1
|
Viswanathan G, Hughes EJ, Gan M, Xet-Mull AM, Alexander G, Swain-Lenz D, Liu Q, Tobin DM. Granuloma Dual RNA-Seq Reveals Composite Transcriptional Programs Driven by Neutrophils and Necrosis within Tuberculous Granulomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.26.650783. [PMID: 40391323 PMCID: PMC12087985 DOI: 10.1101/2025.04.26.650783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Mycobacterial granulomas lie at the center of tuberculosis (TB) pathogenesis and represent a unique niche where infecting bacteria survive in nutrient-restricted conditions and in the face of a host immune response. The granuloma's necrotic core, where bacteria reside extracellularly in humans, is difficult to assess in many experimentally tractable models. Here, using necrotic mycobacterial granulomas in adult zebrafish, we develop dual RNA-seq across different host genotypes to identify the transcriptional alterations that enable bacteria to survive within this key microenvironment. Through pharmacological and genetic interventions, we find that neutrophils within mature, necrotic granulomas promote bacterial growth, in part through upregulation of the bacterial devR regulon. We identify conserved suites of bacterial transcriptional programs induced only in the context of this unique necrotic extracellular niche, including bacterial modules related to K + transport and rpf genes. Analysis of Mycobacterium tuberculosis strains across diverse lineages and human populations suggests that granuloma-specific transcriptional modules are targets for bacterial genetic adaptation in the context of human infection. Summary sentence Dual host-pathogen transcriptional profiling defines granuloma-specific programs during mycobacterial infection.
Collapse
|
2
|
Lösslein AK, Henneke P. Macrophage Differentiation and Metabolic Adaptation in Mycobacterial Infections. Annu Rev Immunol 2025; 43:423-450. [PMID: 40014665 DOI: 10.1146/annurev-immunol-082323-120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The adaptation of macrophages-the most common tissue-resident immune cells-to metabolic and microbial cues with high local variability is essential for the maintenance of organ integrity. In homeostasis, macrophages show largely predictable tissue-specific differentiation, as recently revealed by multidimensional methods. However, chronic infections with human-adapted pathogens substantially contribute to the differentiation complexity of tissue macrophages, which has been only partially resolved. Specifically, the response to mycobacterial species-which range from Mycobacterium tuberculosis (with highest specificity for humans, broad organ tropism, yet tissue-specific disease phenotypes) to environmental mycobacteria with humans as accidental hosts-may serve as a paradigm of tissue macrophage adaptation mechanisms. While mycobacterial species-specific tissue preferences are partially related to the mode of acquisition and pathogen characteristics, evolutionary convergence with macrophages driven by metabolic features of the target organ likely contributes to infection resistance and immunopathology. In this review, we unravel the mechanisms of tissue-specific macrophage differentiation and its limitations in mycobacterial infections.
Collapse
Affiliation(s)
- Anne Kathrin Lösslein
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany;
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany;
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Duan Y, Cheng Y, Ma M, Li L, Liu S, Guan L, Wang J, Liu H, Huang X, Chen J, Yang H, Ge B, Wang L. Liquid-liquid phase separation of TRAF6 promotes anti-TB immunity. Sci Bull (Beijing) 2025; 70:338-341. [PMID: 39242244 DOI: 10.1016/j.scib.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hongjie Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200049, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200433, China; Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200049, China.
| |
Collapse
|
4
|
Cai E, Deng J, Feng R, Zheng W, Wang Y, Yan M, Chang C. SsCyp86 modulates sporisorium scitamineum mating/filamentation and pathogenicity through regulating fatty acid metabolism. Virulence 2024; 15:2395833. [PMID: 39177034 PMCID: PMC11352786 DOI: 10.1080/21505594.2024.2395833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiaru Deng
- Laboratory of Plant Protection, Guangzhou Institute Forestry and Landscape Architecture, Guangzhou, China
| | - Ruqing Feng
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Wenqiang Zheng
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yifang Wang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Li J, Gao J, Gao Y, Shi C, Guo X, Huang H, Wang J, Huang X, Chen H, Huang J, Wang W, Yang H. Degarelix limits the survival of mycobacteria and granuloma formation. Microb Pathog 2024; 197:107046. [PMID: 39433139 DOI: 10.1016/j.micpath.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a serious health hazard, characterized by tuberculous granuloma formation, which may facilitate bacterial survival. At the same time, the identification of multidrug-resistant and extremely drug-resistant Mtb strains, and the progressive accumulation of mutations in biological targets of frontline antimicrobials, has made TB treatments more difficult. Therefore, new and rapid drug development for TB is warranted. Recently, drug repurposing has received considerable attention. In this study, we applied the anticancer drug degarelix to anti-TB research and found that it inhibits mycobacteria survival and pathological damage in Mycobacterium marinum-infected zebrafish and Mtb-infected mice. Supplementation of degarelix matched the bactericidal activities of rifampicin (RFP) toward M. marinum in zebrafish. Mechanistically, degarelix significantly increased interferon (IFN)-γ levels in M. marinum-infected zebrafish. Degarelix had no direct anti-mycobacterial activity in vitro but significantly reduced the survival of H37Rv in macrophages. The effect of degarelix could be reversed by 3-methyladenine (3-MA), which inhibits the class III phosphatidylinositol (PI) 3 kinase required for autophagy initiation. However, no effect on later steps in autophagy could be detected. Our findings demonstrate the potential of degarelix on limiting mycobacterial survival and granuloma formation, which may generate novel TB therapeutics.
Collapse
Affiliation(s)
- Jiaqing Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jing Gao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yaxian Gao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xinya Guo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Huimin Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haizhen Chen
- Medical Laboratory Center, Children's Hospital of Shanxi Province, Taiyuan, 030001, China
| | - Jin Huang
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, 561113, China.
| | - Wenjuan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
6
|
Espiritu HM, Valete EJP, Mamuad LL, Jung M, Paik MJ, Lee SS, Cho YI. Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens 2024; 13:796. [PMID: 39338987 PMCID: PMC11435060 DOI: 10.3390/pathogens13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bovine digital dermatitis (BDD) is a cattle infection causing hoof lesions and lameness, with treponemes as key pathogens. We analyzed the metabolic activity of Treponema phagedenis and Treponema pedis using gas chromatography-mass spectrometry for organic acids (OAs), amino acids (AAs), and fatty acids (FAs), and high-performance liquid chromatography for short-chain fatty acids (SCFAs). Key findings include a 61.5% reduction in pyruvic acid in T. pedis and 81.0% in T. phagedenis. 2-hydroxybutyric acid increased by 493.8% in T. pedis, while succinic acid increased by 31.3%, potentially supporting T. phagedenis. Among AAs, glycine was reduced by 97.4% in T. pedis but increased by 64.1% in T. phagedenis. Proline increased by 76.6% in T. pedis but decreased by 13.6% in T. phagedenis. Methionine and glutamic acid were competitively utilized, with methionine reduced by 41.8% in T. pedis and 11.9% in T. phagedenis. Both species showed significant utilization of palmitic acid (reduced by 82.8% in T. pedis and 87.2% in T. phagedenis). Butyric acid production increased by 620.2% in T. phagedenis, and propionic acid increased by 932.8% in T. pedis and 395.6% in T. phagedenis. These reveal metabolic interactions between the pathogens, contributing to disease progression and offering insights to BDD pathogenesis.
Collapse
Affiliation(s)
- Hector M. Espiritu
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Edeneil Jerome P. Valete
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongsangnam-do, Republic of Korea;
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea;
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Yong-Il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| |
Collapse
|
7
|
Wang H, Li B, Sun Y, Ma Q, Feng Y, Jia Y, Wang W, Su M, Liu X, Shu B, Zheng J, Sang S, Yan Y, Wu Y, Zhang Y, Gao Q, Li P, Wang J, Ma F, Li X, Yan D, Wang D, Zou X, Liao Y. NIR-II AIE Luminogen-Based Erythrocyte-Like Nanoparticles with Granuloma-Targeting and Self-Oxygenation Characteristics for Combined Phototherapy of Tuberculosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406143. [PMID: 39072892 DOI: 10.1002/adma.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Tuberculosis, a fatal infectious disease caused by Mycobacterium tuberculosis (M.tb), is difficult to treat with antibiotics due to drug resistance and short drug half-life. Phototherapy represents a promising alternative to antibiotics in combating M.tb. Exploring an intelligent material allowing effective tuberculosis treatment is definitely appealing, yet a significantly challenging task. Herein, an all-in-one biomimetic therapeutic nanoparticle featured by aggregation-induced second near-infrared emission, granuloma-targeting, and self-oxygenation is constructed, which can serve for prominent fluorescence imaging-navigated combined phototherapy toward tuberculosis. After camouflaging the biomimetic erythrocyte membrane, the nanoparticles show significantly prolonged blood circulation and increased selective accumulation in tuberculosis granuloma. Upon laser irradiation, the loading photosensitizer of aggregation-induced emission photosensitizer elevates the production of reactive oxygen species (ROS), causing M.tb damage and death. The delivery of oxygen to relieve the hypoxic granuloma microenvironment supports ROS generation during photodynamic therapy. Meanwhile, the photothermal agent, Prussian blue nanoparticles, plays the role of good photothermal killing effect on M.tb. Moreover, the growth and proliferation of granuloma and M.tb colonies are effectively inhibited in the nanoparticle-treated tuberculous granuloma model mice, suggesting the combined therapeutic effects of enhancing photodynamic therapy and photothermal therapy.
Collapse
Affiliation(s)
- Huanhuan Wang
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yan Sun
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qiang Ma
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yue Jia
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Min Su
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xueting Liu
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Jundun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Shuo Sang
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yan Yan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yanqiu Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yunlong Zhang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Qiuxia Gao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Peiran Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Fei Ma
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoming Zou
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| |
Collapse
|
8
|
Cheng H, Ji Z, Wang Y, Li S, Tang T, Wang F, Peng C, Wu X, Cheng Y, Liu Z, Ma M, Wang J, Huang X, Wang L, Qin L, Liu H, Chen J, Zheng R, Feng CG, Cai X, Qu D, Ye L, Yang H, Ge B. Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8 + T cell-dependent immunity in mice. Nat Microbiol 2024; 9:1856-1872. [PMID: 38806671 PMCID: PMC11222154 DOI: 10.1038/s41564-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.
Collapse
Affiliation(s)
- Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhe Ji
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Shenzhi Li
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Fei Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Peng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanna Cheng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Mingtong Ma
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Carl G Feng
- Immunology and Host Defense Group, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, P. R. China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
| |
Collapse
|
9
|
Peng C, Cheng Y, Ma M, Chen Q, Duan Y, Liu S, Cheng H, Yang H, Huang J, Bu W, Shi C, Wu X, Chen J, Zheng R, Liu Z, Ji Z, Wang J, Huang X, Wang P, Sha W, Ge B, Wang L. Mycobacterium tuberculosis suppresses host antimicrobial peptides by dehydrogenating L-alanine. Nat Commun 2024; 15:4216. [PMID: 38760394 PMCID: PMC11101664 DOI: 10.1038/s41467-024-48588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene β-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Qiu Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Bu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhu C, Dong J, Duan Y, Jia H, Zhang L, Xing A, Du B, Sun Q, Huang Y, Zhang Z, Pan L, Li Z. Comparative analysis of genomic characteristics and immune response between Mycobacterium tuberculosis strains cultured continuously for 25 years and H37Rv. Pathog Dis 2024; 82:ftae014. [PMID: 38845379 PMCID: PMC11187990 DOI: 10.1093/femspd/ftae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jing Dong
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yuheng Duan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Boping Du
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Qi Sun
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yinxia Huang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zihui Li
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
11
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
12
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Zhu X, Lu Q, Li Y, Long Q, Zhang X, Long X, Cao D. Contraction and expansion dynamics: deciphering genomic underpinnings of growth rate and pathogenicity in Mycobacterium. Front Microbiol 2023; 14:1292897. [PMID: 38075891 PMCID: PMC10701892 DOI: 10.3389/fmicb.2023.1292897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Mycobacterium bacteria, encompassing both slow growth (SGM) and rapid growth mycobacteria (RGM), along with true pathogenic (TP), opportunistic pathogenic (OP), and non-pathogenic (NP) types, exhibit diverse phenotypes. Yet, the genetic underpinnings of these variations remain elusive. METHODS Here, We conducted a comprehensive comparative genomics study involving 53 Mycobacterium species to unveil the genomic drivers behind growth rate and pathogenicity disparities. RESULTS Our core/pan-genome analysis highlighted 1,307 shared gene families, revealing an open pan-genome structure. A phylogenetic tree highlighted clear boundaries between SGM and RGM, as well as TP and other species. Gene family contraction emerged as the primary alteration associated with growth and pathogenicity transitions. Specifically, ABC transporters for amino acids and inorganic ions, along with quorum sensing genes, exhibited significant contractions in SGM species, potentially influencing their distinct traits. Conversely, TP strains displayed contraction in lipid and secondary metabolite biosynthesis and metabolism-related genes. Across the 53 species, we identified 26 core and 64 accessory virulence factors. Remarkably, TP and OP strains stood out for their expanded mycobactin biosynthesis and type VII secretion system gene families, pivotal for their pathogenicity. CONCLUSION Our findings underscore the importance of gene family contraction in nucleic acids, ions, and substance metabolism for host adaptation, while emphasizing the significance of virulence gene family expansion, including type VII secretion systems and mycobactin biosynthesis, in driving mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Qunfeng Lu
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- School of Medical Laboratory Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yulei Li
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Qinqin Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xinyu Zhang
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xidai Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Demin Cao
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
14
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
15
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
16
|
Krishnan V, Nath S, Nair P, Das B. Mycobacterium tuberculosis and its clever approaches to escape the deadly macrophage. World J Microbiol Biotechnol 2023; 39:300. [PMID: 37667129 DOI: 10.1007/s11274-023-03735-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Mycobacterium tuberculosis (Mt.b), a deadly disease causer, is a facultative parasite. This microorganism has developed several methods to defend itself, once internalized within specialised vacuoles in the macrophages. A wide array of receptors like the complement receptor mannose receptors, scavenger receptor assists the entry of the microbe within the phagocytic macrophages. However, Mt.b is clever enough to protect itself from the hostile environment of the macrophage thereby prevailing within it. The microbe can efficiently inhibit processes like phagosome-lysosome fusion, acidification of phagosomes, release of proinflammatory cytokines and stop crucial events like apoptosis. Additionally, it also adopts resistance to killing by reactive oxygen intermediates and reactive nitrogen intermediates. There are multiple genes both in host and the pathogen which are involved in this successful survival of Mt.b. The regulation of phagolysosome fusion is mediated by proteins such as Coronin, TlyA, SapM, PnkG, EsxH. The microbe has certain mechanisms to even acquire iron from the host cell, to withstand iron deprivation as a mode of host's defence mechanism. This review focuses on the various defensive adaptations acquired by Mt.b for fighting against the deprived conditions existing within the macrophages and their capability of proliferating successfully within it, thereby resulting in a diseased condition.
Collapse
Affiliation(s)
- Vinaya Krishnan
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India
| | | | - Preetha Nair
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India.
| |
Collapse
|
17
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Wu S, Liang T, Jiang J, Zhu J, Chen T, Zhou C, Huang S, Yao Y, Guo H, Ye Z, Chen L, Chen W, Fan B, Qin J, Liu L, Wu S, Ma F, Zhan X, Liu C. Proteomic analysis to identification of hypoxia related markers in spinal tuberculosis: a study based on weighted gene co-expression network analysis and machine learning. BMC Med Genomics 2023; 16:142. [PMID: 37340462 DOI: 10.1186/s12920-023-01566-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE This article aims at exploring the role of hypoxia-related genes and immune cells in spinal tuberculosis and tuberculosis involving other organs. METHODS In this study, label-free quantitative proteomics analysis was performed on the intervertebral discs (fibrous cartilaginous tissues) obtained from five spinal tuberculosis (TB) patients. Key proteins associated with hypoxia were identified using molecular complex detection (MCODE), weighted gene co-expression network analysis(WGCNA), least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature Elimination (SVM-REF) methods, and their diagnostic and predictive values were assessed. Immune cell correlation analysis was then performed using the Single Sample Gene Set Enrichment Analysis (ssGSEA) method. In addition, a pharmaco-transcriptomic analysis was also performed to identify targets for treatment. RESULTS The three genes, namely proteasome 20 S subunit beta 9 (PSMB9), signal transducer and activator of transcription 1 (STAT1), and transporter 1 (TAP1), were identified in the present study. The expression of these genes was found to be particularly high in patients with spinal TB and other extrapulmonary TB, as well as in TB and multidrug-resistant TB (p-value < 0.05). They revealed high diagnostic and predictive values and were closely related to the expression of multiple immune cells (p-value < 0.05). It was inferred that the expression of PSMB9, STAT 1, and TAP1 could be regulated by different medicinal chemicals. CONCLUSION PSMB9, STAT1, and TAP1, might play a key role in the pathogenesis of TB, including spinal TB, and the protein product of the genes can be served as diagnostic markers and potential therapeutic target for TB.
Collapse
Affiliation(s)
- Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tuo Liang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ye
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wuhua Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binguang Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiahui Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siling Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengzhi Ma
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
19
|
Gao Y, Li J, Guo X, Guan L, Wang J, Huang X, Wang W, Yang H. L-Tyrosine Limits Mycobacterial Survival in Tuberculous Granuloma. Pathogens 2023; 12:pathogens12050654. [PMID: 37242324 DOI: 10.3390/pathogens12050654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Caused by the intracellular pathogen Mycobacterium tuberculosis (Mtb), tuberculosis (TB) remains a massive global public health issue. A well-known and key TB trait is caseous necrotic granuloma, which allows mycobacteria to reactivate and disseminate, thus confounding TB eradication programs. Amino acid (AA) metabolism is key to regulating immune responses in Mtb infections; however, it is currently unclear if AAs can be used to treat tuberculous granulomas. Here, we screened 20 proteinogenic AAs using a Mycobacterium marinum-infected zebrafish granuloma model. Only L-tyrosine simultaneously reduced Mycobacterium marinum (M. marinum) levels in zebrafish larvae and adults and inhibited intracellular pathogen survival levels. Mechanistically, L-tyrosine significantly upregulated interferon-γ (IFN-γ) expression in M. marinum -infected zebrafish adults but not in larvae. Using N-acetylcysteine (NAC) to inhibit reactive oxygen species (ROS), L-tyrosine appeared to inhibit Mtb intracellular survival by promoting ROS production. Thus, L-tyrosine as a non-essential AA may reduce mycobacterial survival in both macrophages and tuberculous granulomas. Our research provides a platform for the clinical development of AAs for active or latent TB patients infected with drug-sensitive or drug-resistant Mtb.
Collapse
Affiliation(s)
- Yaxian Gao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550000, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiaqing Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550000, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xinya Guo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550000, China
| | - Hua Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550000, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
20
|
Lu Y, Chen H, Wang P, Pang J, Lu X, Li G, Hu X, Wang X, Yang X, Li C, Lu Y, You X. Identification and Quantification of S-Sulfenylation Proteome of Mycobacterium tuberculosis under Oxidative Stress. Microbiol Spectr 2023; 11:e0338622. [PMID: 36943050 PMCID: PMC10101118 DOI: 10.1128/spectrum.03386-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
The ability to maintain redox homeostasis is critical for Mycobacterium tuberculosis (Mtb) to survive the redox stress of the host. There are many antioxidant systems in Mtb to ensure its normal replication and survival in the host, and cysteine thiols are one of them. S-sulfenylation is one of the reversible modifications of cysteine thiols to resist oxidative stress. In the study, we investigated the total cysteine thiols modification and S-sulfenylation modification of Mtb proteome under the oxidative stress provided by hydrogen peroxide. To determine and quantify the S-sulfenylation modified proteins, high specific IodoTMT6plex reagents and high resolution mass spectrometry were used to label and quantify the peptides and proteins modified. There are significant differences for the total cysteine modification levels of 279 proteins and S-sulfenylation modification levels of 297 proteins under hydrogen peroxide stress. Functional enrichment analysis indicated that these cysteine-modified proteins were involved in the oxidation-reduction process, fatty acid biosynthetic process, stress response, protein repair, cell wall, etc. In conclusion, our study provides a view of cysteine modifications of the Mtb proteome under oxidative stress, revealing a series of proteins that may play a role in maintaining redox homeostasis. IMPORTANCE With the continuous spread of drug-resistant tuberculosis, there is an urgent need for new antituberculosis drugs with new mechanisms. The ability of Mtb to resist oxidative stress is extremely important for maintaining redox homeostasis and survival in the host. The reversible modifications of cysteine residues have a dual role of protection from irreversible damage to protein functions and regulation, which plays an important role in the redox homeostasis system. Thus, to discover cysteine modification changes in the proteome level under oxidative stress is quintessential to elucidate its antioxidant mechanism. Our results provided a list of proteins involved in the antioxidant process that potentially could be considered targets for drug discovery and vaccine development. Furthermore, it is the first study to determine and quantify the S-sulfenylation-modified proteins in Mtb, which provided better insight into the Mtb response to the host oxidative defense and enable a deeper understanding of Mtb survival strategies.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|