conspicuity of colorectal liver metastases. Small colorectal liver metastases (< 10 mm) were more often identified in the Kupffer phase contrast-enhanced ultrasound imaging when using perfluorobutane microbubbles. Larger, hyperechogenic, deep-seated, or calcified lesions were better identified in the late phase contrast-enhanced ultrasound imaging (> 120 s) when using sulfur hexafluoride microbubbles.
Collapse
Affiliation(s)
- Si Qin
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yao Chen
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - YiMin Wang
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - FangQian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Cui
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - GuangJian Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
16
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|