1
|
Qi J, Tan F, Zhang L, Zhou Y, Zhang Z, Sun Q, Li N, Fang Y, Chen X, Wu Y, Zhong G, Chai R. Critical role of TPRN rings in the stereocilia for hearing. Mol Ther 2024; 32:204-217. [PMID: 37952086 PMCID: PMC10787140 DOI: 10.1016/j.ymthe.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yunhao Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Southeast University Shenzhen Research Institute, Shenzhen 518063, China.
| |
Collapse
|
2
|
Hargreaves R, Duwé S, Rozario AM, Funston AM, Tabor RF, Dedecker P, Whelan DR, Bell TDM. Live-Cell SOFI Correlation with SMLM and AFM Imaging. ACS BIO & MED CHEM AU 2023; 3:261-269. [PMID: 37363082 PMCID: PMC10288496 DOI: 10.1021/acsbiomedchemau.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/28/2023]
Abstract
Standard optical imaging is diffraction-limited and lacks the resolving power to visualize many of the organelles and proteins found within the cell. The advent of super-resolution techniques overcame this barrier, enabling observation of subcellular structures down to tens of nanometers in size; however these techniques require or are typically applied to fixed samples. This raises the question of how well a fixed-cell image represents the system prior to fixation. Here we present the addition of live-cell Super-Resolution Optical Fluctuation Imaging (SOFI) to a previously reported correlative process using Single Molecule Localization Microscopy (SMLM) and Atomic Force Microscopy (AFM). SOFI was used with fluorescent proteins and low laser power to observe cellular ultrastructure in live COS-7 cells. SOFI-SMLM-AFM of microtubules showed minimal changes to the microtubule network in the 20 min between live-cell SOFI and fixation. Microtubule diameters were also analyzed through all microscopies; SOFI found diameters of 249 ± 68 nm and SMLM was 71 ± 33 nm. AFM height measurements found microtubules to protrude 26 ± 13 nm above the surrounding cellular material. The correlation of SMLM and AFM was extended to two-color SMLM to image both microtubules and actin. Two target SOFI was performed with various fluorescent protein combinations. rsGreen1-rsKAME, rsGreen1-Dronpa, and ffDronpaF-rsKAME fluorescent protein combinations were determined to be suitable for two target SOFI imaging. This correlative application of super-resolution live-cell and fixed-cell imaging revealed minimal artifacts created for the imaged target structures through the sample preparation procedure and emphasizes the power of correlative microscopy.
Collapse
Affiliation(s)
| | - Sam Duwé
- Advanced
Optical Microscopy Centre, Hasselt University, Diepenbeek 3590, Belgium
| | - Ashley M. Rozario
- Department
of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo 3552, Victoria, Australia
| | - Alison M. Funston
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
- ARC
Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Rico F. Tabor
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| | - Peter Dedecker
- Department
of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Donna R. Whelan
- Department
of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo 3552, Victoria, Australia
| | - Toby D. M. Bell
- School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
3
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
5
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
6
|
Hou S, Zhang J, Wu Y, Junmin C, Yuyu H, He B, Yang Y, Hong Y, Chen J, Yang J, Li S. FGF22 deletion causes hidden hearing loss by affecting the function of inner hair cell ribbon synapses. Front Mol Neurosci 2022; 15:922665. [PMID: 35966010 PMCID: PMC9366910 DOI: 10.3389/fnmol.2022.922665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Ribbon synapses are important structures in transmitting auditory signals from the inner hair cells (IHCs) to their corresponding spiral ganglion neurons (SGNs). Over the last few decades, deafness has been primarily attributed to the deterioration of cochlear hair cells rather than ribbon synapses. Hearing dysfunction that cannot be detected by the hearing threshold is defined as hidden hearing loss (HHL). The relationship between ribbon synapses and FGF22 deletion remains unknown. In this study, we used a 6-week-old FGF22 knockout mice model (Fgf22–/–) and mainly focused on alteration in ribbon synapses by applying the auditory brainstem response (ABR) test, the immunofluorescence staining, the patch-clamp recording, and quantitative real-time PCR. In Fgf22–/– mice, we found the decreased amplitude of ABR wave I, the reduced vesicles of ribbon synapses, and the decreased efficiency of exocytosis, which was suggested by a decrease in the capacitance change. Quantitative real-time PCR revealed that Fgf22–/– led to dysfunction in ribbon synapses by downregulating SNAP-25 and Gipc3 and upregulating MEF2D expression, which was important for the maintenance of ribbon synapses’ function. Our research concluded that FGF22 deletion caused HHL by affecting the function of IHC ribbon synapses and may offer a novel therapeutic target to meet an ever-growing demand for deafness treatment.
Collapse
Affiliation(s)
- Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chen Junmin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huang Yuyu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Yang
- Liaoning Medical Device Test Institute, Shenyang, China
| | - Yuren Hong
- Laboratory of Electron Microscope Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiarui Chen,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| | - Shuna Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shuna Li,
| |
Collapse
|
7
|
Jin Y, Liu XZ, Xie L, Xie W, Chen S, Sun Y. Targeted Next-Generation Sequencing Identified Novel Compound Heterozygous Variants in the PTPRQ Gene Causing Autosomal Recessive Hearing Loss in a Chinese Family. Front Genet 2022; 13:884522. [PMID: 35899188 PMCID: PMC9310072 DOI: 10.3389/fgene.2022.884522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is among the most common congenital sensory impairments. Genetic causes account for more than 50% of the cases of congenital hearing loss. The PTPRQ gene, encoding protein tyrosine phosphatase receptor Q, plays an important role in maintaining the stereocilia structure and function of hair cells. Mutations in the PTPRQ gene have been reported to cause hereditary sensorineural hearing loss. By using next-generation sequencing and Sanger sequencing, we identified a novel compound heterozygous mutation (c.997 G > A and c.6603-3 T > G) of the PTPRQ gene in a Chinese consanguineous family. This is the first report linking these two mutations to recessive hereditary sensorineural hearing loss. These findings contribute to the understanding of the relationship between genotype and hearing phenotype of PTPRQ-related hearing loss, which may be helpful to clinical management and genetic counseling.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Institute of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yu Sun,
| |
Collapse
|
8
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
9
|
Yan K, Qu C, Wang Y, Zong W, Xu Z. BAIAP2L2 Inactivation Does Not Affect Stereocilia Development or Maintenance in Vestibular Hair Cells. Front Mol Neurosci 2022; 15:829204. [PMID: 35242013 PMCID: PMC8886116 DOI: 10.3389/fnmol.2022.829204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Hair cells are mechanosensitive cells in the inner ear, characterized by dozens to hundreds of actin-based stereocilia and one tubulin-based kinocilium on the apical surface of each cell. Two types of hair cells, namely cochlear hair cells and vestibular hair cells (VHCs), are responsible for the sensation of sound and balancing information, respectively. In each hair cell, the stereocilia are organized into rows of increasing heights with the mechano-electrical transduction (MET) channels localized at the tips of shorter-row stereocilia. A so-called “row 2 protein complex” also localizes at the tips of shorter-row mechanotransducing stereocilia, which plays important roles in the maintenance of mechanotransducing stereocilia. Recently, we and others identified BAIAP2L2 as a new component of row 2 complex. Baiap2l2 inactivation causes degeneration of the mechanotransducing stereocilia in cochlear hair cells, and leads to profound hearing loss in mice. In the present work, we examined the role of BAIAP2L2 in the VHC stereocilia. Confocal microscopy reveals that BAIAP2L2 immunoreactivity is localized at the tips of shorter-row stereocilia in VHCs. However, stereocilia development and maintenance are unaffected in Baiap2l2–/– VHCs. Meanwhile, MET function of VHCs as well as vestibular functions are also unaffected in Baiap2l2–/– mice. Further investigations show that the stereociliary tip localization of CAPZB2, another known row 2 complex component, is not affected in Baiap2l2–/– VHCs, consistent with the unaltered stereocilia morphology. Taken together, our present data show that BAIAP2L2 inactivation does not affect vestibular hair cell stereocilia.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Wang S, Lin Y, Liang P, Li Q, Li W, Wang Z, Wang J, Chen J, Zha D. De novo Splice Site Mutation of the CHD7 Gene in a Chinese Patient with Typical CHARGE Syndrome. ORL J Otorhinolaryngol Relat Spec 2022; 84:417-424. [PMID: 35078197 DOI: 10.1159/000520376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION CHARGE syndrome (CS, OMIM 214800) is a rare genetic disease characterized by multiple congenital abnormalities, including coloboma, heart defect, atresia of the choanae, retardation of development, genital anomalies, and ear anomalies/deafness. The syndrome is mainly caused by a heterozygous variant in the chromodomain helicase DNA-binding protein 7 (CHD7) gene that encodes the CHD7 protein, involved in the ATP-dependent remodeling of chromatin. METHODS In this study, the next-generation sequencing targeted panel was used to detect a de novo variant c.3523-2A>G in the CHD7 gene in a patient with severe CS, congenital heart disease, left coloboma of the choroid, cryptorchidism, and congenital deafness. The Sanger sequencing confirmed the variant and clarified it as de novo variant by short tandem repeat analysis in the patient family. We analyzed the effect of a variant by Minigene assay to evaluate the pathogenicity of the variant. RESULTS In summary, cDNA analysis confirmed that c.3523-2A>G variant activates a cryptic splice site, resulting in 172 base pair missing in exon 15, leading to the premature truncation of the CHD7 protein (p.V1175Afs*11). CONCLUSION The present study functionally characterized the novel c.3523-2A>G variant in CHD7, providing further confirmatory evidence that it is associated with CS.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China,
| | - Ying Lin
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Pengfei Liang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Qiong Li
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Wei Li
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Zhaoxia Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jun Chen
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Zhao H, Xu Y, Song X, Zhang Q, Wang Y, Yin H, Bai X, Li J. Cisplatin induces damage of auditory cells: Possible relation with dynamic variation in calcium homeostasis and responding channels. Eur J Pharmacol 2022; 914:174662. [PMID: 34861207 DOI: 10.1016/j.ejphar.2021.174662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
AIMS The present study was aimed to explore the possible mechanism(s) underlying the action of cisplatin on auditory cells of mice in vitro, with special attention given to the dynamic variation in calcium homeostasis and responding channels. METHODS The apoptosis of auditory cells was tested by flow cytometry and TUNEL staining. The expressions of inositol 1,4,5-trisphosphate receptors (IP3R), voltage-dependent anion channel 1 (VDAC1), phosphorylated protein kinase R-like ER kinase (p-PERK), activating transcription factor 6 (ATF6), caspase-12, bcl-2, bax, cleaved caspase-9, cleaved caspase-3, beclin-1 and light chain 3β (LC3B) were measured by immunofluorescence or Western blotting. The calcium variations in subcellular structures were evaluated by Rhod-2 AM and Mag-Fluo-4 AM staining. The colocalization ratio between IP3R and beclin-1 was determined by immunocytochemistry. RESULTS We found that cisplatin exposure induced the apoptosis of HEI-OC1 cells and hair cells (HCs) in a caspase-3 dependent manner. This apoptotic process was attributed to the activation of endoplasmic reticulum (ER) stress and mitochondrial pathway and, meanwhile, accompanied by variation in calcium homeostasis and responding channels. Interestingly, we also observed that IP3R might dissociate from beclin-1 to motivate autophagy under the cisplatin insult. CONCLUSIONS Overall, the findings from this work indicate that cisplatin leads to auditory cell damage of mice in vitro, which is closely relevant to dynamic variation in calcium homeostasis and responding channels in subcellular structure.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinlei Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qingchen Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yajie Wang
- Institute of Eye and ENT, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Haiyan Yin
- School of Basic Medical Science, Jining Medical University, Jining, Shandong, 272000, China
| | - Xiaohui Bai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Eye and ENT, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
12
|
Xu P, Wang L, Peng H, Liu H, Liu H, Yuan Q, Lin Y, Xu J, Pang X, Wu H, Yang T. Disruption of Hars2 in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice. Front Cell Neurosci 2022; 15:804345. [PMID: 34975414 PMCID: PMC8715924 DOI: 10.3389/fncel.2021.804345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiuhong Pang
- Department of Otolaryngology-Head and Neck Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
13
|
Liang W, Zhao C, Chen Z, Yang Z, Liu K, Gong S. Sirtuin-3 Protects Cochlear Hair Cells Against Noise-Induced Damage via the Superoxide Dismutase 2/Reactive Oxygen Species Signaling Pathway. Front Cell Dev Biol 2021; 9:766512. [PMID: 34869361 PMCID: PMC8637754 DOI: 10.3389/fcell.2021.766512] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial oxidative stress is involved in hair cell damage caused by noise-induced hearing loss (NIHL). Sirtuin-3 (SIRT3) plays an important role in hair cell survival by regulating mitochondrial function; however, the role of SIRT3 in NIHL is unknown. In this study, we used 3-TYP to inhibit SIRT3 and found that this inhibition aggravated oxidative damage in the hair cells of mice with NIHL. Moreover, 3-TYP reduced the enzymatic activity and deacetylation levels of superoxide dismutase 2 (SOD2). Subsequently, we administered adeno-associated virus-SIRT3 to the posterior semicircular canals and found that SIRT3 overexpression significantly attenuated hair cell injury and that this protective effect of SIRT3 could be blocked by 2-methoxyestradiol, a SOD2 inhibitor. These findings suggest that insufficient SIRT3/SOD2 signaling leads to mitochondrial oxidative damage resulting in hair cell injury in NIHL. Thus, ameliorating noise-induced mitochondrial redox imbalance by intervening in the SIRT3/SOD2 signaling pathway may be a new therapeutic target for hair cell injury.
Collapse
Affiliation(s)
- Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Tang X, Sun Y, Xu C, Guo X, Sun J, Pan C, Sun J. Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway. Front Cell Dev Biol 2021; 9:751012. [PMID: 34869338 PMCID: PMC8637128 DOI: 10.3389/fcell.2021.751012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Caffeine is being increasingly used in daily life, such as in drinks, cosmetics, and medicine. Caffeine is known as a mild stimulant of the central nervous system, which is also closely related to neurologic disease. However, it is unknown whether caffeine causes hearing loss, and there is great interest in determining the effect of caffeine in cochlear hair cells. First, we explored the difference in auditory brainstem response (ABR), organ of Corti, stria vascularis, and spiral ganglion neurons between the control and caffeine-treated groups of C57BL/6 mice. RNA sequencing was conducted to profile mRNA expression differences in the cochlea of control and caffeine-treated mice. A CCK-8 assay was used to evaluate the approximate concentration of caffeine. Flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting were performed to detect the effects of SGK1 in HEI-OC1 cells and basilar membranes. In vivo research showed that 120 mg/ kg caffeine injection caused hearing loss by damaging the organ of Corti, stria vascularis, and spiral ganglion neurons. RNA-seq results suggested that SGK1 might play a vital role in ototoxicity. To confirm our observations in vitro, we used the HEI-OC1 cell line, a cochlear hair cell-like cell line, to investigate the role of caffeine in hearing loss. The results of flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting showed that caffeine caused autophagy and apoptosis via SGK1 pathway. We verified the interaction between SGK1 and HIF-1α by co-IP. To confirm the role of SGK1 and HIF-1α, GSK650394 was used as an inhibitor of SGK1 and CoCl2 was used as an inducer of HIF-1α. Western blot analysis suggested that GSK650394 and CoCl2 relieved the caffeine-induced apoptosis and autophagy. Together, these results indicated that caffeine induces autophagy and apoptosis in auditory hair cells via the SGK1/HIF-1α pathway, suggesting that caffeine may cause hearing loss. Additionally, our findings provided new insights into ototoxic drugs, demonstrating that SGK1 and its downstream pathways may be potential therapeutic targets for hearing research at the molecular level.
Collapse
Affiliation(s)
- Xiaomin Tang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Yuxuan Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Chenyu Xu
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Xiaotao Guo
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Jiaqiang Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Chunchen Pan
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| | - Jingwu Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, China
| |
Collapse
|
15
|
Chen D, Luo Y, Pan J, Chen A, Ma D, Xu M, Tang J, Zhang H. Long-Term Release of Dexamethasone With a Polycaprolactone-Coated Electrode Alleviates Fibrosis in Cochlear Implantation. Front Cell Dev Biol 2021; 9:740576. [PMID: 34778254 PMCID: PMC8589109 DOI: 10.3389/fcell.2021.740576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023] Open
Abstract
Cochlear implantation (CI) is the major treatment for severe sensorineural hearing loss. However, the fibrotic tissue forming around the electrodes reduces the treatment effectiveness of CI. Dexamethasone (DEX) is usually applied routinely in perioperative treatment of cochlear implantation (CI), but its diffusion in the inner ear after systemic administration is limited. In the present study, an electrode coated with polycaprolactone (PCL) loaded with dexamethasone was developed with a simple preparation process to maintain the stability of the electrode itself. The DEX-loaded PCL coating has good biocompatibility and does not change the smoothness, flexibility, or compliance of the implant electrode. Stable and effective DEX concentrations were maintained for more than 9 months. Compared with the pristine electrode, decreasing intracochlear fibrosis, protection of hair cells and spiral ganglion cells, and better residual hearing were observed 5 weeks after PCL-DEX electrode implantation. The PCL-DEX electrode has great potential in preventing hearing loss and fibrosis by regulating macrophages and inhibiting the expression of the fibrosis-related factors IL-1β, TNF-α, IL-4, and TGF-β1. In conclusion, the PCL-DEX electrode coating shows promising application in CI surgery.
Collapse
Affiliation(s)
- Dongxiu Chen
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Yanjing Luo
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jing Pan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Anning Chen
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Muqing Xu
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Hearing Research Center, Southern Medical University, Guangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, Zhang A, Guo D, Ji P, Fan C, Mei L, Hu H, Ye B, Xiang M. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol 2021; 9:750271. [PMID: 34760891 PMCID: PMC8573328 DOI: 10.3389/fcell.2021.750271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The transcriptomic landscape of mice with primary auditory neurons degeneration (PAND) indicates key pathways in its pathogenesis, including complement cascades, immune responses, tumor necrosis factor (TNF) signaling pathway, and cytokine-cytokine receptor interaction. Toll-like receptors (TLRs) are important immune and inflammatory molecules that have been shown to disrupt the disease network of PAND. In a PAND model involving administration of kanamycin combined with furosemide to destroy cochlear hair cells, Tlr 2/4 double knockout (DKO) mice had auditory preservation advantages, which were mainly manifested at 4–16 kHz. DKO mice and wild type (WT) mice had completely damaged cochlear hair cells on the 30th day, but the density of spiral ganglion neurons (SGN) in the Rosenthal canal was significantly higher in the DKO group than in the WT group. The results of immunohistochemistry for p38 and p65 showed that the attenuation of SGN degeneration in DKO mice may not be mediated by canonical Tlr signaling pathways. The SGN transcriptome of DKO and WT mice indicated that there was an inverted gene set enrichment relationship between their different transcriptomes and the SGN degeneration transcriptome, which is consistent with the morphology results. Core module analysis suggested that DKO mice may modulate SGN degeneration by activating two clusters, and the involved molecules include EGF, STAT3, CALB2, LOX, SNAP25, CAV2, SDC4, MYL1, NCS1, PVALB, TPM4, and TMOD4.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Mei
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Du H, Zhou H, Sun Y, Zhai X, Chen Z, Wang Y, Xu Z. The Rho GTPase Cell Division Cycle 42 Regulates Stereocilia Development in Cochlear Hair Cells. Front Cell Dev Biol 2021; 9:765559. [PMID: 34746154 PMCID: PMC8570139 DOI: 10.3389/fcell.2021.765559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Stereocilia are actin-based cell protrusions on the apical surface of inner ear hair cells, playing a pivotal role in hearing and balancing sensation. The development and maintenance of stereocilia is tightly regulated and deficits in this process usually lead to hearing or balancing disorders. The Rho GTPase cell division cycle 42 (CDC42) is a key regulator of the actin cytoskeleton. It has been reported to localize in the hair cell stereocilia and play important roles in stereocilia maintenance. In the present work, we utilized hair cell-specific Cdc42 knockout mice and CDC42 inhibitor ML141 to explore the role of CDC42 in stereocilia development. Our data show that stereocilia height and width as well as stereocilia resorption are affected in Cdc42-deficient cochlear hair cells when examined at postnatal day 8 (P8). Moreover, ML141 treatment leads to planar cell polarity (PCP) deficits in neonatal hair cells. We also show that overexpression of a constitutively active mutant CDC42 in cochlear hair cells leads to enhanced stereocilia developmental deficits. In conclusion, the present data suggest that CDC42 plays a pivotal role in regulating hair cell stereocilia development.
Collapse
Affiliation(s)
- Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hao Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yixiao Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Tu H, Zhang A, Fu X, Xu S, Bai X, Wang H, Gao J. SMPX Deficiency Causes Stereocilia Degeneration and Progressive Hearing Loss in CBA/CaJ Mice. Front Cell Dev Biol 2021; 9:750023. [PMID: 34722533 PMCID: PMC8551870 DOI: 10.3389/fcell.2021.750023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.
Collapse
Affiliation(s)
- Hailong Tu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xiaolong Fu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shiqi Xu
- University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiaohui Bai
- Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Haibo Wang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.,Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Jiangang Gao
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
MECOM promotes supporting cell proliferation and differentiation in cochlea. J Otol 2021; 17:59-66. [PMID: 35949554 PMCID: PMC9349018 DOI: 10.1016/j.joto.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Permanent damage to hair cells (HCs) is the leading cause of sensory deafness. Supporting cells (SCs) are essential in the restoration of hearing in mammals because they can proliferate and differentiate to HCs. MDS1 and EVI1 complex locus (MECOM) is vital in early development and cell differentiation and regulates the TGF-β signaling pathway to adapt to pathophysiological events, such as hematopoietic proliferation, differentiation and cells death. In addition, MECOM plays an essential role in neurogenesis and craniofacial development. However, the role of MECOM in the development of cochlea and its way to regulate related signaling are not fully understood. To address this problem, this study examined the expression of MECOM during the development of cochlea and observed a significant increase of MECOM at the key point of auditory epithelial morphogenesis, indicating that MECOM may have a vital function in the formation of cochlea and regeneration of HCs. Meanwhile, we tried to explore the possible effect and potential mechanism of MECOM in SC proliferation and HC regeneration. Findings from this study indicate that overexpression of MECOM markedly increases the proliferation of SCs in the inner ear, and the expression of Smad3 and Cdkn2b related to TGF signaling is significantly down-regulated, corresponding to the overexpression of MECOM. Collectively, these data may provide an explanation of the vital function of MECOM in SC proliferation and trans-differentiation into HCs, as well as its regulation. The interaction between MECOM, Wnt, Notch and the TGF-β signaling may provide a feasible approach to induce the regeneration of HCs.
Collapse
|
20
|
Wang W, Li J, Lan L, Xie L, Xiong F, Guan J, Wang H, Wang Q. Auditory Neuropathy as the Initial Phenotype for Patients With ATP1A3 c.2452 G > A: Genotype-Phenotype Study and CI Management. Front Cell Dev Biol 2021; 9:749484. [PMID: 34692702 PMCID: PMC8531511 DOI: 10.3389/fcell.2021.749484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: The objective of this study is to analyze the genotype–phenotype correlation of patients with auditory neuropathy (AN), which is a clinical condition featuring normal cochlear responses and abnormal neural responses, and ATP1A3 c.2452 G > A (p.E818K), which has been generally recognized as a genetic cause of cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome. Methods: Four patients diagnosed as AN by clinical evaluation and otoacoustic emission and auditory brainstem responses were recruited and analyzed by next-generation sequencing to identify candidate disease-causing variants. Sanger sequencing was performed on the patients and their parents to verify the results, and short tandem repeat-based testing was conducted to confirm the biological relationship between the parents and the patients. Furthermore, cochlear implantation (CI) was performed in one AN patient to reconstruct hearing. Results: Four subjects with AN were identified to share a de novo variant, p.E818K in the ATP1A3 gene. Except for the AN phenotype, patients 1 and 2 exhibited varying degrees of neurological symptoms, implying that they can be diagnosed as CAPOS syndrome. During the 15 years follow-up of patient 1, we observed delayed neurological events and progressive bilateral sensorineural hearing loss in pure tone threshold (pure tone audiometry, PTA). Patient 2 underwent CI on his left ear, and the result was poor. The other two patients (patient 3 and patient 4, who were 8 and 6 years old, respectively) denied any neurological symptoms. Conclusion:ATP1A3 p.E818K has rarely been documented in the Chinese AN population. Our study confirms that p.E818K in the ATP1A3 gene is a multiethnic cause of AN in Chinese individuals. Our study further demonstrates the significance of genetic testing for this specific mutation for identifying the special subtype of AN with somewhat favorable CI outcome and offers a more accurate genetic counseling about the specific de novo mutation.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Jin Li
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Lan Lan
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Linyi Xie
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Fen Xiong
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Jing Guan
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| |
Collapse
|
21
|
Huang Z, Xie Q, Li S, Zhou Y, He Z, Lin K, Yang M, Song P, Chen X. Promising Applications of Nanoparticles in the Treatment of Hearing Loss. Front Cell Dev Biol 2021; 9:750185. [PMID: 34692703 PMCID: PMC8529154 DOI: 10.3389/fcell.2021.750185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 01/10/2023] Open
Abstract
Hearing loss is one of the most common disabilities affecting both children and adults worldwide. However, traditional treatment of hearing loss has some limitations, particularly in terms of drug delivery system as well as diagnosis of ear imaging. The blood–labyrinth barrier (BLB), the barrier between the vasculature and fluids of the inner ear, restricts entry of most blood-borne compounds into inner ear tissues. Nanoparticles (NPs) have been demonstrated to have high biocompatibility, good degradation, and simple synthesis in the process of diagnosis and treatment, which are promising for medical applications in hearing loss. Although previous studies have shown that NPs have promising applications in the field of inner ear diseases, there is still a gap between biological research and clinical application. In this paper, we aim to summarize developments and challenges of NPs in diagnostics and treatment of hearing loss in recent years. This review may be useful to raise otology researchers’ awareness of effect of NPs on hearing diagnosis and treatment.
Collapse
Affiliation(s)
- Zilin Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuhao Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Qiu S, Zhao W, Gao X, Li D, Wang W, Gao B, Han W, Yang S, Dai P, Cao P, Yuan Y. Syndromic Deafness Gene ATP6V1B2 Controls Degeneration of Spiral Ganglion Neurons Through Modulating Proton Flux. Front Cell Dev Biol 2021; 9:742714. [PMID: 34746137 PMCID: PMC8568048 DOI: 10.3389/fcell.2021.742714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
ATP6V1B2 encodes the V1B2 subunit in V-ATPase, a proton pump responsible for the acidification of lysosomes. Mutations in this gene cause DDOD syndrome, DOORS syndrome, and Zimmermann-Laband syndrome, which share overlapping feature of congenital sensorineural deafness, onychodystrophy, and different extents of intellectual disability without or with epilepsy. However, the underlying mechanisms remain unclear. To investigate the pathological role of mutant ATP6V1B2 in the auditory system, we evaluated auditory brainstem response, distortion product otoacoustic emissions, in a transgenic line of mice carrying c.1516 C > T (p.Arg506∗) in Atp6v1b2, Atp6v1b2 Arg506*/Arg506* . To explore the pathogenic mechanism of neurodegeneration in the auditory pathway, immunostaining, western blotting, and RNAscope analyses were performed in Atp6v1b2Arg506*/Arg506* mice. The Atp6v1b2Arg506*/Arg506* mice showed hidden hearing loss (HHL) at early stages and developed late-onset hearing loss. We observed increased transcription of Atp6v1b1 in hair cells of Atp6v1b2Arg506*/Arg506* mice and inferred that Atp6v1b1 compensated for the Atp6v1b2 dysfunction by increasing its own transcription level. Genetic compensation in hair cells explains the milder hearing impairment in Atp6v1b2Arg506*/Arg506* mice. Apoptosis activated by lysosomal dysfunction and the subsequent blockade of autophagic flux induced the degeneration of spiral ganglion neurons and further impaired the hearing. Intraperitoneal administration of the apoptosis inhibitor, BIP-V5, improved both phenotypical and pathological outcomes in two live mutant mice. Based on the pathogenesis underlying hearing loss in Atp6v1b2-related syndromes, systemic drug administration to inhibit apoptosis might be an option for restoring the function of spiral ganglion neurons and promoting hearing, which provides a direction for future treatment.
Collapse
Affiliation(s)
- Shiwei Qiu
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- The Institute of Audiology and Balance Science, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Weihao Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- Department of Otolaryngology General Hospital of Tibet Military Region, Lhasa, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weiqian Wang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Bo Gao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Weiju Han
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China
| | - Yongyi Yuan
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
23
|
Dong T, Zhang X, Liu Y, Xu S, Chang H, Chen F, Pan L, Hu S, Wang M, Lu M. Opa1 Prevents Apoptosis and Cisplatin-Induced Ototoxicity in Murine Cochleae. Front Cell Dev Biol 2021; 9:744838. [PMID: 34621753 PMCID: PMC8490775 DOI: 10.3389/fcell.2021.744838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023] Open
Abstract
Optic atrophy1 (OPA1) is crucial for inner mitochondrial membrane (IMM) fusion and essential for maintaining crista structure and mitochondrial morphology. Optic atrophy and hearing impairment are the most prevalent clinical features associated with mutations in the OPA1 gene, but the function of OPA1 in hearing is still unknown. In this study, we examined the ability of Opa1 to protect against cisplatin-induced cochlear cell death in vitro and in vivo. Our results revealed that knockdown of Opa1 affects mitochondrial function in HEI-OC1 and Neuro 2a cells, as evidenced by an elevated reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. The dysfunctional mitochondria release cytochrome c, which triggers apoptosis. Opa1 expression was found to be significantly reduced after cell exposed to cisplatin in HEI-OC1 and Neuro 2a cells. Loss of Opa1 aggravated the apoptosis and mitochondrial dysfunction induced by cisplatin treatment, whereas overexpression of Opa1 alleviated cisplatin-induced cochlear cell death in vitro and in explant. Our results demonstrate that overexpression of Opa1 prevented cisplatin-induced ototoxicity, suggesting that Opa1 may play a vital role in ototoxicity and/or mitochondria-associated cochlear damage.
Collapse
Affiliation(s)
- Tingting Dong
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejie Zhang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Xu
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishuang Chang
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqiu Chen
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Pan
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Zhu YM, Li Q, Gao X, Li YF, Liu YL, Dai P, Li XP. Familial Temperature-Sensitive Auditory Neuropathy: Distinctive Clinical Courses Caused by Variants of the OTOF Gene. Front Cell Dev Biol 2021; 9:732930. [PMID: 34692690 PMCID: PMC8529165 DOI: 10.3389/fcell.2021.732930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the clinical course and genetic etiology of familial temperature-sensitive auditory neuropathy (TSAN), which is a very rare subtype of auditory neuropathy (AN) that involves an elevation of hearing thresholds due to an increase in the core body temperature, and to evaluate the genotype-phenotype correlations in a family with TSAN. Methods: Six members of a non-consanguineous Chinese family, including four siblings complaining of communication difficulties when febrile, were enrolled in this study. The clinical and audiological profiles of the four siblings were fully evaluated during both febrile and afebrile episodes, and the genetic etiology of hearing loss (HL) was explored using next-generation sequencing (NGS) technology. Their parents, who had no complaints of fluctuating HL due to body temperature variation, were enrolled for the genetics portion only. Results: Audiological tests during the patients' febrile episodes met the classical diagnostic criteria for AN, including mild HL, poor speech discrimination, preserved cochlear microphonics (CMs), and absent auditory brainstem responses (ABRs). Importantly, unlike the pattern observed in previously reported cases of TSAN, the ABRs and electrocochleography (ECochG) signals of our patients improved to normal during afebrile periods. Genetic analysis identified a compound heterozygous variant of the OTOF gene (which encodes the otoferlin protein), including one previously reported pathogenic variant, c.5098G > C (p.Glu1700Gln), and one novel variant, c.4882C > A (p.Pro1628Thr). Neither of the identified variants affected the C2 domains related to the main function of otoferlin. Both variants faithfully cosegregated with TSAN within the pedigree, suggesting that OTOF is the causative gene of the autosomal recessive trait segregation in this family. Conclusion: The presence of CMs with absent (or markedly abnormal) ABRs is a reliable criterion for diagnosing AN. The severity of the phenotype caused by dysfunctional neurotransmitter release in TSAN may reflect variants that alter the C2 domains of otoferlin. The observations from this study enrich the current understanding of the phenotype and genotype of TSAN and may lay a foundation for further research on its pathogenesis.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan-Fei Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You-Li Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pu Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Yu X, Guan M, Shang H, Teng Y, Gao Y, Wang B, Ma Z, Cao X, Li Y. The expression of PHB2 in the cochlea: Possible relation to age-related hearing loss. Cell Biol Int 2021; 45:2490-2498. [PMID: 34435719 DOI: 10.1002/cbin.11693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly, but its mechanism remains unclear. Scaffold protein prohibitin 2 (PHB2) has been widely involved in aging and neurodegeneration. However, the role of PHB2 in ARHL is undeciphered to date. To investigate the expression pattern and the role of PHB2 in ARHL, we used C57BL/6 mice and HEI-OC1 cell line as models. In our study, we have found PHB2 exists in the cochlea and is expressed in hair cells, spiral ganglion neurons, and HEI-OC1 cells. In mice with ARHL, mitophagy is reduced and correspondingly the expression level of PHB2 is decreased. Moreover, after H2 O2 treatment the mitophagy is activated and the PHB2 expression is increased. These findings indicate that PHB2 may exert an important role in ARHL through mitophagy. Findings from this study will be helpful for elucidating the mechanism underlying the ARHL and for providing a new target for ARHL treatment.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Ming Guan
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Haiqiong Shang
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Yaoshu Teng
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Yueqiu Gao
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Bin Wang
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Zhiqi Ma
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Xiaolin Cao
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Yong Li
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Wen J, Song J, Bai Y, Liu Y, Cai X, Mei L, Ma L, He C, Feng Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol 2021; 9:720858. [PMID: 34426786 PMCID: PMC8379019 DOI: 10.3389/fcell.2021.720858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Waardenburg syndrome (WS) is an autosomal dominant inherited disorder that is characterized by sensorineural hearing loss and abnormal pigmentation. SOX10 is one of its main pathogenicity genes. The generation of patient-specific induced pluripotent stem cells (iPSCs) is an efficient means to investigate the mechanisms of inherited human disease. In our work, we set up an iPSC line derived from a WS patient with SOX10 mutation and differentiated into neural crest cells (NCCs), a key cell type involved in inner ear development. Compared with control-derived iPSCs, the SOX10 mutant iPSCs showed significantly decreased efficiency of development and differentiation potential at the stage of NCCs. After that, we carried out high-throughput RNA-seq and evaluated the transcriptional misregulation at every stage. Transcriptome analysis of differentiated NCCs showed widespread gene expression alterations, and the differentially expressed genes (DEGs) were enriched in gene ontology terms of neuron migration, skeletal system development, and multicellular organism development, indicating that SOX10 has a pivotal part in the differentiation of NCCs. It's worth noting that, a significant enrichment among the nominal DEGs for genes implicated in inner ear development was found, as well as several genes connected to the inner ear morphogenesis. Based on the protein-protein interaction network, we chose four candidate genes that could be regulated by SOX10 in inner ear development, namely, BMP2, LGR5, GBX2, and GATA3. In conclusion, SOX10 deficiency in this WS subject had a significant impact on the gene expression patterns throughout NCC development in the iPSC model. The DEGs most significantly enriched in inner ear development and morphogenesis may assist in identifying the underlying basis for the inner ear malformation in subjects with WS.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yalan Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Ma
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
27
|
Ma K, Zhang A, She X, Yang H, Wang K, Zhu Y, Gao X, Cui B. Disruption of Glutamate Release and Uptake-Related Protein Expression After Noise-Induced Synaptopathy in the Cochlea. Front Cell Dev Biol 2021; 9:720902. [PMID: 34422838 PMCID: PMC8373299 DOI: 10.3389/fcell.2021.720902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023] Open
Abstract
High-intensity noise can cause permanent hearing loss; however, short-duration medium-intensity noise only induces a temporary threshold shift (TTS) and damages synapses formed by inner hair cells (IHCs) and spiral ganglion nerves. Synaptopathy is generally thought to be caused by glutamate excitotoxicity. In this study, we investigated the expression levels of vesicle transporter protein 3 (Vglut3), responsible for the release of glutamate; glutamate/aspartate transporter protein (GLAST), responsible for the uptake of glutamate; and Na+/K+-ATPase α1 coupled with GLAST, in the process of synaptopathy in the cochlea. The results of the auditory brainstem response (ABR) and CtBP2 immunofluorescence revealed that synaptopathy was induced on day 30 after 100 dB SPL noise exposure in C57BL/6J mice. We found that GLAST and Na+/K+-ATPase α1 were co-localized in the cochlea, mainly in the stria vascularis, spiral ligament, and spiral ganglion cells. Furthermore, Vglut3, GLAST, and Na+/K+-ATPase α1 expression were disrupted after noise exposure. These results indicate that disruption of glutamate release and uptake-related protein expression may exacerbate the occurrence of synaptopathy.
Collapse
Affiliation(s)
- Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Anran Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Abstract
Hearing loss is often caused by death of sensory hair cells (HCs) in the inner ear. HCs are vulnerable to some ototoxic drugs, such as aminoglycosides(AGs) and the cisplatin.The most predominant form of drug-induced cell death is apoptosis. Many efforts have been made to protect HCs from cell death after ototoxic drug exposure. These mechanisms and potential targets of HCs protection will be discussed in this review.And we also propose further investigation in the field of HCs necrosis and regeneration, as well as future clinical utilization.
Collapse
|
29
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
30
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
31
|
Sun F, Zhou K, Tian KY, Zhang XY, Liu W, Wang J, Zhong CP, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Promotes Neurite Outgrowth and Survival of Cochlear Spiral Ganglion Neurons in vitro Through NPR-A/cGMP/PKG Signaling. Front Cell Dev Biol 2021; 9:681421. [PMID: 34268307 PMCID: PMC8276373 DOI: 10.3389/fcell.2021.681421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a dominant public health issue affecting millions of people around the globe, which is correlated with the irreversible deterioration of the hair cells and spiral ganglion neurons (SGNs) within the cochlea. Strategies using bioactive molecules that regulate neurite regeneration and neuronal survival to reestablish connections between auditory epithelium or implanted electrodes and SGN neurites would become attractive therapeutic candidates for SNHL. As an intracellular second messenger, cyclic guanosine-3’,5’-monophosphate (cGMP) can be synthesized through activation of particulate guanylate cyclase-coupled natriuretic peptide receptors (NPRs) by natriuretic peptides, which in turn modulates multiple aspects of neuronal functions including neuronal development and neuronal survival. As a cardiac-derived hormone, atrial natriuretic peptide (ANP), and its specific receptors (NPR-A and NPR-C) are broadly expressed in the nervous system where they might be involved in the maintenance of diverse neural functions. Despite former literatures and our reports indicating the existence of ANP and its receptors within the inner ear, particularly in the spiral ganglion, their potential regulatory mechanisms underlying functional properties of auditory neurons are still incompletely understood. Our recently published investigation revealed that ANP could promote the neurite outgrowth of SGNs by activating NPR-A/cGMP/PKG cascade in a dose-dependent manner. In the present research, the influence of ANP and its receptor-mediated downstream signaling pathways on neurite outgrowth, neurite attraction, and neuronal survival of SGNs in vitro was evaluated by employing cultures of organotypic explant and dissociated neuron from postnatal rats. Our data indicated that ANP could support and attract neurite outgrowth of SGNs and possess a high capacity to improve neuronal survival of SGNs against glutamate-induced excitotoxicity by triggering the NPR-A/cGMP/PKG pathway. The neuroregenerative and neuroprotective effects of ANP/NPRA/cGMP/PKG-dependent signaling on SGNs would represent an attractive therapeutic candidate for hearing impairment.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Zhou
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke-Yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui-Ping Zhong
- Department of Otolaryngology-Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Jian-Hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Ren W, Xu C, Zheng FJ, Lin TT, Jin P, Zhang Y, Guo WW, Liu CH, Zhou XY, Wang LL, Wang Y, Zhao H, Yang SM. A Porcine Congenital Single-Sided Deafness Model, Its Population Statistics and Degenerative Changes. Front Cell Dev Biol 2021; 9:672216. [PMID: 34178998 PMCID: PMC8226144 DOI: 10.3389/fcell.2021.672216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To describe and study the population statistics, hearing phenotype, and pathological changes of a porcine congenital single-sided deafness (CSSD) pedigree. Methods Click auditory brainstem response (ABR), full-frequency ABR, and distortion product otoacoustic emission (DPOAE) were used to assess the hearing phenotype of the strain. Tympanogram was used to assess the middle ear function since birth. Celloidin embedding-hematoxylin-eosin (CE-HE) stain and scanning electron microscopy (SEM) were used to study the pathological changes of cochlear microstructures. Chi-square analysis was used to analyze the relation between hearing loss and other phenotypes. Results The mating mood of CSSD with CSSD was most efficient in breeding-targeted CSSD phenotype (47.62%), and the prevalence of CSSD reached 46.67% till the fifth generation, where 42.22% were bilateral hearing loss (BHL) and 9.00% were normal hearing (NH) individuals. Hearing loss was proved to have no relation with coat color (P = 0.0841 > 0.05) and gender (P = 0.4621 > 0.05) by chi-square analysis. The deaf side of CSSD offspring in the fifth generation had no relation with that of their maternal parent (P = 0.2387 > 0.05). All individuals in this strain exhibited congenital severe to profound sensorineural hearing loss with no malformation and dysfunction of the middle ear. The good hearing ear of CSSD stayed stable over age. The deaf side of CSSD and BHL presented cochlear and saccular degeneration, and the hair cell exhibited malformation since birth and degenerated from the apex to base turn through time. The pathology in BHL cochlea progressed more rapidly than CSSD and till P30, the hair cell had been totally gone. The stria vascularis (SV) was normal since birth and degenerated through time and finally exhibited disorganization of three layers of cells. Conclusion This inbred porcine strain exhibited high and stable prevalence of CSSD, which highly resembled human non-syndromic CSSD disease. This porcine model could be used to further explore the etiology of CSSD and serve as an ideal tool for the studies of the effects of single-sided hearing deprivation on neural, cognitive, and behavioral developments and the benefits brought by CI in CSSD individuals.
Collapse
Affiliation(s)
- Wei Ren
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Cong Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fan-Jun Zheng
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ting-Ting Lin
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Chuan-Hong Liu
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Xiao-Yang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Lu-Lu Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Hui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
33
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
34
|
Zhang Y, Lv Z, Liu Y, Cao H, Yang J, Wang B. PIN1 Protects Hair Cells and Auditory HEI-OC1 Cells against Senescence by Inhibiting the PI3K/Akt/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9980444. [PMID: 34285767 PMCID: PMC8273041 DOI: 10.1155/2021/9980444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Zhe Lv
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Yudong Liu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
- Department of Otorhinolaryngology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| |
Collapse
|
35
|
Deletion of Clusterin Protects Cochlear Hair Cells against Hair Cell Aging and Ototoxicity. Neural Plast 2021; 2021:9979157. [PMID: 34194490 PMCID: PMC8181089 DOI: 10.1155/2021/9979157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Hearing loss is a debilitating disease that affects 10% of adults worldwide. Most sensorineural hearing loss is caused by the loss of mechanosensitive hair cells in the cochlea, often due to aging, noise, and ototoxic drugs. The identification of genes that can be targeted to slow aging and reduce the vulnerability of hair cells to insults is critical for the prevention of sensorineural hearing loss. Our previous cell-specific transcriptome analysis of adult cochlear hair cells and supporting cells showed that Clu, encoding a secreted chaperone that is involved in several basic biological events, such as cell death, tumor progression, and neurodegenerative disorders, is expressed in hair cells and supporting cells. We generated Clu-null mice (C57BL/6) to investigate its role in the organ of Corti, the sensory epithelium responsible for hearing in the mammalian cochlea. We showed that the deletion of Clu did not affect the development of hair cells and supporting cells; hair cells and supporting cells appeared normal at 1 month of age. Auditory function tests showed that Clu-null mice had hearing thresholds comparable to those of wild-type littermates before 3 months of age. Interestingly, Clu-null mice displayed less hair cell and hearing loss compared to their wildtype littermates after 3 months. Furthermore, the deletion of Clu is protected against aminoglycoside-induced hair cell loss in both in vivo and in vitro models. Our findings suggested that the inhibition of Clu expression could represent a potential therapeutic strategy for the alleviation of age-related and ototoxic drug-induced hearing loss.
Collapse
|
36
|
Canonical Wnt Signaling Pathway on Polarity Formation of Utricle Hair Cells. Neural Plast 2021; 2021:9950533. [PMID: 34122536 PMCID: PMC8166501 DOI: 10.1155/2021/9950533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
As part of the inner ear, the vestibular system is responsible for sense of balance, which consists of three semicircular canals, the utricle, and the saccule. Increasing evidence has indicated that the noncanonical Wnt/PCP signaling pathway plays a significant role in the development of the polarity of the inner ear. However, the role of canonical Wnt signaling in the polarity of the vestibule is still not completely clear. In this study, we found that canonical Wnt pathway-related genes are expressed in the early stage of development of the utricle and change dynamically. We conditionally knocked out β-catenin, a canonical Wnt signaling core protein, and found that the cilia orientation of hair cells was disordered with reduced number of hair cells in the utricle. Moreover, regulating the canonical Wnt pathway (Licl and IWP2) in vitro also affected hair cell polarity and indicated that Axin2 may be important in this process. In conclusion, our results not only confirm that the regulation of canonical Wnt signaling affects the number of hair cells in the utricle but also provide evidence for its role in polarity development.
Collapse
|
37
|
Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front Cell Dev Biol 2021; 9:663995. [PMID: 34046408 PMCID: PMC8147561 DOI: 10.3389/fcell.2021.663995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.
Collapse
Affiliation(s)
- Jie Gong
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Peipei Qian
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Yuebo Hu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chao Guo
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chengyun Cai
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| |
Collapse
|
38
|
Sun Z, Cheng Z, Gong N, Xu Z, Jin C, Wu H, Tao Y. Neural presbycusis at ultra-high frequency in aged common marmosets and rhesus monkeys. Aging (Albany NY) 2021; 13:12587-12606. [PMID: 33909598 PMCID: PMC8148503 DOI: 10.18632/aging.202936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The aging of the population and environmental noise have contributed to high rates of presbycusis, also known as age-related hearing loss (ARHL). Because mice have a relatively short life span, murine models have not been suitable for determining the mechanism of presbycusis development and methods of diagnosis. Although the common marmoset, a non-human primate (NHP), is an ideal animal model for studying age-related diseases, its auditory spectrum has not been systematically studied. Auditory brainstem responses (ABRs) from 38 marmosets of different ages demonstrated that auditory function correlated with age. Hearing loss in geriatric common marmosets started at ultra-high frequency (>16 kHz), then extended to lower frequencies. Despite age-related deterioration of ABR threshold and amplitude in marmosets, outer hair cell (OHC) function remained stable at all ages. Spiral ganglion neurons (SGNs), which are the first auditory neurons in the auditory system, were found to degenerate distinctly in aged common marmosets, indicating that neural degeneration caused presbycusis in these animals. Similarly, age-associated ABR deterioration without loss of OHC function was observed in another NHP, rhesus monkeys. Audiometry results from these two species of NHP suggested that NHPs were ideal for studying ARHL and that neural presbycusis at high frequency may be prevalent in primates.
Collapse
Affiliation(s)
- Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhen Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| |
Collapse
|
39
|
Next-Generation Sequencing Identifies Pathogenic Variants in HGF, POU3F4, TECTA, and MYO7A in Consanguineous Pakistani Deaf Families. Neural Plast 2021; 2021:5528434. [PMID: 33976695 PMCID: PMC8084664 DOI: 10.1155/2021/5528434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background Approximately 70% of congenital deafness is attributable to genetic causes. Incidence of congenital deafness is known to be higher in families with consanguineous marriage. In this study, we investigated the genetic causes in three consanguineous Pakistani families segregating with prelingual, severe-to-profound deafness. Results Through targeted next-generation sequencing of 414 genes known to be associated with deafness, homozygous variants c.536del (p. Leu180Serfs∗20) in TECTA, c.3719 G>A (p. Arg1240Gln) in MYO7A, and c.482+1986_1988del in HGF were identified as the pathogenic causes of enrolled families. Interestingly, in one large consanguineous family, an additional c.706G>A (p. Glu236Lys) variant in the X-linked POU3F4 gene was also identified in multiple affected family members causing deafness. Genotype-phenotype cosegregation was confirmed in all participating family members by Sanger sequencing. Conclusions Our results showed that the genetic causes of deafness are highly heterogeneous. Even within a single family, the affected members with apparently indistinguishable clinical phenotypes may have different pathogenic variants.
Collapse
|
40
|
Xue W, Tian Y, Xiong Y, Liu F, Feng Y, Chen Z, Yu D, Yin S. Transcriptomic Analysis Reveals an Altered Hcy Metabolism in the Stria Vascularis of the Pendred Syndrome Mouse Model. Neural Plast 2021; 2021:5585394. [PMID: 33959158 PMCID: PMC8075705 DOI: 10.1155/2021/5585394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Slc26a4-/- mice exhibit severer defects in the development of the cochlea and develop deafness, while the underlying mechanisms responsible for these effects remain unclear. Our study was to investigate the potential mechanism linking SLC26A4 deficiency to hearing loss. MATERIALS AND METHODS RNA sequencing was applied to analyze the differential gene expression of the stria vascularis (SV) from wildtype and Slc26a4-/- mice. GO and KEGG pathway analysis were performed. Quantitative RT-PCR was applied to validate the expression of candidate genes affected by Slc26a4. ELISA and immunofluorescence technique were used to detect the homocysteine (Hcy) level in serum, brain, and SV, respectively. RESULTS 183 upregulated genes and 63 downregulated genes were identified in the SV associated with Slc26a4 depletion. Transcriptomic profiling revealed that Slc26a4 deficiency significantly affected the expression of genes associated with cell adhesion, transmembrane transport, and the biogenesis of multicellular organisms. The SV from Slc26a4-/- mice exhibited a higher expression of Bhmt mRNAs, as well as altered homocysteine (Hcy) metabolism. CONCLUSIONS The altered expression of Bhmt results in a dramatic change in multiple biochemical reactions and a disruption of nutrient homeostasis in the endolymph which may contribute to hearing loss of Slc26a4 knockout mouse.
Collapse
Affiliation(s)
- Wenyue Xue
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuxin Tian
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuanping Xiong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
41
|
Identification and Characterization of a Cryptic Genomic Deletion-Insertion in EYA1 Associated with Branchio-Otic Syndrome. Neural Plast 2021; 2021:5524381. [PMID: 33880118 PMCID: PMC8046558 DOI: 10.1155/2021/5524381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Branchio-oto-renal spectrum disorder (BORSD) is characterized by hearing loss accompanied by ear malformations, branchial cysts, and fistulae, with (branchio-oto-renal syndrome (BORS)) or without renal abnormalities (BOS (branchio-otic syndrome)). As the most common causative gene for BORSD, dominant mutations in EYA1 are responsible for approximately 40% of the cases. In a sporadic deaf patient diagnosed as BOS, we identified an apparent heterozygous genomic deletion spanning the first four coding exons and one 5′ noncoding exon of EYA1 by targeted next-generation sequencing of 406 known deafness genes. Real-time PCR at multiple regions of EYA1 confirmed the existence of this genomic deletion and extended its 5′ boundary beyond the 5′-UTR. Whole genome sequencing subsequently located the 5′ and 3′ breakpoints to 19268 bp upstream to the ATG initiation codon and 3180 bp downstream to exon 5. PCR amplification across the breakpoints in both the patient and his parents showed that the genomic alteration occurred de novo. Sanger sequencing of this PCR product revealed that it is in fact a GRCh38/hg38:chr8:g.71318554_71374171delinsTGCC genomic deletion-insertion. Our results showed that the genomic variant is responsible for the hearing loss associated with BOS and provided an example for deciphering such cryptic genomic alterations following pipelines of comprehensive exome/genome sequencing and designed verification.
Collapse
|
42
|
Bai X, Chen S, Xu K, Jin Y, Niu X, Xie L, Qiu Y, Liu XZ, Sun Y. N-Acetylcysteine Combined With Dexamethasone Treatment Improves Sudden Sensorineural Hearing Loss and Attenuates Hair Cell Death Caused by ROS Stress. Front Cell Dev Biol 2021; 9:659486. [PMID: 33816510 PMCID: PMC8014036 DOI: 10.3389/fcell.2021.659486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a common emergency in the world. Increasing evidence of imbalance of oxidant–antioxidant were found in SSNHL patients. Steroids combined with antioxidants may be a potential strategy for the treatment of SSNHL. In cochlear explant experiment, we found that N-acetylcysteine (NAC) combined with dexamethasone can effectively protect hair cells from oxidative stress when they were both at ineffective concentrations alone. A clinic trial was designed to explore whether oral NAC combined with intratympanic dexamethasone (ITD) as a salvage treatment has a better therapeutic effect. 41 patients with SSNHL were randomized to two groups. 23 patients in control group received ITD therapy alone, while 18 patient s in NAC group were treated with oral NAC and ITD. The patients were followed-up on day 1st (initiation of treatment) and day 14th. Overall, there was no statistical difference in final pure-tone threshold average (PTA) improvement between those two groups. However, a significant hearing gain at 8,000 Hz was observed in NAC group. Moreover, the hearing recovery rates of NAC group is much higher than that in control group. These results demonstrated that oral NAC in combination with ITD therapy is a more effective therapy for SSNHL than ITD alone.
Collapse
Affiliation(s)
- Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Abstract
Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.
Collapse
|
44
|
Wang H, Gao Y, Guan J, Lan L, Yang J, Xiong W, Zhao C, Xie L, Yu L, Wang D, Wang Q. Phenotypic Heterogeneity of Post-lingual and/or Milder Hearing Loss for the Patients With the GJB2 c.235delC Homozygous Mutation. Front Cell Dev Biol 2021; 9:647240. [PMID: 33718389 PMCID: PMC7953049 DOI: 10.3389/fcell.2021.647240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To report the phenotypic heterogeneity of GJB2 c.235delC homozygotes associated with post-lingual and/or milder hearing loss, and explore the possible mechanism of these unconditional phenotypes. Methods Mutation screening of GJB2 was performed on all ascertained members from Family 1006983 and three sporadic patients by polymerase chain reaction (PCR) amplification and Sanger sequencing. Next generation sequencing (NGS) was successively performed on some of the affected members and normal controls from Family 1006983 to explore additional possible genetic codes. Reverse transcriptase–quantitative PCR was conducted to test the expression of Connexin30. Results We identified a Chinese autosomal recessive hearing loss family with the GJB2 c.235delC homozygous mutation, affected members from which had post-lingual moderate to profound hearing impairment, and three sporadic patients with post-lingual moderate hearing impairment, instead of congenital profound hearing loss. NGS showed no other particular variants. Overexpression of Connexin30 in some of these cases was verified. Conclusion Post-lingual and/or moderate hearing impairment phenotypes of GJB2 c.235delC homozygotes are not the most common phenotype, revealing the heterogeneity of GJB2 pathogenic mutations. To determine the possible mechanism that rescues part of the hearing or postpones onset age of these cases, more cases are required to confirm both Connexin30 overexpression and the existence of modifier genes.
Collapse
Affiliation(s)
- Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Gao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Jing Guan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Lan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Ju Yang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Wenping Xiong
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Cui Zhao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Linyi Xie
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Yu
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Dayong Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
45
|
Liu H, Peng H, Wang L, Xu P, Wang Z, Liu H, Wu H. Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice. Front Cell Dev Biol 2021; 8:635201. [PMID: 33634111 PMCID: PMC7902005 DOI: 10.3389/fcell.2020.635201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Noise exposure of a short period at a moderate level can produce permanent cochlear synaptopathy without seeing lasting changes in audiometric threshold. However, due to the species differences in inner hair cell (IHC) calcium current that we have recently discovered, the susceptibility to noise exposure may vary, thereby impact outcomes of noise exposure. In this study, we investigate the consequences of noise exposure in the two commonly used animal models in hearing research, CBA/CaJ (CBA) and C57BL/6J (B6) mice, focusing on the functional changes of cochlear IHCs. In the CBA mice, moderate noise exposure resulted in a typical fully recovered audiometric threshold but a reduced wave I amplitude of auditory brainstem responses. In contrast, both auditory brainstem response threshold and wave I amplitude fully recovered in B6 mice at 2 weeks after noise exposure. Confocal microscopy observations found that ribbon synapses of IHCs recovered in B6 mice but not in CBA mice. To further characterize the molecular mechanism underlying these different phenotypes in synaptopathy, we compared the ratio of Bax/Bcl-2 with the expression of cytochrome-C and found increased activity in CBA mice after noise exposure. Under whole-cell patch clamped IHCs, we acquired two-photon calcium imaging around the active zone to evaluate the Ca2+ clearance rate and found that CBA mice have a slower calcium clearance rate. Our results indicated that excessive accumulation of calcium due to acoustic overexposure and slow clearance around the presynaptic ribbon might lead to disruption of calcium homeostasis, followed by mitochondrial dysfunction of IHCs that cause susceptibility of noise-induced cochlear synaptopathy in CBA mice.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhaoyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
46
|
Xu K, Bai X, Chen S, Xie L, Qiu Y, Li H, Sun Y. CCDC154 Mutant Caused Abnormal Remodeling of the Otic Capsule and Hearing Loss in Mice. Front Cell Dev Biol 2021; 9:637011. [PMID: 33614666 PMCID: PMC7889813 DOI: 10.3389/fcell.2021.637011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Osteopetrosis is a rare inherited bone disease characterized by dysfunction of osteoclasts, causing impaired bone resorption and remodeling, which ultimately leads to increased bone mass and density. Hearing loss is one of the most common complications of osteopetrosis. However, the etiology and pathogenesis of auditory damage still need to be explored. In this study, we found that a spontaneous mutation of coiled-coil domain-containing 154 (CCDC154) gene, a new osteopetrosis-related gene, induced congenital deafness in mice. Homozygous mutant mice showed moderate to severe hearing loss, while heterozygous or wild-type (WT) littermates displayed normal hearing. Pathological observation showed that abnormal bony remodeling of the otic capsule, characterized by increased vascularization and multiple cavitary lesions, was found in homozygous mutant mice. Normal structure of the organ of Corti and no substantial hair cell or spiral ganglion neuron loss was observed in homozygous mutant mice. Our results indicate that mutation of the osteopetrosis-related gene CCDC154 can induce syndromic hereditary deafness in mice. Bony remodeling disorders of the auditory ossicles and otic capsule are involved in the hearing loss caused by CDCC154 mutation.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Zhao T, Zheng T, Yu H, Hu BH, Hu B, Ma P, Yang Y, Yang N, Hu J, Cao T, Chen G, Yan B, Peshoff M, Hatzoglou M, Geng R, Li B, Zheng QY. Autophagy impairment as a key feature for acetaminophen-induced ototoxicity. Cell Death Dis 2021; 12:3. [PMID: 33414397 PMCID: PMC7791066 DOI: 10.1038/s41419-020-03328-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Macroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.
Collapse
Affiliation(s)
- Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Huining Yu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Bing Hu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Peng Ma
- Department of Genetics, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Juan Hu
- Department of Otolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tongtao Cao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Melina Peshoff
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
48
|
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss. Neural Plast 2020; 2020:8815990. [PMID: 33204247 PMCID: PMC7652619 DOI: 10.1155/2020/8815990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
In the auditory system, ribbon synapses are vesicle-associated structures located between inner hair cells (IHCs) and spiral ganglion neurons that are implicated in the modulation of trafficking and fusion of synaptic vesicles at the presynaptic terminals. Synapse loss may result in hearing loss and difficulties with understanding speech in a noisy environment. This phenomenon happens without permanent hearing loss; that is, the cochlear synaptopathy is "hidden." Recent studies have reported that synapse loss might be critical in the pathogenesis of hidden hearing loss. A better understanding of the molecular mechanisms of the formation, structure, regeneration, and protection of ribbon synapses will assist in the design of potential therapeutic strategies. In this review, we describe and summarize the following aspects of ribbon synapses: (1) functional and structural features, (2) potential mechanisms of damage, (3) therapeutic research on protecting the synapses, and (4) the role of synaptic regeneration in auditory neuropathy and the current options for synapse rehabilitation.
Collapse
|
49
|
Altered Brain Activity and Functional Connectivity in Unilateral Sudden Sensorineural Hearing Loss. Neural Plast 2020; 2020:9460364. [PMID: 33029130 PMCID: PMC7527900 DOI: 10.1155/2020/9460364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background Sudden sensorineural hearing loss (SSNHL) is an otologic emergency and could lead to social difficulties and mental disorders in some patients. Although many studies have analyzed altered brain function in populations with hearing loss, little information is available about patients with idiopathic SSNHL. This study is aimed at investigating brain functional changes in SSNHL via functional magnetic resonance imaging (fMRI). Methods Thirty-six patients with SSNHL and thirty well-matched normal hearing individuals underwent resting-state fMRI. Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and functional connectivity (FC) values were calculated. Results In the SSNHL patients, ALFF and fALFF were significantly increased in the bilateral putamen but decreased in the right calcarine cortex, right middle temporal gyrus (MTG), and right precentral gyrus. Widespread increases in FC were observed between brain regions, mainly including the bilateral auditory cortex, bilateral visual cortex, left striatum, left angular gyrus (AG), bilateral precuneus, and bilateral limbic lobes in patients with SSNHL. No decreased FC was observed. Conclusion SSNHL causes functional alterations in brain regions, mainly in the striatum, auditory cortex, visual cortex, MTG, AG, precuneus, and limbic lobes within the acute period of hearing loss.
Collapse
|
50
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|