1
|
Jayasinghe RG, Hollingsworth D, Schedler NC, Landy E, Boonchalermvichian C, Gupta B, Yan H, Baker J, Dejene B, Weinberg KI, Negrin RS, Mavers M. Single-cell transcriptomic profiling reveals diversity in human iNKT cells across hematologic tissues. Cell Rep 2025; 44:115587. [PMID: 40305288 DOI: 10.1016/j.celrep.2025.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Invariant natural killer T (iNKT) cells are evolutionarily conserved innate lymphocytes important for protection against pathogens, malignancies, and graft-versus-host disease, with potential for universal donor cellular therapies. While mouse studies reveal transcriptionally and functionally distinct subsets, a comprehensive understanding of human iNKT cell heterogeneity is limited. Herein, we delineate the transcriptomic diversity of human iNKT cells from multiple immunologically relevant hematologic tissues. Human iNKT cells express naive/precursor, transitional, and T helper (Th)1/17/NK-like transcriptional profiles, partially contrasting with findings in mice. Additionally, these data uncover transcription factor dynamics not previously described in mice and reveal a T effector memory RA+-like population. Further, two distinct expression patterns of human CD8+ iNKT cells are described-one resembling naive/precursor cells and another resembling Th1/17/NK-like cells, with predominant expression of CD8αα protein. These critical insights into the transcriptional heterogeneity of human iNKT cells will facilitate future functional studies and inform iNKT-based cellular therapy development.
Collapse
Affiliation(s)
- Reyka G Jayasinghe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Derek Hollingsworth
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan C Schedler
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Landy
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chaiyaporn Boonchalermvichian
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Biki Gupta
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Hao Yan
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Beruh Dejene
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S Negrin
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa Mavers
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Xu T, Xu Q, Lu R, Oakland DN, Li S, Li L, Reilly CM, Luo XM. Application of deep learning models on single-cell RNA sequencing analysis uncovers novel markers of double negative T cells. Sci Rep 2024; 14:31158. [PMID: 39732739 PMCID: PMC11682054 DOI: 10.1038/s41598-024-82406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Double negative T (DNT) cells are a unique subset of CD3 + TCRαβ + T lymphocytes that lack CD4, CD8, or NK1.1 expression and constitute 3-5% of the total T cell population in C57BL/6 mice. They have increasingly gained recognition for their novel roles in the immune system, especially under autoimmune conditions. Conventional machine learning approaches such as principal component analysis have been employed in single-cell RNA sequencing (scRNA-seq) analysis to characterize DNT cells. However, advanced deep learning models such as Single Cell Variational Inference (scVI) have the capability to capture nonlinear gene expression patterns in the sequencing data. In this study, employing the deep learning methodology, we have revealed novel markers for splenic DNT cells in C57BL/6 mice which were validated with flow cytometry analysis. We classified DNT cells into two subgroups, naïve DNT (nDNT) cells differentiated by the expression of Ly6C and activated DNT (aDNT) cells differentiated by the expression of MHC-II. A prior study had predicted elevated expression of CD137/4-1BB encoded by Tnfrsf9 in nDNT cells; however, our analysis predicted and validated that CD137 was a marker for aDNT cells instead of nDNT cells. Innovatively, our data also identified CD30 encoded by Tnfrsf8 and CD153/CD30L encoded by Tnfsf8 as additional markers for aDNT cells. In addition, we classified three subgroups in nDNT cells and two subgroups in aDNT cells. Our scVI analysis suggested, and flow cytometry analysis confirmed, that Ly49G2 encoded by Slamf7 was a marker for the nDNT0 subgroup. Importantly, we validated that MHC-II was indeed expressed by a subset of human DNT cells suggesting the presence of a human aDNT population. Furthermore, we found increased expression of CD30, CD153, and CD137 on aDNT cells in MRL/lpr mice compared to those in C57BL/6 mice suggesting potential pathogenic roles of these molecules in autoimmunity. Together, our comprehensive analysis has uncovered and validated novel markers for different subpopulations of DNT cells that can be used in the phenotypic and/or functional characterization of these relatively rare cells in health and disease.
Collapse
Affiliation(s)
- Tian Xu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Qin Xu
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - David N Oakland
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, USA
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Science, Virginia Tech, Blacksburg, VA, USA
| | - Christopher M Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Cui G, Abe S, Kato R, Ikuta K. Insights into the heterogeneity of iNKT cells: tissue-resident and circulating subsets shaped by local microenvironmental cues. Front Immunol 2024; 15:1349184. [PMID: 38440725 PMCID: PMC10910067 DOI: 10.3389/fimmu.2024.1349184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subpopulation of innate-like T lymphocytes. They are characterized by semi-invariant T cell receptors (TCRs) that recognize both self and foreign lipid antigens presented by CD1d, a non-polymorphic MHC class I-like molecule. iNKT cells play a critical role in stimulating innate and adaptive immune responses, providing an effective defense against infections and cancers, while also contributing to chronic inflammation. The functions of iNKT cells are specific to their location, ranging from lymphoid to non-lymphoid tissues, such as the thymus, lung, liver, intestine, and adipose tissue. This review aims to provide insights into the heterogeneity of development and function in iNKT cells. First, we will review the expression of master transcription factors that define subsets of iNKT cells and their production of effector molecules such as cytokines and granzymes. In this article, we describe the gene expression profiles contributing to the kinetics, distribution, and cytotoxicity of iNKT cells across different tissue types. We also review the impact of cytokine production in distinct immune microenvironments on iNKT cell heterogeneity, highlighting a recently identified circulating iNKT cell subset. Additionally, we explore the potential of exploiting iNKT cell heterogeneity to create potent immunotherapies for human cancers in the future.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Han SM, Park ES, Park J, Nahmgoong H, Choi YH, Oh J, Yim KM, Lee WT, Lee YK, Jeon YG, Shin KC, Huh JY, Choi SH, Park J, Kim JK, Kim JB. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun 2023; 14:8512. [PMID: 38129377 PMCID: PMC10739728 DOI: 10.1038/s41467-023-44181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeu Park
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyung Min Yim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Taek Lee
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Yong Geun Jeon
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Cheul Shin
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea.
| | - Jae Bum Kim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Zhao W, Wang Y, Zhang X, Hao J, Zhang K, Huang X, Chang Y, Wu H, Jin R, Ge Q. Impaired thymic iNKT cell differentiation at early precursor stage in murine haploidentical bone marrow transplantation with GvHD. Front Immunol 2023; 14:1203614. [PMID: 37600815 PMCID: PMC10438461 DOI: 10.3389/fimmu.2023.1203614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Early recovery of donor-derived invariant natural killer T (iNKT) cells are associated with reduced risk of graft-versus-host disease (GvHD) and overall survival. Patients with severe GvHD, however, had much slower iNKT cell reconstitution relative to conventional T cells. Methods To characterize the delay of iNKT cell reconstitution and explore its possible causes, we used a haploidentical bone marrow transplantation (haplo-BMT) mouse model with GvHD. We found the delayed recovery of thymic and peripheral iNKT cell numbers with markedly decreased thymic NKT1 subset in GvHD mice. The defective generation of thymic iNKT precursors with egress capability contributed to the reduced peripheral iNKT cells in GvHD mice. We further identified intermediate NK1.1- NKT1 precursor subpopulations under steady-state conditions and found that the differentiation of these subpopulations was impaired in the thymi of GvHD mice. Detailed characterization of iNKT precursors and thymic microenvironment showed a close association of elevated TCR/co-stimulatory signaling provided by double positive thymocytes and macrophages with defective down-regulation of proliferation, metabolism, and NKT2 signature in iNKT precursor cells. Correspondingly, NKT2 but not NKT1 differentiation was favored in GvHD mice. Discussion These data underline the important roles of TCR and co-stimulatory signaling in the differentiation of thymic iNKT subsets under transplantation conditions.
Collapse
Affiliation(s)
- Weijia Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xinwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Kunshan Zhang
- Central Lab, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital & Institute of Hematology, Beijing, China
| | - Yingjun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital & Institute of Hematology, Beijing, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Li YZ, Xie J, Wang RQ, Gao XQ, Liu PJ, Liu J. KLF2 is a clinical diagnostic and treatment biomarker of breast cancer. Front Cell Dev Biol 2023; 11:1182123. [PMID: 37123417 PMCID: PMC10133575 DOI: 10.3389/fcell.2023.1182123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Background: As a highly prevalent malignancy among women worldwide, breast cancer, remains a critical public health issue necessitating the development of novel therapeutics and biomarkers. Kruppel Like Factor 2 (KLF2), a member of the Kruppel family of transcription factors, has been implicated in various types of cancer due to its diminished expression; however, the potential implications of KLF2 expression in relation to breast cancer progression, prognosis, and therapy remain unclear. Methods: The present study employed the Tumor Immune Estimation Resource (TIMER) and The Human Protein Atlas databases to investigate the expression pattern of KLF2 in pan-cancer. The relationship between KLF2 expression and clinical features or immune infiltration of The Cancer Genome Atlas (TCGA) breast cancer samples was evaluated using Breast Cancer Integrative Platform (BCIP) and TIMER. The expression levels of KLF2 in breast cancer were validated via immunohistochemical staining analysis. Gene Set Enrichment Analysis (GSEA) to study the KLF2-related gene ontology. STRING database was employed to construct a protein-protein interaction (PPI) network of KLF2 in relation to vascular endothelial growth factor A (VEGFA) and hypoxia-inducible factor 1α (HIF1α). The expression of KLF2 following diverse breast cancer therapies was analyzed in the Gene Expression Omnibus (GEO) databases. The expression of KLF2 following treatment with simvastatin was validated via immunofluorescence and western blotting. Results: Our study reveals that KLF2 displays significantly reduced expression in cancerous tissues compared to non-cancerous controls. Patients with low KLF2 expression levels exhibited poor prognosis across multiple cancer types. KLF2 expression levels were found to be reduced in advanced cancer stages and grades, while positively correlated with the expression of estrogen receptor (ER), progesterone receptor (PR), and tumor size in breast cancer. KLF2 expression is associated with diverse immune infiltration cells, and may impact the breast tumor immune microenvironment by regulating dendritic cell activation. Additionally, we observed a negative correlation between KLF2 expression levels and angiogenesis, as well as the expression of VEGFA and HIF1α. Notably, the anticancer drug simvastatin could induce KLF2 expression in both breast cancer. Conclusion: Based on our observations, KLF2 has potential as a diagnostic, prognostic, and therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Ya-Zhao Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Juan Xie
- Department of Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Rui-Qi Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiao-Qian Gao
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pei-Jun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Pei-Jun Liu, ; Jie Liu,
| | - Jie Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Pei-Jun Liu, ; Jie Liu,
| |
Collapse
|
7
|
Kane H, LaMarche NM, Ní Scannail Á, Garza AE, Koay HF, Azad AI, Kunkemoeller B, Stevens B, Brenner MB, Lynch L. Longitudinal analysis of invariant natural killer T cell activation reveals a cMAF-associated transcriptional state of NKT10 cells. eLife 2022; 11:e76586. [PMID: 36458691 PMCID: PMC9831610 DOI: 10.7554/elife.76586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector, and memory adaptive T cells have been well studied, less is known about the transcriptional regulation of different iNKT cell activation states. Here, using single-cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2, and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen-experienced iNKT cells.
Collapse
Affiliation(s)
- Harry Kane
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
| | - Nelson M LaMarche
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Áine Ní Scannail
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Amanda E Garza
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Adiba I Azad
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Britta Kunkemoeller
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brenneth Stevens
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lydia Lynch
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|