1
|
Wu C, Chen D, Stout MB, Wu M, Wang S. Hallmarks of ovarian aging. Trends Endocrinol Metab 2025; 36:418-439. [PMID: 40000274 DOI: 10.1016/j.tem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ovarian aging is considered to be the pacemaker of female aging, and is linked to various comorbidities such as osteoporosis, cardiovascular diseases, and cognitive decline. Many efforts have been made to determine the mechanisms underlying ovarian aging, but their potential to act as hallmarks to predict and intervene in this process currently remains unclear. In this review we propose nine hallmarks as common features of ovarian aging: genomic instability, telomere attrition, epigenetic alterations, impaired autophagy, cellular senescence, deregulated nutrient-sensing, mitochondrial dysfunction, oxidative stress, and chronic inflammation. Understanding the interaction between these hallmarks poses a significant challenge but may also pave the way to the identification of pharmaceutical targets that can attenuate ovarian aging.
Collapse
Affiliation(s)
- Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhang F, Zhu M, Chen Y, Wang G, Yang H, Lu X, Li Y, Chang HM, Wu Y, Ma Y, Yuan S, Zhu W, Dong X, Zhao Y, Yu Y, Wang J, Mu L. Harnessing omics data for drug discovery and development in ovarian aging. Hum Reprod Update 2025; 31:240-268. [PMID: 39977580 DOI: 10.1093/humupd/dmaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Fengyu Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ming Zhu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guiquan Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jia Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chen W, Dong L, Wei C, Wu H. Role of epigenetic regulation in diminished ovarian reserve. J Assist Reprod Genet 2025; 42:389-403. [PMID: 39644448 PMCID: PMC11871224 DOI: 10.1007/s10815-024-03301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
Diminished ovarian reserve (DOR) is characterized by a decrease in the number and quality of oocytes, with its incidence increasing annually. Its pathogenesis remains unclear, making it one of the most challenging problems in the field of assisted reproduction. Epigenetic modification, a molecular mechanism affecting genomic activity and expression without altering the DNA sequence, has been widely studied in reproductive medicine and has attracted considerable attention regarding DOR. This review comprehensively examines the various epigenetic regulatory changes in ovarian granulosa cells (OGCs) and oocytes during DOR. DNA methylation plays a crucial role in regulating granulosa cell function, hormone production, and oocyte development, maturation, and senescence. Histone modifications are involved in regulating follicular activation, while non-coding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), regulate granulosa cell function and oocyte development. N6-methyladenosine (m6A) modifications are associated with age-related oocyte senescence. Epigenetic clocks based on DNA methylation show potential in predicting ovarian reserve in DOR. Furthermore, it discusses the potential for utilizing epigenetic mechanisms to better diagnose and manage DOR.
Collapse
Affiliation(s)
- Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaofeng Wei
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Swigonska S, Nynca A, Molcan T, Petroff BK, Ciereszko RE. The Role of lncRNAs in the Protective Action of Tamoxifen on the Ovaries of Tumor-Bearing Rats Receiving Cyclophosphamide. Int J Mol Sci 2024; 25:12538. [PMID: 39684249 DOI: 10.3390/ijms252312538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Infertility due to ovarian toxicity is a common side effect of cancer treatment in premenopausal women. Tamoxifen (TAM) is a selective estrogen receptor modulator that prevented radiation- and chemotherapy-induced ovarian failure in preclinical studies. In the current study, we examined the potential regulatory role of long noncoding RNAs (lncRNAs) in the mechanism of action of TAM in the ovaries of tumor-bearing rats receiving cyclophosphamide (CPA) as cancer therapy. We identified 166 lncRNAs, among which 49 were demonstrated to be differentially expressed (DELs) in the ovaries of rats receiving TAM and CPA compared to those receiving only CPA. A total of 24 DELs were upregulated and 25 downregulated by tamoxifen. The identified DELs shared the characteristics of noncoding RNAs described in other reproductive tissues. Eleven of the identified DELs displayed divergent modes of action, regulating target transcripts via both cis- and trans-acting pathways. Functional enrichment analysis revealed that, among target genes ascribed to the identified DELs, the majority were involved in apoptosis, cell adhesion, immune response, and ovarian aging. The presented data suggest that the molecular mechanisms behind tamoxifen's protective effects in the ovaries may involve lncRNA-dependent regulation of critical signaling pathways related to inhibition of follicular transition and ovarian aging, along with the suppression of apoptosis and regulation of cell adhesion. Employing a tumor-bearing animal model undergoing chemotherapy, which accurately reflects the conditions of mammary cancer, reinforces the obtained results. Given that tamoxifen remains a key player in the management and prevention of breast cancer, understanding its ovarian-specific actions in cancer patients is crucial and requires detailed functional studies to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sylwia Swigonska
- Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824-1314, USA
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
6
|
Huang XC, Jiang YN, Bao HJ, Wang JL, Lin RJ, Yuan J, Xian JY, Zhao Y, Chen S. Role and Mechanism of Epigenetic Regulation in the Aging of Germ Cells: Prospects for Targeted Interventions. Aging Dis 2024; 16:AD.2024.0126. [PMID: 38377031 PMCID: PMC11745444 DOI: 10.14336/ad.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
In modern times, a notable trend toward delayed childbearing has been observed in most developed countries. As a result, sperm aging and quality loss, as well as premature ovarian failure (POF), have emerged as major causes of infertility. The pathogenesis of sperm aging and POF is complex and has not been clearly elucidated. However, evidence from some studies has linked germ cell aging to epigenetic modifications. Epigenetics refers to the heritable changes in gene expression that occur in the absence of any alterations to the gene's nucleotide sequence. This paper systematically reviewed and analyzed the relevant literature to describe the relationship of DNA methylation, non-coding RNA regulation, histone modifications, chromatin remodeling, and RNA modifications with sperm aging and POF. In addition, we analyzed how sperm aging and POF can be mitigated via epigenetic interventions. This review could provide new therapeutic insights and guide strategies for improving sperm quality and ovarian function.
Collapse
Affiliation(s)
- Xiang-Chun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yi-Nan Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rong-Jin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing-Yuan Xian
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Salvador AC, Huda MN, Arends D, Elsaadi AM, Gacasan CA, Brockmann GA, Valdar W, Bennett BJ, Threadgill DW. Analysis of strain, sex, and diet-dependent modulation of gut microbiota reveals candidate keystone organisms driving microbial diversity in response to American and ketogenic diets. MICROBIOME 2023; 11:220. [PMID: 37784178 PMCID: PMC10546677 DOI: 10.1186/s40168-023-01588-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The gut microbiota is modulated by a combination of diet, host genetics, and sex effects. The magnitude of these effects and interactions among them is important to understanding inter-individual variability in gut microbiota. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed along with several QTLs for metabolic traits. In the current study, we searched for genetic variants underlying differences in the gut microbiota in response to American and ketogenic diets, which are high in fat and vary in carbohydrate composition, between C57BL/6 J (B6) and FVB/NJ (FVB) mouse strains. RESULTS Genetic mapping of microbial features revealed 18 loci under the QTL model (i.e., marginal effects that are not specific to diet or sex), 12 loci under the QTL by diet model, and 1 locus under the QTL by sex model. Multiple metabolic and microbial features map to the distal part of Chr 1 and Chr 16 along with eigenvectors extracted from principal coordinate analysis of measures of β-diversity. Bilophila, Ruminiclostridium 9, and Rikenella (Chr 1) were identified as sex- and diet-independent QTL candidate keystone organisms, and Parabacteroides (Chr 16) was identified as a diet-specific, candidate keystone organism in confirmatory factor analyses of traits mapping to these regions. For many microbial features, irrespective of which QTL model was used, diet or the interaction between diet and a genotype were the strongest predictors of the abundance of each microbial trait. Sex, while important to the analyses, was not as strong of a predictor for microbial abundances. CONCLUSIONS These results demonstrate that sex, diet, and genetic background have different magnitudes of effects on inter-individual differences in gut microbiota. Therefore, Precision Nutrition through the integration of genetic variation, microbiota, and sex affecting microbiota variation will be important to predict response to diets varying in carbohydrate composition. Video Abstract.
Collapse
Affiliation(s)
- Anna C Salvador
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Nazmul Huda
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - Danny Arends
- Albrecht Daniel Thaer-Institut, 10115, Berlin, Germany
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ahmed M Elsaadi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - C Anthony Gacasan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | | | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian J Bennett
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Gaskins AJ, Hood RB, Ford JB, Hauser R, Knight AK, Smith AK, Everson TM. Traffic-related air pollution and supplemental folic acid intake in relation to DNA methylation in granulosa cells. Clin Epigenetics 2023; 15:84. [PMID: 37179367 PMCID: PMC10183139 DOI: 10.1186/s13148-023-01503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Higher exposure to traffic-related air pollution (TRAP) is related to lower fertility, with specific adverse effects on the ovary. Folic acid may attenuate these effects. Our goal was to explore the relation of TRAP exposure and supplemental folic acid intake with epigenetic aging and CpG-specific DNA methylation (DNAm) in granulosa cells (GC). Our study included 61 women undergoing ovarian stimulation at a fertility center (2005-2015). DNAm levels were profiled in GC using the Infinium MethylationEPIC BeadChip. TRAP was defined using a spatiotemporal model to estimate residence-based nitrogen dioxide (NO2) exposure. Supplemental folic acid intake was measured with a validated food frequency questionnaire. We used linear regression to evaluate whether NO2 or supplemental folic acid was associated with epigenetic age acceleration according to the Pan-tissue, mural GC, and GrimAge clocks or DNAm across the genome adjusting for potential confounders and accounting for multiple testing with a false discovery rate < 0.1. RESULTS There were no associations between NO2 or supplemental folic acid intake and epigenetic age acceleration of GC. NO2 and supplemental folic acid were associated with 9 and 11 differentially methylated CpG sites. Among these CpGs, only cg07287107 exhibited a significant interaction (p-value = 0.037). In women with low supplemental folic acid, high NO2 exposure was associated with 1.7% higher DNAm. There was no association between NO2 and DNAm in women with high supplemental folic acid. The genes annotated to the top 250 NO2-associated CpGs were enriched for carbohydrate and protein metabolism, postsynaptic potential and dendrite development, and membrane components and exocytosis. The genes annotated to the top 250 supplemental folic acid-associated CpGs were enriched for estrous cycle, learning, cognition, synaptic organization and transmission, and size and composition of neuronal cell bodies. CONCLUSIONS We found no associations between NO2, supplemental folic acid, and DNAm age acceleration of GC. However, there were 20 differentially methylated CpGs and multiple enriched GO terms associated with both exposures suggesting that differences in GC DNAm could be a plausible mechanism underlying the effects of TRAP and supplemental folic acid on ovarian function.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Anna K Knight
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Balaskas P, Goljanek-Whysall K, Clegg PD, Fang Y, Cremers A, Smagul A, Welting TJM, Peffers MJ. MicroRNA Signatures in Cartilage Ageing and Osteoarthritis. Biomedicines 2023; 11:1189. [PMID: 37189806 PMCID: PMC10136140 DOI: 10.3390/biomedicines11041189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most common degenerative joint disorder. MicroRNAs are gene expression regulators that act post-transcriptionally to control tissue homeostasis. Microarray analysis was undertaken in osteoarthritic intact, lesioned and young intact cartilage. Principal component analysis showed that young intact cartilage samples were clustered together; osteoarthritic samples had a wider distribution; and osteoarthritic intact samples were separated into two subgroups, osteoarthritic-Intact-1 and osteoarthritic-Intact-2. We identified 318 differentially expressed microRNAs between young intact and osteoarthritic lesioned cartilage, 477 between young intact and osteoarthritic-Intact-1 cartilage and 332 between young intact and osteoarthritic-Intact-2 cartilage samples. For a selected list of differentially expressed microRNAs, results were verified in additional cartilage samples using qPCR. Of the validated DE microRNAs, four-miR-107, miR-143-3p, miR-361-5p and miR-379-5p-were selected for further experiments in human primary chondrocytes treated with IL-1β. Expression of these microRNAs decreased in human primary chondrocytes treated with IL-1β. For miR-107 and miR-143-3p, gain- and loss-of-function approaches were undertaken and associated target genes and molecular pathways were investigated using qPCR and mass spectrometry proteomics. Analyses showed that WNT4 and IHH, predicted targets of miR-107, had increased expression in osteoarthritic cartilage compared to young intact cartilage and in primary chondrocytes treated with miR-107 inhibitor, and decreased expression in primary chondrocytes treated with miR-107 mimic, suggesting a role of miR-107 in chondrocyte survival and proliferation. In addition, we identified an association between miR-143-3p and EIF2 signalling and cell survival. Our work supports the role of miR-107 and miR-143-3p in important chondrocyte mechanisms regulating proliferation, hypertrophy and protein translation.
Collapse
Affiliation(s)
- Panagiotis Balaskas
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Department of Physiology, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter D. Clegg
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andy Cremers
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Aibek Smagul
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
10
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Czajkowska K, Ajduk A. Mitochondrial activity and redox status in oocytes from old mice: The interplay between maternal and postovulatory aging. Theriogenology 2023; 204:18-30. [PMID: 37031516 DOI: 10.1016/j.theriogenology.2023.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Maternal aging has been reported to reduce oocyte quality and, in turn, lower the developmental potential of the resulting embryos. Here, we show that maternally aged oocytes display two strikingly different phenotypes: some have normal morphology, whereas others have significantly shrunk cytoplasm. The latter phenotype usually prevails in aged females. Our objective was to characterize both types of maternally aged oocytes and investigate the origins of this diversity. Importantly, our experiments indicate that shrunk maternally aged oocytes are severely compromised in terms of mitochondrial functionality as compared to their young or morphologically normal maternally aged counterparts: they display significantly decreased mitochondrial activity and lower amounts of ROS. In contrast, morphologically normal maternally aged oocytes had the same mitochondrial activity as young ones, while their ROS levels were higher. Surprisingly, the shrunk phenotype was completely absent in maternally aged oocytes that matured in vitro, suggesting that it is not caused inherently by maternal aging, but may be related to other factors, like postovulatory aging. Indeed, an additional culture of in vitro matured young and old oocytes (i.e., in vitro postovulatory aging) significantly decreased their mitochondrial activity and led to cytoplasm shrinkage. In vivo postovulatory aging had a similar effect on oocytes from both young and old females. Finally, we examined the developmental potential of oocytes obtained from aged females. Shrunk (i.e., most likely postovulatory aged) oocytes failed to become fertilized, whereas morphologically normal ones (i.e., most likely not subjected to postovulatory aging) underwent fertilization and subsequent cleavage divisions, although they achieved the 2-cell stage less frequently than morphologically normal oocytes from young females. Importantly, the quality of blastocysts as well as the live birth rate for morphologically normal oocytes from old and young females were similar. In summary, our data clearly indicate that two pools of oocytes present in oviducts of aged females differ significantly in their quality and developmental potential and that the more severely affected phenotype results most likely from a synergistic action of maternal and postovulatory aging.
Collapse
|
12
|
Ruiz de la Bastida A, Langa S, Peirotén Á, Fernández-Gonzalez R, Sánchez-Jiménez A, Maroto Oltra M, Luis Arqués J, Gutierrez-Adan A, María Landete J. Effect of fermented soy beverage in aged female mice model. Food Res Int 2023; 169:112745. [DOI: 10.1016/j.foodres.2023.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
|
13
|
A Cross-Species Analysis Reveals Dysthyroidism of the Ovaries as a Common Trait of Premature Ovarian Aging. Int J Mol Sci 2023; 24:ijms24033054. [PMID: 36769379 PMCID: PMC9918015 DOI: 10.3390/ijms24033054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Although the imbalance of circulating levels of Thyroid Hormones (THs) affects female fertility in vertebrates, its involvement in the promotion of Premature Ovarian Aging (POA) is debated. Therefore, altered synthesis of THs in both thyroid and ovary can be a trait of POA. We investigated the relationship between abnormal TH signaling, dysthyroidism, and POA in evolutionary distant vertebrates: from zebrafish to humans. Ovarian T3 signaling/metabolism was evaluated by measuring T3 levels, T3 responsive transcript, and protein levels along with transcripts governing T3 availability (deiodinases) and signaling (TH receptors) in distinct models of POA depending on genetic background and environmental exposures (e.g., diets, pesticides). Expression levels of well-known (Amh, Gdf9, and Inhibins) and novel (miR143/145 and Gas5) biomarkers of POA were assessed. Ovarian dysthyroidism was slightly influenced by genetics since very few differences were found between C57BL/6J and FVB/NJ females. However, diets exacerbated it in a strain-dependent manner. Similar findings were observed in zebrafish and mouse models of POA induced by developmental and long-life exposure to low-dose chlorpyrifos (CPF). Lastly, the T3 decrease in follicular fluids from women affected by diminished ovarian reserve, as well as of the transcripts modulating T3 signaling/availability in the cumulus cells, confirmed ovarian dysthyroidism as a common and evolutionary conserved trait of POA.
Collapse
|
14
|
Salvador AC, Huda MN, Arends D, Elsaadi AM, Gacasan AC, Brockmann GA, Valdar W, Bennett BJ, Threadgill DW. Analysis of strain, sex, and diet-dependent modulation of gut microbiota reveals candidate keystone organisms driving microbial diversity in response to American and ketogenic diets. RESEARCH SQUARE 2023:rs.3.rs-2540322. [PMID: 36778219 PMCID: PMC9915790 DOI: 10.21203/rs.3.rs-2540322/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The gut microbiota is modulated by a combination of diet, host genetics, and sex effects. The magnitude of these effects and interactions among them is important to understanding inter-individual variability in gut microbiota. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed along with several QTL for metabolic traits. In the current study, we searched for genetic variants underlying differences in the gut microbiota in response to American and ketogenic diets, which are high in fat and vary in carbohydrate composition, between C57BL/6J (B6) and FVB/NJ (FVB) mouse strains. Results Genetic mapping of microbial features revealed 18 loci under the QTL model (i.e., marginal effects that are not specific to diet or sex), 12 loci under the QTL by diet model, and 1 locus under the QTL by sex model. Multiple metabolic and microbial features map to the distal part of Chr 1 and Chr 16 along with eigenvectors extracted from principal coordinate analysis of measures of β-diversity. Bilophila , Ruminiclostridium 9 , and Rikenella (Chr 1) were identified as sex and diet independent QTL candidate keystone organisms and Rikenelleceae RC9 Gut Group (Chr 16) was identified as a diet-specific, candidate keystone organism in confirmatory factor analyses of traits mapping to these regions. For many microbial features, irrespective of which QTL model was used, diet or the interaction between diet and a genotype were the strongest predictors of the abundance of each microbial trait. Sex, while important to the analyses, was not as strong of a predictor for microbial abundances. Conclusions These results demonstrate that sex, diet, and genetic background have different magnitudes of effects on inter-individual differences in gut microbiota. Therefore, Precision Nutrition through the integration of genetic variation, microbiota, and sex affecting microbiota variation will be important to predict response to diets varying in carbohydrate composition.
Collapse
|
15
|
Song J, Ma X, Li F, Liu J. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154384. [PMID: 35276145 DOI: 10.1016/j.scitotenv.2022.154384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pyrethroids, a class of insecticides widely used in agriculture and residential pest control, have been considered as endocrine-disrupting chemicals (EDCs). Our previous epidemiological study reported a positive association of urinary levels of pyrethroid metabolites with the risk of primary ovarian insufficiency in women, suggesting that pyrethroid exposure may be a potential risk factor for female ovarian health. In this study, female mice at gestational, lactational or peripubertal stages were exposed to eight most commonly used pyrethroids at the doses of acceptable daily intake (ADI) recommended by the World Health Organization (WHO). Gestational exposure to eight pyrethroids at ADI doses led to a significant decrease in the number of primary follicles in female offspring on postnatal day (PND) 3, and an increase in the number of atretic follicles and granulosa cell apoptosis, as well as lower estrogen and higher follicle-stimulating hormone (FSH) levels in adult female offspring. Lactational and peripubertal exposure to pyrethroid mixture had no significant effects on follicular development and ovarian functions. The data of high-throughput microRNA (miRNA) sequencing showed that 23 miRNAs were differentially expressed in the ovaries of female offspring mice on PND 1 after gestational exposure to pyrethroid mixture. The results of qPCR confirmed that miR-152-3p, miR-450b-3p and miR-196a-5p were significantly upregulated in the neonatal ovaries in the exposed group. The bioinformatic analysis indicates that the modification of the expression of ovarian miRNAs by pyrethroid exposure may disrupt the key biological processes (such as mRNA processing) and major signaling pathways (such as PI3K/Akt pathway, adipocytokine pathway and GnRH pathway) governing follicular development and ovarian functions. This study first reported that gestational exposure of female mice to multiple pyrethroids at the recommended human safe doses had irreversible adverse effects on the ovaries in female offspring in adulthood through regulating the expression of miRNAs during early developmental stages.
Collapse
Affiliation(s)
- Jingyi Song
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaochen Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
17
|
Zhou Z, Yang X, Pan Y, Shang L, Chen S, Yang J, Jin L, Zhang F, Wu Y. Temporal transcriptomic landscape of postnatal mouse ovaries reveals dynamic gene signatures associated with ovarian aging. Hum Mol Genet 2021; 30:1941-1954. [PMID: 34137841 PMCID: PMC8522635 DOI: 10.1093/hmg/ddab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The ovary is the most important organ for maintaining female reproductive health, but it fails before most other organs. Aging-associated alterations in gene expression patterns in mammalian ovaries remain largely unknown. In this study, the transcriptomic landscape of postnatal mouse ovaries over the reproductive lifespan was investigated using bulk RNA sequencing in C57BL/6 mice. Gene expression dynamics revealed that the lifespan of postnatal mouse ovaries comprised four sequential stages, during which 2517 genes were identified as differentially enriched. Notably, the DNA repair pathway was found to make a considerable and specific contribution to the process of ovarian aging. Temporal gene expression patterns were dissected to identify differences in gene expression trajectories over the lifespan. In addition to DNA repair, distinct biological functions (including hypoxia response, epigenetic modification, fertilization, mitochondrial function, etc.) were overrepresented in particular clusters. Association studies were further performed to explore the relationships between known genes responsible for ovarian function and differentially expressed genes identified in this work. We found that the causative genes of human premature ovarian insufficiency were specifically enriched in distinct gene clusters. Taken together, our findings reveal a comprehensive transcriptomic landscape of the mouse ovary over the lifespan, providing insights into the molecular mechanisms underlying mammalian ovarian aging and supporting future etiological studies of aging-associated ovarian disorders.
Collapse
Affiliation(s)
- Zixue Zhou
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Yuncheng Pan
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Lingyue Shang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Siyuan Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Jialin Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
19
|
Colella M, Cuomo D, Peluso T, Falanga I, Mallardo M, De Felice M, Ambrosino C. Ovarian Aging: Role of Pituitary-Ovarian Axis Hormones and ncRNAs in Regulating Ovarian Mitochondrial Activity. Front Endocrinol (Lausanne) 2021; 12:791071. [PMID: 34975760 PMCID: PMC8716494 DOI: 10.3389/fendo.2021.791071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
The number of mitochondria in the oocyte along with their functions (e.g., energy production, scavenger activity) decline with age progression. Such multifaceted functions support several processes during oocyte maturation, ranging from energy supply to synthesis of the steroid hormones. Hence, it is hardly surprising that their impairment has been reported in both physiological and premature ovarian aging, wherein they are crucial players in the apoptotic processes that arise in aged ovaries. In any form, ovarian aging implies the progressive damage of the mitochondrial structure and activities as regards to ovarian germ and somatic cells. The imbalance in the circulating hormones and peptides (e.g., gonadotropins, estrogens, AMH, activins, and inhibins), active along the pituitary-ovarian axis, represents the biochemical sign of ovarian aging. Despite the progress accomplished in determining the key role of the mitochondria in preserving ovarian follicular number and health, their modulation by the hormonal signalling pathways involved in ovarian aging has been poorly and randomly explored. Yet characterizing this mechanism is pivotal to molecularly define the implication of mitochondrial dysfunction in physiological and premature ovarian aging, respectively. However, it is fairly difficult considering that the pathways associated with ovarian aging might affect mitochondria directly or by altering the activity, stability and localization of proteins controlling mitochondrial dynamics and functions, either unbalancing other cellular mediators, released by the mitochondria, such as non-coding RNAs (ncRNAs). We will focus on the mitochondrial ncRNAs (i.e., mitomiRs and mtlncRNAs), that retranslocate from the mitochondria to the nucleus, as active players in aging and describe their role in the nuclear-mitochondrial crosstalk and its modulation by the pituitary-ovarian hormone dependent pathways. In this review, we will illustrate mitochondria as targets of the signaling pathways dependent on hormones and peptides active along the pituitary/ovarian axis and as transducers, with a particular focus on the molecules retrieved in the mitochondria, mainly ncRNAs. Given their regulatory function in cellular activities we propose them as potential diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Falanga
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
- *Correspondence: Concetta Ambrosino,
| |
Collapse
|
20
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|
21
|
Salvador AC, Arends D, Barrington WT, Elsaadi AM, Brockmann GA, Threadgill DW. Sex-specific genetic architecture in response to American and ketogenic diets. Int J Obes (Lond) 2021; 45:1284-1297. [PMID: 33723359 PMCID: PMC8159743 DOI: 10.1038/s41366-021-00785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/19/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES There is a growing appreciation for individual responses to diet. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed. In this study, we searched for genetic variants underlying differences in the responses to American and ketogenic diets between C57BL/6J (B6) and FVB/NJ (FVB) mouse strains. RESULTS Genetic mapping of fat and lean mass gain revealed QTLs on Chromosome (Chr) 1 at 191.6 Mb (Fmgq1) (P < 0.001, CI = 180.2-194.4 Mb), Chr5 at 73.7 Mb (Fmgq2, Lmgq1) (P < 0.001, CI = 66.1-76.6 Mb), and Chr7 at 40.5 Mb (Fmgq3) (P < 0.01, CI = 36.6-44.5 Mb). Analysis of serum HDL cholesterol concentration identified a significant (P < 0.001, CI = 160.6-176.1 Mb) QTL on Chr1 at 168.6 Mb (Hdlq1). Causal network inference suggests that HDL cholesterol and fat mass gain are both linked to Fmgq1. CONCLUSIONS Strong sex effects were identified at both Fmgq2 and Lmgq1, which are also diet-dependent. Interestingly, Fmgq2 and Fmgq3 affect fat gain directly, while Fmgq1 influences fat gain directly and via an intermediate change in serum cholesterol. These results demonstrate how precision nutrition will be advanced through the integration of genetic variation and sex in physiological responses to diets varied in carbohydrate composition.
Collapse
Affiliation(s)
- Anna C. Salvador
- grid.412408.bDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Danny Arends
- Züchtungsbiologie und molekulare Genetik, Albrecht Daniel Thaer-Institut, Berlin, Germany
| | - William T. Barrington
- grid.412408.bDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX USA
| | - Ahmed M. Elsaadi
- grid.412408.bDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX USA
| | - Gudrun A. Brockmann
- Züchtungsbiologie und molekulare Genetik, Albrecht Daniel Thaer-Institut, Berlin, Germany
| | - David W. Threadgill
- grid.412408.bDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX USA
| |
Collapse
|
22
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Systematic analysis of long intergenic non-coding RNAs in C. elegans germline uncovers roles in somatic growth. RNA Biol 2020; 18:435-445. [PMID: 32892705 DOI: 10.1080/15476286.2020.1814549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides that are transcribed from non-coding loci yet undergo biosynthesis similar to coding mRNAs. The disproportional number of lincRNAs expressed in testes suggests that lincRNAs are important during gametogenesis, but experimental evidence has implicated very few lincRNAs in this process. We took advantage of the relatively limited number of lincRNAs in the genome of the nematode Caenorhabditis elegans to systematically analyse the functions of lincRNAs during meiosis. We deleted six lincRNA genes that are highly and dynamically expressed in the C. elegans gonad and tested the effects on central meiotic processes. Surprisingly, whereas the lincRNA deletions did not strongly impact fertility, germline apoptosis, crossovers, or synapsis, linc-4 was required for somatic growth. Slower growth was observed in linc-4-deletion mutants and in worms depleted of linc-4 using RNAi, indicating that linc-4 transcripts are required for this post-embryonic process. Unexpectedly, analysis of worms depleted of linc-4 in soma versus germline showed that the somatic role stems from linc-4 expression in germline cells. This unique feature suggests that some lincRNAs, like some small non-coding RNAs, are required for germ-soma interactions.
Collapse
|
25
|
Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet 2020; 37:2569-2579. [PMID: 32780318 DOI: 10.1007/s10815-020-01909-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim of the present study was to identify key microRNAs (miRNAs) in porcine follicular fluid (FF) that regulate oocyte growth. METHODS miRNAs contained in FF were determined by small RNA-seq of exosome RNA. Upstream regulator miRNA was determined by ingenuity pathway analysis using differentially expressed genes in granulosa cells (GCs) between small follicles (1-2 mm in diameter) and large follicles (3-5 mm), and between follicles containing oocytes of high developmental ability and follicles containing oocytes of low developmental ability. The candidate miRNAs overlapping among the three miRNAs group were determined. Lastly, the effect of supplementation with FF, exosome-depleted FFs, or each miRNA on in vitro oocyte growth was examined. RESULTS The miRNAs determined were miR-17, -27, -92a, and -145. These miRNAs were found in the spent culture medium of oocytes and granulosa cells complexes and serum by small RNA sequencing. Culturing of oocytes and granulosa cells complexes collected from porcine early antral follicles (0.5-0.7 mm in diameter) with FF for 14 days improved oocyte growth; depletion of exosomes from the FFs neutralized the beneficial effect observed. miR-92a mimic increased the antrum formation and diameter, together with acetylated levels of H4K12 in oocytes. In addition, supplementation of miRNA mimics miR-17b, -92a, and -145b improved the rate of chromatin configuration, and miR-17b and -92a mimics improved the developmental ability of oocytes to the blastocyst stage. CONCLUSION miR-17, -92a, and -145 are major miRNA candidates in follicular fluids regulating oocyte growth.
Collapse
Affiliation(s)
- Yuki Inoue
- Department of Animal Sciences, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Yasuhisa Munakata
- Department of Animal Sciences, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryoka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Koumei Shirasuna
- Department of Animal Sciences, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Sciences, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan.
| |
Collapse
|
26
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
27
|
Bianchi S, Nottola SA, Torge D, Palmerini MG, Necozione S, Macchiarelli G. Association between Female Reproductive Health and Mancozeb: Systematic Review of Experimental Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072580. [PMID: 32283742 PMCID: PMC7177957 DOI: 10.3390/ijerph17072580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Abstract
Mancozeb is a widely used fungicide approved for use in agriculture in many countries with long persistence in the environment and consequent bioaccumulation in tissues and biological fluids. Despite the large amount of studies published in recent years, the relationship between mancozeb exposure and female reproductive health is not fully elucidated. In order to summarize current evidence on mancozeb exposure and female reproductive disease, we performed a systematic review of literature. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to make this review. An adapted version of the National Toxicology Program’s Office of Health and Assessment and Translation (OHAT) framework was used to evaluate the risk of bias. Electronic search on two databases (PubMed and Scopus) was used to find experimental studies (in vitro and in vivo) on mancozeb exposure. The database search identified 250 scientific articles, 20 of which met our inclusion criteria. Selected data were then reviewed and summarized in tables. Overall, mancozeb represents a hazard for female reproductive health, with different mechanisms of action. Undoubtedly more experimental and epidemiological studies are required to definitively validate mancozeb as reproductive toxicant.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-8072
| | - Diana Torge
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefano Necozione
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| |
Collapse
|
28
|
Bink DI, Lozano-Vidal N, Boon RA. Long Non-Coding RNA in Vascular Disease and Aging. Noncoding RNA 2019; 5:ncrna5010026. [PMID: 30893946 PMCID: PMC6468806 DOI: 10.3390/ncrna5010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the most prominent cause of death in Western society, especially in the elderly. With the increasing life expectancy, the number of patients with cardiovascular diseases will rise in the near future, leading to an increased healthcare burden. There is a need for new therapies to treat this growing number of patients. The discovery of long non-coding RNAs has led to a novel group of molecules that could be considered for their potential as therapeutic targets. This review presents an overview of long non-coding RNAs that are regulated in vascular disease and aging and which might therefore give insight into new pathways that could be targeted to diagnose, prevent, and/or treat vascular diseases.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, 1081HV Amsterdam, The Netherlands.
| | - Noelia Lozano-Vidal
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, 1081HV Amsterdam, The Netherlands.
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, 1081HV Amsterdam, The Netherlands.
- Institute of Cardiovascular Regeneration, Goethe University, 60596 Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 13347 Berlin, Germany.
| |
Collapse
|
29
|
Non-coding RNAs as integrators of the effects of age, genes, and environment on ovarian aging. Cell Death Dis 2019; 10:88. [PMID: 30692523 PMCID: PMC6349928 DOI: 10.1038/s41419-019-1334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|