1
|
Peng YC, Wu J, He X, Dai J, Xia L, Valenzuela-Leon P, Tumas KC, Singh BK, Xu F, Ganesan S, Munir S, Calvo E, Huang R, Liu C, Long CA, Su XZ. NAD activates olfactory receptor 1386 to regulate type I interferon responses in Plasmodium yoelii YM infection. Proc Natl Acad Sci U S A 2024; 121:e2403796121. [PMID: 38809710 PMCID: PMC11161801 DOI: 10.1073/pnas.2403796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-β and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/β levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-β mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-β responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.
Collapse
Affiliation(s)
- Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Lu Xia
- Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410083, People’s Republic of China
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
2
|
Olanlokun JO, Abiodun OW, Adegbuyi AT, Koorbanally NA, Olorunsogo OO. Mefloquine-curcumin combinations improve host mitochondrial respiration and decrease mitotoxic effects of mefloquine in Plasmodium berghei-infected mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100180. [PMID: 38725654 PMCID: PMC11081784 DOI: 10.1016/j.crphar.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Plasmodium infection is a health challenge. Although, antiplasmodial drugs kill the parasites, information on the effects of infection and drugs on the expression of some genes is limited. Malaria was induced in two different studies using NK65 (chloroquine-susceptible, study 1), and ANKA (chloroquine-resistant, study 2) strains of Plasmodium berghei in 30 male Swiss mice (n = 5) in each study. Mice orally received 10 mL/kg distilled water, (infected control), Mefloquine (MF) (10 mg/kg), MF and Curcumin (CM) (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (un-infected) were used as the control. After treatment, total Ribonucleic acid (RNA) was isolated from liver and erythrocytes while Deoxyribonucleic acid (DNA)-free RNA were converted to cDNA. Polymerase Chain Reaction (PCR) amplification was performed and relative expressions of FIKK12, AQP3, P38 MAPK, NADH oxidoreductase, and cytochrome oxidase expressions were determined. Markers of glycolysis, toxicity and antioxidants were determined using ELISA assays. While the expression of FIKK12 was blunted by MF in the susceptible study, co-treatment with curcumin (25 mg/kg) yielded the same results in the chloroquine-resistant study. Similar results were obtained on AQP3 in both studies. Curcumin decreased P38 MAPK in both studies. Plasmodium infection decreased NADH oxidoreductase and cytochrome oxidase but mefloquine-curcumin restored the expression of these genes. While glycolysis and toxicity were inhibited, antioxidant systems improved in the treated groups. Curcumin is needed for effective therapeutic efficacy and prevention of toxicity. Plasmodium infection and treatment modulate the expressions of some genes in the host. Curcumin combination with mefloquine modulates the expression of some genes in the host.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oshireku Wisdom Abiodun
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Neil Anthony Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Tiwari G, Khanna A, Tyagi R, Mishra VK, Narayana C, Sagar R. Copper-catalyzed synthesis of pyrazolo[1,5-a]pyrimidine based triazole-linked glycohybrids: mechanistic insights and bio-applications. Sci Rep 2024; 14:529. [PMID: 38177184 PMCID: PMC10766964 DOI: 10.1038/s41598-023-50202-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Hybrid molecules maintain their stronghold in the drug market, with over 60% of drug candidates in pharmaceutical industries. The substantial expenses for developing and producing biologically privileged drugs are expected to create opportunities for producing hybrid molecule-based drugs. Therefore, we have developed a simple and efficient copper-catalyzed approach for synthesizing a wide range of triazole-linked glycohybrids derived from pyrazolo[1,5-a]pyrimidines. Employing a microwave-assisted copper-catalyzed approach, we developed a concise route using various 7-O-propargylated pyrazolo[1,5-a]pyrimidines and 1-azidoglycosides. This strategy afforded a series of twenty-seven glycohybrids up to 98% yield with diverse stereochemistry. All were achieved within a remarkably shortened time frame. Our investigation extends to evaluating the anticancer potential of these synthesized triazole-linked pyrazolo[1,5-a] pyrimidine-based glycohybrids. In-vitro assays against MCF-7, MDA-MB231, and MDA-MB453 cell lines reveal intriguing findings. (2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-(4-(((5-(4-chlorophenyl)pyrazolo[1,5-a]pyrimidin-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate emerges as a standout with better anticancer activity against MDA-MB231 cells (IC50 = 29.1 µM), while (2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(4-(((5-(4-chlorophenyl)pyrazolo[1,5-a]pyrimidin-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate demonstrates the best inhibitory effects against MCF-7 cells (IC50 = 15.3 µM) in all derived compounds. These results align with our docking analysis and structure-activity relationship (SAR) investigations, further validating the in-vitro outcomes. This work not only underscores the synthetic utility of our devised protocol but also highlights the promising potential of these glycohybrids as candidates for further anticancer therapeutic exploration.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chintam Narayana
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Ferrario E, Kallio JP, Strømland Ø, Ziegler M. Novel Calcium-Binding Motif Stabilizes and Increases the Activity of Aspergillus fumigatus Ecto-NADase. Biochemistry 2023; 62:3293-3302. [PMID: 37934975 PMCID: PMC10666276 DOI: 10.1021/acs.biochem.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential molecule in all kingdoms of life, mediating energy metabolism and cellular signaling. Recently, a new class of highly active fungal surface NADases was discovered. The enzyme from the opportunistic human pathogen Aspergillus fumigatus was thoroughly characterized. It harbors a catalytic domain that resembles that of the tuberculosis necrotizing toxin from Mycobacterium tuberculosis, which efficiently cleaves NAD+ to nicotinamide and ADP-ribose, thereby depleting the dinucleotide pool. Of note, the A. fumigatus NADase has an additional Ca2+-binding motif at the C-terminus of the protein. Despite the presence of NADases in several fungal divisions, the Ca2+-binding motif is uniquely found in the Eurotiales order, which contains species that have immense health and economic impacts on humans. To identify the potential roles of the metal ion-binding site in catalysis or protein stability, we generated and characterized A. fumigatus NADase variants lacking the ability to bind calcium. X-ray crystallographic analyses revealed that the mutation causes a drastic and dynamic structural rearrangement of the homodimer, resulting in decreased thermal stability. Even though the calcium-binding site is at a long distance from the catalytic center, the structural reorganization upon the loss of calcium binding allosterically alters the active site, thereby negatively affecting NAD-glycohydrolase activity. Together, these findings reveal that this unique calcium-binding site affects the protein fold, stabilizing the dimeric structure, but also mediates long-range effects resulting in an increased catalytic rate.
Collapse
Affiliation(s)
- Eugenio Ferrario
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Juha P. Kallio
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Øyvind Strømland
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Mathias Ziegler
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
- Leibniz
Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbargstraße 11A, Jena 07745, Germany
| |
Collapse
|
5
|
Kaushal D, Singh DK, Mehra S. Immune Responses in Lung Granulomas during Mtb/HIV Co-Infection: Implications for Pathogenesis and Therapy. Pathogens 2023; 12:1120. [PMID: 37764928 PMCID: PMC10534770 DOI: 10.3390/pathogens12091120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
HIV and TB are the cause of significant worldwide mortality and pose a grave danger to the global public health. TB is the leading cause of death in HIV-infected persons, with one in four deaths attributable to TB. While the majority of healthy individuals infected with M. tuberculosis (Mtb) are able to control the infection, co-infection with HIV increases the risk of TB infection progressing to TB disease by over 20-fold. While antiretroviral therapy (ART), the cornerstone of HIV care, decreases the incidence of TB in HIV-uninfected people, this remains 4- to 7-fold higher after ART in HIV-co-infected individuals in TB-endemic settings, regardless of the duration of therapy. Thus, the immune control of Mtb infection in Mtb/HIV-co-infected individuals is not fully restored by ART. We do not fully understand the reasons why Mtb/HIV-co-infected individuals maintain a high susceptibility to the reactivation of LTBI, despite an effective viral control by ART. A deep understanding of the molecular mechanisms that govern HIV-induced reactivation of TB is essential to develop improved treatments and vaccines for the Mtb/HIV-co-infected population. We discuss potential strategies for the mitigation of the observed chronic immune activation in combination with both anti-TB and anti-retroviral approaches.
Collapse
Affiliation(s)
| | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
6
|
Ojha SB, Sah RK, Madan E, Bansal R, Roy S, Singh S, Dhangadamajhi G. Cuscuta reflexa Possess Potent Inhibitory Activity Against Human Malaria Parasite: An In Vitro and In Vivo Study. Curr Microbiol 2023; 80:189. [PMID: 37074472 DOI: 10.1007/s00284-023-03289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023]
Abstract
Drug resistance to practically all antimalarial drugs in use necessitate the development of new chemotherapeutics against malaria. In this aspect, traditionally used plants with folklore reputation are the pillar for drug discovery. Cuscuta reflexa being traditionally used in the treatment of malaria in Odisha, India we aimed to experimentally validate its antimalarial potential. Different solvent extracts of C. reflexa or column fractions from a promising solvent extract were evaluated for in vitro anti-plasmodial activity against Plasmodium falciparum strain Pf3D7. Potent fractions were further evaluated for inhibition of parasite growth against different drug resistant strains. Safety of these fractions was determined by in vitro cyto-toxicity, and therapeutic effectiveness was evaluated by suppression of parasitemia and improvement in survival of experimental mice. Besides, their immunomodulatory effect was investigated in Pf-antigen stimulated RAW cells. GCMS fingerprints of active fractions was determined. Column separation of methanol extract which showed the highest in vitro antiplasmodial activity (IC50 = 14.48 μg/ml) resulted in eleven fractions, three of which (F2, F3, and F4) had anti-plasmodial IC50 ranging from ≤ 10 to 2.2 μg/ml against various P. falciparum strains with no demonstration of in vitro cytotoxicity. F4 displayed the highest in vivo parasite suppression, and had a mean survival time similar to artesunate (19.3 vs. 20.6 days). These fractions significantly modulated expression of inflammatory cytokines in Pf-antigen stimulated RAW cells. The findings of the study confirm the antimalarial potential of C. reflexa. Exploration of phyto-molecules in GCMS fingerprints of active fractions is warranted for possible identification of lead anti-malarial phyto-drugs.
Collapse
Affiliation(s)
- Sashi Bhusan Ojha
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ruby Bansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaktirekha Roy
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India.
| |
Collapse
|
7
|
Targeting Artemisinin-Resistant Malaria by Repurposing the Anti-Hepatitis C Virus Drug Alisporivir. Antimicrob Agents Chemother 2022; 66:e0039222. [PMID: 36374050 PMCID: PMC9765015 DOI: 10.1128/aac.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of Plasmodium falciparum resistance raises an urgent need to find new antimalarial drugs. Here, we report the rational repurposing of the anti-hepatitis C virus drug, alisporivir, a nonimmunosuppressive analog of cyclosporin A, against artemisinin-resistant strains of P. falciparum. In silico docking studies and molecular dynamic simulation predicted strong interaction of alisporivir with PfCyclophilin 19B, confirmed through biophysical assays with a Kd value of 354.3 nM. Alisporivir showed potent antimalarial activity against chloroquine-resistant (PfRKL-9 with resistance index [Ri] 2.14 ± 0.23) and artemisinin-resistant (PfKelch13R539T with Ri 1.15 ± 0.04) parasites. The Ri is defined as the ratio between the IC50 values of the resistant line to that of the sensitive line. To further investigate the mechanism involved, we analyzed the expression level of PfCyclophilin 19B in artemisinin-resistant P. falciparum (PfKelch13R539T). Semiquantitative real-time transcript, Western blot, and immunofluorescence analyses confirmed the overexpression of PfCyclophilin 19B in PfKelch13R539T. A 50% inhibitory concentration in the nanomolar range, together with the targeting of PfCyclophilin 19B, suggests that alisporivir can be used in combination with artemisinin. Since artemisinin resistance slows the clearance of ring-stage parasites, we performed a ring survival assay on artemisinin-resistant strain PfKelch13R539T and found significant decrease in parasite survival with alisporivir. Alisporivir was found to act synergistically with dihydroartemisinin and increase its efficacy. Furthermore, alisporivir exhibited antimalarial activity in vivo. Altogether, with the rational target-based Repurposing of alisporivir against malaria, our results support the hypothesis that targeting resistance mechanisms is a viable approach toward dealing with drug-resistant parasite.
Collapse
|
8
|
Mahamood A, Yaku K, Hikosaka K, Gulshan M, Inoue SI, Kobayashi F, Nakagawa T. Nmnat3 deficiency in hemolytic anemia exacerbate malaria infection. Biochem Biophys Res Commun 2022; 637:58-65. [DOI: 10.1016/j.bbrc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
9
|
The use of phosphorescence oxygen analyzer to measure the effects of rotenone and 1-methyl-4-phenylpyridinium on striatal cellular respiration in C57BL6 mice. Heliyon 2021; 7:e07219. [PMID: 34159274 PMCID: PMC8203712 DOI: 10.1016/j.heliyon.2021.e07219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background We have previously reported on the use of the phosphorescence oxygen analyzer for measuring spinal cord cellular respiration. This analytical tool is used here to investigate the effects of two inhibitors of NADH:ubiquinone oxidoreductase, rotenone and 1-methyl-4-phenylpyridinium, on cellular respiration in striatal tissue. Both neurotoxins can induce Parkinson's disease-like symptoms, and have been used to study this disease in animals. Our hypothesis is that striatal cellular respiration is a sensitive biomarker for the adverse effects of toxins, and the phosphorescence oxygen analyzer can be used as a screening tool for this purpose. Methods Striatal fragments were collected from C57BL6 mice and immersed in Pd phosphor solution [phosphate-buffered saline, 3.0 μM 'Pd(II)-meso-tetra (sulfophenyl) tetrabenzoporphyrin' and 0.5% fat-free albumin, with and without 5.0 mM glucose]. The sample was transferred to a glass vial containing 2-mL Pd phosphor solution. The vial was sealed from air and placed in the instrument that measures dissolved oxygen as function of time. Immunoblots of the studied tissue were positive for the dopamine neuronal cell biomarker tyrosine hydroxylase. Results Striatal oxygen consumption was linear with time, exhibiting zero-order kinetics of oxygen reduction by cytochrome oxidase. Cyanide sensitive respiration was ≥90%, confirming oxygen was reduced by cytochrome oxidase. The rate of respiration increased by ~2-fold in the presence of glucose. Striatal oxygen consumption in the presence of rotenone or 1-methyl-4-phenylpyridinium was exponential, demonstrating impaired respiration. Conclusion Striatal cellular mitochondrial oxygen consumption was impaired by the studied inhibitors of complex I of the respiratory chain. This effect is expected to deplete NAD+ (oxidized nicotinamide adenine dinucleotide), a principle driver of glycolysis. In vivo studies are required to determine if these toxin-induced metabolic derangements contribute to the development of sporadic Parkinson's disease. This analytic tool can be used to screen environmental toxins for their in vitro effects on the striatum.
Collapse
|
10
|
Liu X, Feng W, Yao F, Zhang J, Ayesha R, Chen T, Shi X, Qiao X, Ma L, Yu S, Kang XF. Biomimetic Molecular Clamp Nanopores for Simultaneous Quantifications of NAD + and NADH. Anal Chem 2021; 93:7118-7124. [PMID: 33905222 DOI: 10.1021/acs.analchem.1c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.
Collapse
Affiliation(s)
- Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanyue Feng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jinlei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rauf Ayesha
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xixi Qiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Luping Ma
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sha Yu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|