1
|
Li J, Gan J, Shi S, Huang J, Yang Y. The potential of targeting autophagy-related non-coding RNAs in the treatment of lung cancer. Front Pharmacol 2025; 16:1551258. [PMID: 40438586 PMCID: PMC12116551 DOI: 10.3389/fphar.2025.1551258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
Lung cancer is the most prevalent malignant tumor worldwide and remains the leading cause of cancer-related mortality. Despite advances in treatment development, lung cancer patients often face poor quality of life and low survival rates. Increasing evidence highlights the significant roles of autophagy and non-coding RNAs (ncRNAs) in the initiation, progression, and therapeutic response of lung cancer. Autophagy and ncRNAs can function as both tumor-promoting and tumor-suppressing factors in lung cancer. Therefore, investigating the roles of autophagy and ncRNAs in lung cancer provides valuable insights into its pathophysiology. At the same time, non-coding RNA also plays an important role in regulating autophagy. This study reveals that autophagy affects the occurrence and development of lung cancer through multiple pathways. Then, we also studied that in lung cancer, ncRNAs (e.g., lncRNAs, miRNAs, circRNAs and piRNAs) can regulate autophagy to promote or inhibit tumorigenesis, metastasis and drug resistance in lung cancer. Finally, the problems and solutions of autophagy and ncRNAs in the treatment of lung cancer were explored. These findings suggest that autophagy and ncRNAs can be potential targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Juan Li
- College of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, Chengdu Wenjiang District People’s Hospital, Chengdu, Sichuan
| | - Jimei Gan
- College of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, Chengdu Wenjiang District People’s Hospital, Chengdu, Sichuan
| | - Shenggan Shi
- Department of Pharmacy, Chengdu Wenjiang District People’s Hospital, Chengdu, Sichuan
| | - Juying Huang
- Department of Pharmacy, Chengdu Wenjiang District People’s Hospital, Chengdu, Sichuan
| | - Yong Yang
- College of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hu C, Lu CH, Zheng J, Kang J, Huang DJ, He C, Liu YH, Liu ZR, Wu D, Dou YY, Zhang YM, Lin CY, Han R, He Y. Anti-EGFR therapy can overcome acquired resistance to the third-generation ALK-tyrosine kinase inhibitor lorlatinib mediated by activation of EGFR. Acta Pharmacol Sin 2025:10.1038/s41401-025-01511-z. [PMID: 40119140 DOI: 10.1038/s41401-025-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 03/24/2025]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality. Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) are standard treatments for EML4-ALK-positive NSCLC, but resistance to these agents remains a challenge. This study aimed to determine the mechanisms of acquired resistance to the third-generation ALK-TKI lorlatinib. Lorlatinib-resistant cell lines were established by prolonged exposure to a high concentration of lorlatinib. Activation of epidermal growth factor receptor (EGFR) caused by a decrease in endocytosis and degradation of protein was demonstrated to play an essential role in acquired resistance to lorlatinib. The interaction between the EGFR and ALK was investigated to identify binding sites and conformational changes in ALK. We performed high-throughput compound screening using a small-molecule drugs library comprising 510 antitumor agents in an effort to discover small-molecule compounds that target EGFR in lorlatinib-resistant cells. Combination treatment with ALK-TKI and anti-EGFR agents suppressed acquired resistance to ALK-TKIs caused by activation of EGFR in vitro and in vivo, suggesting that the combination of lorlatinib and an anti-EGFR agent could be effective in patients with lorlatinib-resistant NSCLC. This research provides insights into the mechanism of resistance to lorlatinib and suggests that it can be overcome by anti-EGFR treatment, offering a promising approach for treating resistance to lorlatinib mediated by EGFR activation in patients with ALK-positive NSCLC.
Collapse
Affiliation(s)
- Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Cong-Hua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dai-Juan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Hui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhan-Rui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Yao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Min Zhang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Cai-Yu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rui Han
- Department of Respiratory Disease, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, China.
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Yang C, Pang X, Teng S, Wilson S, Gu X, Xie G. MYC Overexpression Enhances Sensitivity to MEK Inhibition in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2025; 26:588. [PMID: 39859304 PMCID: PMC11766173 DOI: 10.3390/ijms26020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the expression of MYC, a transcription factor critical for the therapeutic response. MYC overexpression markedly enhanced the sensitivity of HNSCC cells to trametinib, as evidenced by delayed wound healing and reduced colony formation. Cell cycle analysis revealed that trametinib induced a G1 phase arrest, whereas MYC overexpression accelerated cell cycle progression, with a reduced induction of p27 and p21 and diminished decreases in E2F1 and phospho-Ser2/5 levels. Flow cytometry and protein analyses demonstrated that MYC overexpression amplified trametinib-induced apoptosis and DNA damage, as evidenced by elevated levels of pro-apoptotic markers (p53, cleaved PARP, and BIM) and γH2AX. In vivo xenograft models confirmed these findings, showing increased sensitivity to trametinib in MYC-overexpressing tumors. Moreover, MEK inhibition increased autophagy in HNSCC cells, a factor critical for therapeutic resistance. Inhibiting trametinib-induced autophagy further enhanced apoptotic cell death. These findings suggest that MYC expression and autophagy play crucial roles in HNSCC's response to MEK inhibition. Combining trametinib with autophagy inhibition may improve therapeutic outcomes in HNSCC.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA; (C.Y.); (X.P.); (S.W.); (X.G.)
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC 20059, USA
| | - Xiaowu Pang
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA; (C.Y.); (X.P.); (S.W.); (X.G.)
| | - Shaolei Teng
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA;
| | - Shamel Wilson
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA; (C.Y.); (X.P.); (S.W.); (X.G.)
| | - Xinbin Gu
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA; (C.Y.); (X.P.); (S.W.); (X.G.)
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC 20059, USA
| | - Guiqin Xie
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC 20059, USA; (C.Y.); (X.P.); (S.W.); (X.G.)
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC 20059, USA
| |
Collapse
|
4
|
Chu F, Zhang W, Hu H. New findings on the incidence and management of CNS adverse reactions in ALK-positive NSCLC with lorlatinib treatment. Discov Oncol 2024; 15:444. [PMID: 39271557 PMCID: PMC11399364 DOI: 10.1007/s12672-024-01339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
To explore the presentation and control of CNS adverse reactions in patients with ALK-positive NSCLC treated with lorlatinib. This study includes a retrospective case report from Sir Run Run Shaw Hospital on a lorlatinib-treated patient with CNS adverse reactions and a systematic literature review of similar cases until January 2023. The report detailed a case of a 74-year-old male with Grade III CNS adverse reactions 25 days after starting lorlatinib, which were reversible with dose modification and pharmacotherapy. The review indicated a 19.39% occurrence rate of such reactions, with a 17% improvement rate post-dose adjustment. CNS adverse reactions frequently occur in ALK-positive NSCLC patients on lorlatinib, yet they are reversible with appropriate management. Research should continue to optimize treatment protocols to decrease these reactions' frequency.
Collapse
Affiliation(s)
- Fanfan Chu
- Department of Admission Preparation Center, College of Medicine, QianTang Campus of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenxi Zhang
- Department of Admission Preparation Center, College of Medicine, QianTang Campus of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Hu
- Department of Medical Oncology, College of Medicine, QianTang Campus of Sir Run Run Shaw Hospital, Zhejiang University, No. 368, Xiasha Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Aya A. Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
6
|
Liu H, Wang Q, Lan W, Liu D, Huang J, Yao J. Radiosensitization effect of quinoline-indole-schiff base derivative 10E on non-small cell lung cancer cells in vitro and in tumor xenografts. Invest New Drugs 2024; 42:405-417. [PMID: 38880855 DOI: 10.1007/s10637-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Hongwei Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Qianqian Wang
- West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wanying Lan
- Guixi Community Health Center of the Chengdu Hi-Tech Zone, Chengdu, 610000, China
| | - Duanya Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Jinhua, 321004, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
7
|
Ergul M, Kilic-Kurt Z, Aka Y, Kutuk O, Sahin-Inan ZD. The mechanism of anticancer effects of some pyrrolopyrimidine derivatives on HT-29 human colon cancer cells. Toxicol In Vitro 2024; 95:105757. [PMID: 38061602 DOI: 10.1016/j.tiv.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In the present work, the mechanism of anticancer activity of some pyrrolopyrimidine derivatives was evaluated. Compounds 5 and 8 exhibiting significant antiproliferative activity against HT-29 cells with IC50 values of 4.17 μM and 2.96, arrested the cells at the G2/M phase and significantly induced apoptosis. The apoptotic potential of the compounds has been verified via ELISA assay, which resulted in increased BAX, PUMA, BIM, and cleaved caspase 3 expression and decreased BCL-XL and MCL-1 protein levels in HT-29 cells. Moreover, the immunofluorescence technique showing that compounds 5 and 8-treatment reduced Ki67 immunolocalization and increased the caspase 3 and p53 immunolocalization confirmed the apoptotic activity. While treatment of HT-29 cells to compounds 5 and 8 inhibited Akt and ERK1/2, there are no alterations in JNK and p38 signaling pathways. According to molecular docking results, compounds 5 and 8 occupied the active site of Akt kinase and showed important hydrogen bonding interactions with key amino acids. Also, siRNA-mediated depletion of BIM, PUMA, and BAX/BAK expression decreased apoptotic response in HT-29 cells upon exposure to compound 5 and compound 8. Compounds 5 and 8 trigger the activation of mitochondrial apoptosis in HT-29 cells. Additionally, we found that proapoptotic BH3-only proteins BIM and PUMA are required for the full engagement of mitochondrial apoptosis signaling. However, p53 was dispensable for compound 5- or compound 8-induced apoptosis in HT-29 cells.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Zuhal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Yeliz Aka
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Zeynep Deniz Sahin-Inan
- Department of Histology and Embryology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
9
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|