1
|
Huang J, Li Y, Chen H, Liu H, Li W, Isiaka ID, Du H, Noman M, Rizwan MA, Du Q, Li Y, Lin Y, Liu Y, Lu X, Liu D, Yan Y. Epidemiological, Clinical, and Genomic Traits of PIV in Hospitalized Children After the COVID-19 Pandemic in Wuhan, China. J Med Virol 2024; 96:e70117. [PMID: 39673291 PMCID: PMC11645542 DOI: 10.1002/jmv.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Human parainfluenza virus (PIV) is a main cause of acute lower respiratory tract infections (ALRTIs), which contributes to childrens' mortality worldwide; however, the epidemiology of PIVs following the SARS-CoV-2 pandemic is still not clarified, and poses risks of potential outbreaks. Herein, we conducted a retrospective observational study from September 26, 2020 to September 30, 2023 to assess PIV epidemiology in Wuhan, China, as well as the clinical characteristics of PIV infections. In total, 14,065 inpatients with ALRTIs were enrolled, of which 936 were identified to have PIV infection. We also obtained 69 PIV3 RNA to reveal its molecular traits. An alteration in PIV season pattern away from spring and summer prevalence was noted, as well as a progressive rise in its detection rate. PIV-related ALRTIs were more prevalent in male patients. PIV3 was the dominant PIV type in recent years. In comparison with the phase before the cancellation of Dynamic Zero-COVID Policy in December 2022, symptoms after its repeal were milder. All Wuhan strains were classified with C3f lineage and possibly evolved from native strains in China. Additionally, some mutations, such as Q499P in protein hemagglutinin-neuraminidase, should be given further attention. In summary, our study demonstrates the clinical characteristics of PIVs and genomic traits of PIV3 in Wuhan, China, thus holds importance for the diagnosis and control of PIV infections in the post-pandemic era.
Collapse
Grants
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan-Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan‐Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
Collapse
Affiliation(s)
- Jiaming Huang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hebin Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Wenqing Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ismaila Damilare Isiaka
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Muhammad Noman
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Muhammad Arif Rizwan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaxin Lin
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuehu Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Yan
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Liu D, Zhang Z, Wang Z, Xue L, Liu F, Lu Y, Yu S, Li S, Zheng H, Zhang Z, Tian Z. Transposase-Assisted RNA/DNA Hybrid Co-Tagmentation for Target Meta-Virome of Foodborne Viruses. Viruses 2024; 16:1068. [PMID: 39066231 PMCID: PMC11281607 DOI: 10.3390/v16071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Foodborne diseases are major public health problems globally. Metagenomics has emerged as a widely used tool for pathogen screening. In this study, we conducted an updated Tn5 transposase-assisted RNA/DNA hybrid co-tagmentation (TRACE) library construction approach. To address the detection of prevalent known foodborne viruses and the discovery of unknown pathogens, we employed both specific primers and oligo-T primers during reverse transcription. The method was validated using clinical samples confirmed by RT-qPCR and compared with standard RNA-seq library construction methods. The mapping-based approach enabled the retrieval of nearly complete genomes (>95%) for the majority of virus genome segments (86 out of 88, 97.73%), with a mean coverage depth of 21,494.53× (ranging from 77.94× to 55,688.58×). Co-infection phenomena involving prevalent genotypes of Norovirus with Astrovirus and Human betaherpesvirus 6B were observed in two samples. The updated TRACE-seq exhibited superior performance in viral reads percentages compared to standard RNA-seq library preparation methods. This updated method has expanded its target pathogens beyond solely Norovirus to include other prevalent foodborne viruses. The feasibility and potential effectiveness of this approach were then evaluated as an alternative method for surveilling foodborne viruses, thus paving the way for further exploration into whole-genome sequencing of viruses.
Collapse
Affiliation(s)
- Danlei Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200023, China; (D.L.); (H.Z.)
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Zilei Zhang
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai 201204, China;
| | - Zhiyi Wang
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Fei Liu
- Shandong Mental Health Center, Jinan 250014, China
| | - Ye Lu
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
| | - Shiwei Yu
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
| | - Shumin Li
- School of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200023, China; (D.L.); (H.Z.)
| | - Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai Customs District, Shanghai 200335, China
| |
Collapse
|
3
|
Zhang Y, Zhou Y, Chen J, Wu J, Wang X, Zhang Y, Wang S, Cui P, Xu Y, Li Y, Shen Z, Xu T, Zhang Q, Cai J, Zhang H, Wang P, Ai J, Jiang N, Qiu C, Zhang W. Vaccination Shapes Within-Host SARS-CoV-2 Diversity of Omicron BA.2.2 Breakthrough Infection. J Infect Dis 2024; 229:1711-1721. [PMID: 38149984 DOI: 10.1093/infdis/jiad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Xun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Yuanyuan Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Ning Jiang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Fu Z, Zhang H, Lin K, Song J, Guo J, Zhang Q, Yuan G, Wang H, Fan M, Zhao Y, Sun R, Guo T, Jiang N, Qiu C, Zhang W, Ai J. Proteomic and Cellular Characterization of Omicron Breakthrough Infections and a Third Homologous or Heterologous Boosting Vaccination in a Longitudinal Cohort. Mol Cell Proteomics 2024; 23:100769. [PMID: 38641227 PMCID: PMC11154224 DOI: 10.1016/j.mcpro.2024.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024] Open
Abstract
The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA2.2 breakthrough infections were enrolled. Serum samples were collected at days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhangfan Fu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxiang Fan
- Tongji Medical School, Tongji University, Shanghai, China
| | - Yuanhan Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai huashen institute of microbes and infections, Shanghai, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Yan Y, Wang D, Li Y, Wu Z, Liu H, Shi Y, Lu X, Liu D. Prevalence, variation, and transmission patterns of human respiratory syncytial virus from pediatric patients in Hubei, China during 2020-2021. Virol Sin 2023; 38:363-372. [PMID: 37146717 PMCID: PMC10311268 DOI: 10.1016/j.virs.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a severe threat to children and a main cause of acute lower respiratory tract infections. Nevertheless, the intra-host evolution and inter-regional diffusion of RSV are little known. In this study, we performed a systematic surveillance in hospitalized children in Hubei during 2020-2021, in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing (mNGS). RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant. About 46 high-quality genomes were used for further analyses. A total of 163 intra-host nucleotide variation (iSNV) sites distributed in 34 samples were detected, and glycoprotein (G) gene was the most enriched gene for iSNVs, with non-synonymous substitutions more than synonymous substitutions. Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher, and the population size of RSV groups changed over time. We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B, respectively. This study highlighted the intra-host and inter-host evolution of RSV, and provided some evidences for understanding the evolution of RSV.
Collapse
Affiliation(s)
- Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yue Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
6
|
Yasir M, Al-Sharif HA, Al-Subhi T, Sindi AA, Bokhary DH, El-Daly MM, Alosaimi B, Hamed ME, Karim AM, Hassan AM, AlShawdari MM, Alawi M, El-Kafrawy SA, Azhar EI. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J Infect Public Health 2023; 16:680-688. [PMID: 36934642 PMCID: PMC9984237 DOI: 10.1016/j.jiph.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hessa A Al-Sharif
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tagreed Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anees A Sindi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pulmonary & Critical Care Consultant, International Medical Center, Jeddah 21589, Saudi Arabia
| | - Diyaa H Bokhary
- Emergency Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maaweya E Hamed
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asad Mustafa Karim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, the Republic of Korea
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mustafa M AlShawdari
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherif A El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Kulasinghe A, Liu N, Tan CW, Monkman J, Sinclair JE, Bhuva DD, Godbolt D, Pan L, Nam A, Sadeghirad H, Sato K, Bassi GL, O'Byrne K, Hartmann C, Dos Santos Miggiolaro AFR, Marques GL, Moura LZ, Richard D, Adams M, de Noronha L, Baena CP, Suen JY, Arora R, Belz GT, Short KR, Davis MJ, Guimaraes FSF, Fraser JF. Transcriptomic profiling of cardiac tissues from SARS-CoV-2 patients identifies DNA damage. Immunology 2023; 168:403-419. [PMID: 36107637 PMCID: PMC9537957 DOI: 10.1111/imm.13577] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ning Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - James Monkman
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dharmesh D Bhuva
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - David Godbolt
- Pathology Queensland, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Liuliu Pan
- Nanostring Technologies, Inc, Seattle, Washington, USA
| | - Andy Nam
- Nanostring Technologies, Inc, Seattle, Washington, USA
| | - Habib Sadeghirad
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kei Sato
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- The Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Camila Hartmann
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | | | - Gustavo Lenci Marques
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Lidia Zytynski Moura
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Derek Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mark Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Cristina Pellegrino Baena
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Jacky Y Suen
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Rakesh Arora
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gabrielle T Belz
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - John F Fraser
- Pathology Queensland, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
8
|
Al‐Emran HM, Rahman S, Hasan MS, Ul Alam R, Islam OK, Anwar A, Jahid MIK, Hossain A. Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVID-19 patients comorbidly affected by Type 2 diabetes. J Med Virol 2023; 95:e28234. [PMID: 36258280 PMCID: PMC9874868 DOI: 10.1002/jmv.28234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
The mortality of coronavirus disease 2019 (COVID-19) disease is very high among the elderly or individuals having comorbidities such as obesity, cardiovascular diseases, lung infections, hypertension, and/or diabetes. Our study characterizes the metagenomic features in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients with or without type 2 diabetes, to identify the microbial interactions associated with its fatal consequences.This study compared the baseline nasopharyngeal microbiome of SARS-CoV-2-infected diabetic and nondiabetic patients with controls adjusted for age and gender. The metagenomics based on next-generation sequencing was performed using Ion GeneStudio S5 Series and the data were analyzed by the Vegan-package in R. All three groups possessed significant bacterial diversity and dissimilarity indexes (p < 0.05). Spearman's correlation coefficient network analysis illustrated 183 significant positive correlations and 13 negative correlations of pathogenic bacteria (r = 0.6-1.0, p < 0.05), and 109 positive correlations between normal flora and probiotic bacteria (r > 0.6, p < 0.05). The SARS-CoV-2 diabetic group exhibited a significant increase in pathogens and secondary infection-causing bacteria (p < 0.05) with a simultaneous decrease of normal flora (p < 0.05). The dysbiosis of the bacterial community might be linked with severe consequences of COVID-19-infected diabetic patients, although a few probiotic strains inhibited numerous pathogens in the same pathological niches. This study suggested that the promotion of normal flora and probiotics through dietary supplementation and excessive inflammation reduction by preventing secondary infections might lead to a better outcome for those comorbid patients.
Collapse
Affiliation(s)
- Hassan M. Al‐Emran
- Department of Biomedical EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Shaminur Rahman
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Shazid Hasan
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Rubayet Ul Alam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Ovinu Kibria Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Ajwad Anwar
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| | - Md. Iqbal K. Jahid
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
- Genome CenterJashore University of Science and TechnologyJashoreBangladesh
| | - Anwar Hossain
- Genome CenterJashore University of Science and TechnologyJashoreBangladesh
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
9
|
Banerjee S, Wang X, Du S, Zhu C, Jia Y, Wang Y, Cai Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol 2022; 94:4071-4087. [PMID: 35488404 PMCID: PMC9348444 DOI: 10.1002/jmv.27820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, global public health and the economy have suffered unprecedented damage. Based on the increasing related literature, the characteristics and pathogenic mechanisms of the virus, and epidemiological and clinical features of the disease are being rapidly discovered. The spike glycoprotein (S protein), as a key antigen of SARS-CoV-2 for developing vaccines, antibodies, and drug targets, has been shown to play an important role in viral entry, tissue tropism, and pathogenesis. In this review, we summarize the molecular mechanisms of interaction between S protein and host factors, especially receptor-mediated viral modulation of host signaling pathways, and highlight the progression of potential therapeutic targets, prophylactic and therapeutic agents for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Biotechnology and BioengineeringKoba Institutional AreaGandhinagarGujaratIndia
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Caixia Zhu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuping Jia
- Shandong Academy of Pharmaceutical SciencesJinanChina
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Yan Y, Zheng R, Liu H, Wu Z, Hao M, Ma L, Wang L, Gao J, Yang Y, Liu D, Lu X. Identifying Japanese Encephalitis Virus Using Metatranscriptomic Sequencing, Xinjiang Province, China. Emerg Infect Dis 2022; 28:1298-1300. [PMID: 35608868 PMCID: PMC9155892 DOI: 10.3201/eid2806.210616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The treat of infectious disease epidemics has increased the critical need for continuous broad-ranging surveillance of pathogens with outbreak potential. Using metatranscriptomic sequencing of blood samples, we identified several cases of Japanese encephalitis virus infection from Xinjiang Uyghur Autonomous Region, China. This discovery highlights the risk for known viral diseases even in nonendemic areas.
Collapse
|
11
|
Zhang J, Zhang Y, Kang JY, Chen S, He Y, Han B, Liu MF, Lu L, Li L, Yi Z, Chen L. Potential transmission chains of variant B.1.1.7 and co-mutations of SARS-CoV-2. Cell Discov 2021; 7:44. [PMID: 34127650 PMCID: PMC8203788 DOI: 10.1038/s41421-021-00282-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023] Open
Abstract
The presence of SARS-CoV-2 mutants, including the emerging variant B.1.1.7, has raised great concerns in terms of pathogenesis, transmission, and immune escape. Characterizing SARS-CoV-2 mutations, evolution, and effects on infectivity and pathogenicity is crucial to the design of antibody therapies and surveillance strategies. Here, we analyzed 454,443 SARS-CoV-2 spike genes/proteins and 14,427 whole-genome sequences. We demonstrated that the early variant B.1.1.7 may not have evolved spontaneously in the United Kingdom or within human populations. Our extensive analyses suggested that Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog) could be a possible host of the direct progenitor of variant B.1.1.7. An alternative hypothesis is that the variant was simply yet to be sampled. Notably, the SARS-CoV-2 whole-genome represents a large number of potential co-mutations. In addition, we used an experimental SARS-CoV-2 reporter replicon system to introduce the dominant co-mutations NSP12_c14408t, 5'UTR_c241t, and NSP3_c3037t into the viral genome, and to monitor the effect of the mutations on viral replication. Our experimental results demonstrated that the co-mutations significantly attenuated the viral replication. The study provides valuable clues for discovering the transmission chains of variant B.1.1.7 and understanding the evolutionary process of SARS-CoV-2.
Collapse
Affiliation(s)
- Jingsong Zhang
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Yan Kang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Shanghai, China
| | - Shuiye Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongqun He
- grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Benhao Han
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Mo-Fang Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Shanghai, China
| | - Lina Lu
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Li
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA USA
| | - Zhigang Yi
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Luonan Chen
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China ,Pazhou Lab, Guangzhou, China
| |
Collapse
|