1
|
Li D, Yu Q, Shao F, Wang J, Wu R, Guo Y, Yoo KH, Wang Z, Wei W, Feng D. Decoding the crossroads of aging and cancer through single-cell analysis: Implications for precision oncology. Int J Cancer 2025. [PMID: 40268523 DOI: 10.1002/ijc.35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Single-cell analysis is a transformative approach to understanding cellular heterogeneity in aging and cancer, interconnected processes driven by mechanisms like senescence and immune modulation. This review explores how aging influences cancer initiation, progression, and treatment resistance within the tumor microenvironment (TME). By examining recent studies using single-cell technologies, we reveal the nuanced roles of aging in tumorigenesis, immune interactions, and therapeutic outcomes. Aging is closely tied to cancer progression, with senescent cells demonstrating heightened proliferative, invasive, and metastatic capabilities. Emerging senolytic therapies targeting aging-related pathways hold promise for enhancing treatment efficacy. Advanced tools such as spatial transcriptomics, molecular probes, and artificial intelligence further refine our understanding of aging-related heterogeneity in the TME. By integrating single-cell analysis with these technologies, future research can clarify the intricate interactions between aging and cancer, advancing precision oncology and improving outcomes for aging cancer patients.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo City, Zhejiang Province, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
2
|
Dutta A, Chowdhury N, Chandra S, Guha P, Saha V, GuhaSarkar D. Gallbladder cholangiocyte organoids. Biol Cell 2025; 117:e2400132. [PMID: 39945546 PMCID: PMC11823593 DOI: 10.1111/boc.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Organoids are miniature three-dimensional (3D) organ-like structures developed from primary cells that closely mimic the key histological, functional, and molecular characteristics of their parent organs. These structures self-organize through cell-cell and cell-matrix interaction in culture. In the last decade, organoids and allied 3D culture technologies have catalyzed studies involving developmental biology, disease biology, high-throughput drug screening, personalized medicine, biomarker discovery, tissue engineering, and regenerative medicine. Many organoid systems have been generated from the gastrointestinal system, for example, intestine, stomach, liver, pancreas, or colon. Gallbladder cancer (GBC) is the most common and highly aggressive form of biliary tract cancer. GBC is rare in the west but has a high incidence in South America and India. Prolonged chronic inflammation is implicated in the pathogenesis of GBC but the driving molecular pathways leading to neoplasia are not well understood. Gallbladder cholangiocyte organoids (GCO) will facilitate the understanding of the evolution of the disease and novel therapeutic strategies. In this review, we have discussed alternative methodologies and culture conditions developed to generate GCO models, applications that these models have been subjected to and the current limitations for the use of GCOs in addressing the challenges in GBC research.
Collapse
Affiliation(s)
- Ankita Dutta
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Nandita Chowdhury
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Shinjini Chandra
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Payel Guha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Vaskar Saha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- Department of Paediatric Haematology and Oncology Tata Medical CenterKolkataIndia
- Division of Cancer SciencesFaculty of BiologyMedicine and HealthSchool of Medical SciencesUniversity of ManchesterManchesterUK
| | - Dwijit GuhaSarkar
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| |
Collapse
|
3
|
Sun Y, Shi G, Yang J, Zhou CZ, Peng C, Luo YH, Pan Y, Wang RQ. Deciphering the heterogeneity and plasticity of the tumor microenvironment in liver cancer provides insights for prognosis. Front Pharmacol 2025; 16:1495280. [PMID: 39950116 PMCID: PMC11821625 DOI: 10.3389/fphar.2025.1495280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Liver cancer exhibits diverse molecular characteristics and distinct immune cell infiltration patterns, which significantly influence patient outcomes. In this study, we thoroughly examined the liver cancer tumor environment by analyzing data from 419,866 individual cells across nine datasets involving 99 patients. By categorizing patients into different groups based on their immune cell profiles, including immune deficiency, B cells-enriched, T cells-enriched and macrophages-enriched, we better understood how these cells change in various patient subgroups. Our investigation of liver metastases from intestinal cancer uncovered a group of mast cells that might promote metastasis through pathways like inositol phosphate metabolism. Using genomic and clinical data from The Cancer Genome Atlas, we identified specific cell components linked to tumor characteristics and genetics. Our detailed study of cancer-associated fibroblasts (CAFs) revealed how they adapt and acquire new functions in the tissue environment, highlighting their flexibility. Additionally, we found a significant connection between CAF-related genes and the prognosis of hepatocellular carcinoma patients. This research provides valuable insights into the makeup of the liver cancer tumor environment and its profound impact on patient outcomes, offering fresh perspectives for managing this challenging disease.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jian Yang
- Department of Respiratory and Critical Care Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chun-Zhong Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chuhan Peng
- Canyon Crest Academy, San Diego, CA, United States
| | - Yu-Hong Luo
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Ying Pan
- Department of Oncology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
4
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Zhu H, Shi H, Lu J, Zhu K, Yang L, Guo L, Tang L, Shi Y, Hu X. Proteomic profiling reveals the significance of lipid metabolism in small cell lung cancer recurrence and metastasis. J Transl Med 2024; 22:1117. [PMID: 39707352 PMCID: PMC11662706 DOI: 10.1186/s12967-024-05926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a lethal and recalcitrant malignancy with early metastases. However, the molecular and cellular mechanisms underlying its aggressive characteristics remain relatively elusive. METHODS In this study, we conducted a comprehensive proteomic analysis of 90 primary tumors, 15 patient-matched lymph node metastatic tumors, and 15 brain metastatic tumors derived from a cohort of 105 SCLC patients. The potential mechanism for SCLC metastasis was investigated based on the variety of protein expression profiles. RESULTS Primary tumors were divided into two categories according to the their different protein expression profiles, using metastatic tumors as reference. Proteomic comparisons across different groups revealed that lipid metabolism, especially phospholipid metabolism, and immune response had a critical role in SCLC metastasis. Additionally, it was shown that high- and low-density lipoprotein cholesterol were both independent prognostic factors for disease free survival of SCLC patients. To identify critical regulators of metastasis in SCLC, support vector machine was adopted to generate a biomarker combination of ten proteins, all of which significantly correlated with the infiltration of immune cells. Furthermore, it was demonstrated that high expression of phospholipase A2 group IIA in stroma was associated with delayed disease recurrence in limited stage SCLC. CONCLUSIONS This study highlighted the critical significance of lipid metabolism, especially phospholipid metabolism in the disease recurrence and metastasis of SCLC.
Collapse
Affiliation(s)
- Haohua Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Huiyang Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jingyu Lu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kai Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Xingsheng Hu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Yan S, Liu Z, Wang T, Sui Y, Wu X, Shen J, Pu P, Yang Y, Wu S, Qiu S, Wang Z, Jiang X, Feng F, Li G, Liu F, Zhao C, Liu K, Feng J, Li M, Man K, Wang C, Tang Y, Liu Y. Super-Enhancer Reprograming Driven by SOX9 and TCF7L2 Represents Transcription-Targeted Therapeutic Vulnerability for Treating Gallbladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406448. [PMID: 39492805 DOI: 10.1002/advs.202406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy lacking clinically available targeted therapeutic agents. Super-enhancers (SEs) are crucial epigenetic cis-regulatory elements whose extensive reprogramming drives aberrant transcription in cancers. To study SE in GBC, the genomic distribution of H3K27ac is profiled in multiple GBC tissue and cell line samples to establish the SE landscape and its associated core regulatory circuitry (CRC). The biliary lineage factor SOX9 and Wnt pathway effector TCF7L2, two master transcription factor (TF) candidates identified by CRC analysis, are verified to co-occupy each other's SE region, forming a mutually autoregulatory loop to drive oncogenic SE reprogramming in a subset of GBC. The SOX9/TCF7L2 double-high GBC cells are highly dependent on the two TFs and enriched of SE-associated gene signatures related to stemness, ErbB and Wnt pathways. Patients with more such GBC cells exhibited significantly worse prognosis. Furthermore, SOX9/TCF7L2 double-high GBC preclinical models are found to be susceptible to SE-targeted CDK7 inhibition therapy in vitro and in vivo. Together, this study provides novel insights into the epigenetic mechanisms underlying the oncogenesis of a subset of GBCs with poorer prognosis and illustrates promising prognostic stratification and therapeutic strategies for treating those GBC patients in future clinical trials.
Collapse
Affiliation(s)
- Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhaonan Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jiayi Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Sizhong Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - FaTao Liu
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Chaoxian Zhao
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jiayi Feng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, P. R. China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, P. R. China
- Department of General Surgery, Jiading Branch, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201800, P. R. China
| |
Collapse
|
7
|
Qin Y, Zhou Y, Wu H, Lei H, Ding T, Shen X, Li J. SNORA71A Downregulation Enhances Gemcitabine Sensitivity in Gallbladder Cancer Cells by Inducing Ferroptosis Through Inhibiting the AKT/NRF2/GPX4 Pathway. DNA Cell Biol 2024; 43:559-569. [PMID: 39403747 DOI: 10.1089/dna.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Previous findings have indicated a marked upregulation of SNORA71A in gallbladder cancer (GBC) tissues compared to normal samples. However, the precise role and molecular mechanisms of SNORA71A in GBC remain largely unknown. Moreover, gemcitabine (GEM) drug resistance has been found to lead to unfavorable outcomes and recurrence in GBC patients. Therefore, this study aims to investigate the impact of SNORA71A on GBC and explore its potential effects on the sensitivity of GBC cells to GEM. RT-qPCR was conducted to assess SNORA71A level in matched normal and GBC tissues. Cell proliferation was examined through CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays. Additionally, the expression of proteins in GBC cells was analyzed using western blot assay. The level of SNORA71A was notably higher in GBC tissues relative to normal tissues. SNORA71A overexpression led to increased GBC cell proliferation and invasion. Conversely, SNORA71A deficiency strongly suppressed GBC cell proliferation and invasion and triggered cell apoptosis and ferroptosis. Additionally, downregulation of SNORA71A obviously enhanced the antiproliferative and anti-invasive effects of GEM on GBC cells, whereas these changes were reversed by inhibiting ferroptosis. Furthermore, deficiency of SNORA71A further augmented the GEM-induced downregulation of p-Akt, Nrf2, and GPX4 in NOZ cells; however, these effects were reversed by ferroptosis inhibition. Collectively, these findings suggested that downregulation of SNORA71A may increase the sensitivity of GBC cells to GEM by triggering ferroptosis through inhibiting the AKT/NRF2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Yiyu Qin
- Jiangsu Province Engineering Research Center for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yang Zhou
- Jiangsu Province Engineering Research Center for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongyan Wu
- Science and Technology Department, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Haiming Lei
- Jiangsu Province Engineering Research Center for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Tingyu Ding
- Science and Technology Department, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xinya Shen
- Science and Technology Department, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jian Li
- Jiangsu Province Engineering Research Center for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
8
|
Xu H, Chai H, Chen M, Zhu R, Jiang S, Liu X, Wang Y, Chen J, Wei J, Mao Y, Shi Z. Single-cell RNA sequencing identifies a subtype of FN1 + tumor-associated macrophages associated with glioma recurrence and as a biomarker for immunotherapy. Biomark Res 2024; 12:114. [PMID: 39375795 PMCID: PMC11457430 DOI: 10.1186/s40364-024-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor in the brain, and even with standard treatments including surgical resection, radiotherapy, and chemotherapy, the long-term survival rate of patients remains unsatisfactory. Recurrence is one of the leading causes of death in glioma patients. The molecular mechanisms underlying glioma recurrence remain unclear. METHODS Our study utilized single-cell sequencing, spatial transcriptomics, and RNA-seq data to identify a subtype of FN1 + tumor-associated macrophages (FN1 + TAMs) associated with glioma recurrence. RESULTS This study revealed an increased abundance of FN1 + TAMs in recurrent gliomas, indicating their potential involvement as a critical factor in glioma recurrence. A negative correlation was observed between the abundance of FN1 + TAMs in primary gliomas and the interval time to recurrence, suggesting poor prognosis for glioma patients with high levels of FN1 + TAMs. Further investigation showed that FN1 + TAMs were enriched in hypoxic tumor regions, implying that metabolic changes in tumors drive the production and recruitment of FN1 + TAMs. Additionally, FN1 + TAMs were found to contribute to the regulation of an immunosuppressive microenvironment in gliomas, and their abundance might serve as an indicator of patients' sensitivity to immunotherapy. Finally, we developed a user-friendly website, PRIMEG ( http://www.szflab.site/PRIMEG/ ), for exploring the immune microenvironment of primary and recurrent gliomas. CONCLUSION Our findings highlight a subtype of FN1 + TAMs associated with glioma recurrence, providing new insights into potential therapeutic targets. Moreover, the abundance of FN1 + TAMs hold promise for predicting immune therapy response and aiding in more precise risk stratification of recurrent glioma patients.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huihui Chai
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruize Zhu
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Jiang
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Ying Mao
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Bai S, Shi X, Dai Y, Wang H, Xia Y, Liu J, Wang K. The preoperative scoring system combining neutrophil/lymphocyte ratio and CA19-9 predicts the long-term prognosis of intrahepatic cholangiocarcinoma patients undergoing curative liver resection. BMC Cancer 2024; 24:1106. [PMID: 39237882 PMCID: PMC11378368 DOI: 10.1186/s12885-024-12819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND This study aims to investigate preoperative prognostic factors available for intrahepatic cholangiocarcinoma (ICC) patients and propose a new preoperative prognostic scoring system for ICC that combines CA19-9 and neutrophil/lymphocyte ratio (NLR). METHODS In this retrospective analysis, 1728 patients diagnosed with ICC and undergoing curative liver resections were studied. This study employed univariate and multivariate Cox regression to find factors affecting recurrence and overall survival (OS), and furthermore assessed how preoperative models influenced tumor traits and postoperative recurrence. RESULTS The results of the multivariate Cox regression analysis indicated that two preoperative variables, NLR and Ca19-9, were independent risk factors affecting postoperative recurrence and OS in ICC patients. Based on this data, assigning a score of 0 (NLR ≤ 2.4 and Ca19-9 ≤ 37U/ml) or 1 (NLR > 2.4 and Ca19-9 > 37U/ml) to these two factors, a preoperative prognostic score was derived. According to the scoring model, patients were divided into three groups: 0 points (low-risk group), 1 point (intermediate-risk group), and 2 points (high-risk group). The 5-year recurrence and OS rates for the three groups were 56.6%, 68.2%, 77.8%, and 56.8%, 40.6%, 27.6%, respectively, with all P values < 0.001. Furthermore, high-risk group patients were more prone to early recurrence (early recurrence rates for high-, intermediate-, and low-risk groups were 56.8%, 51.5%, and 37.1%, respectively, P < 0.001) and extrahepatic metastasis (extrahepatic metastasis rates for high-, intermediate-, and low-risk groups were 31.7%, 26.4%, and 15.4%, respectively, P < 0.001). In terms of tumor characteristics, high-risk group patients had larger tumor diameters and were more likely to experience microvascular invasion, lymph node metastasis, and perineural invasion. CONCLUSIONS The predictive capacity of postoperative recurrence and OS rates in ICC patients is effectively captured by the preoperative scoring system incorporating NLR and CA19-9 levels.
Collapse
Affiliation(s)
- Shilei Bai
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, People's Republic of China
| | - Xiaodong Shi
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, People's Republic of China
| | - Yizhe Dai
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Huifeng Wang
- Department of Hepatic Surgery, the Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yong Xia
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Jian Liu
- Department of Biliary Surgery II, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China.
| | - Kui Wang
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
10
|
Dong F, Zheng L, Zhang X. Alpha-boswellic acid accelerates acute wound healing via NF-κB signaling pathway. PLoS One 2024; 19:e0308028. [PMID: 39226297 PMCID: PMC11371135 DOI: 10.1371/journal.pone.0308028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Boswellic acids (BAs) showed promising effects in cancer treatment, immune response regulation, and anti-inflammatory therapy. We aimed to assess the roles of alpha-BA (α-BA) in treating acute wound healing. METHODS In vivo wound-healing models were established to evaluate the therapeutic effects of α-BA. Cell assays were conducted to assess the impact of α-BA on cellular biological functions. Western blot analysis was employed to validate the potential mechanisms of action of α-BA. RESULTS Animal models indicated that wound healing was notably accelerated in the α-BA group compared to the control group (P < 0.01). Hematoxylin and eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA) assay preliminarily suggested that α-BA may accelerate wound healing by inhibiting excessive inflammatory reactions and increasing the protein levels of growth factors. Cell function experiments demonstrated that α-BA suppressed the proliferation and migration ability of human hypertrophic scar fibroblasts (HSFBs), thereby favoring wound healing. Additionally, α-BA exerted a significant impact on cell cycle progression. Mechanistically, the protein levels of key genes in nuclear factor kappa beta (NF-κB) signaling pathway, including cyclin D1, p65, IκBα, and p-IκBα, were downregulated by α-BA. CONCLUSIONS α-BA demonstrated the ability to counteract the abnormal proliferation of skin scar tissues, consequently expediting wound healing. These findings suggest its potential for development as a new agent for treating acute wound healing.
Collapse
Affiliation(s)
- Fang Dong
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Zheng
- Digestive Department, Gansu Provincial Hospital, Lanzhou, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Chen W, Chen M, Hong L, Xiahenazi A, Huang M, Tang N, Yang X, She F, Chen Y. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp Hematol Oncol 2024; 13:83. [PMID: 39138521 PMCID: PMC11320879 DOI: 10.1186/s40164-024-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known. METHODS Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo. RESULTS The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC. CONCLUSIONS The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Abudukeremu Xiahenazi
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Xinyue Yang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350108, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
12
|
Ren F, Wang L, Wang Y, Wang J, Wang Y, Song X, Zhang G, Nie F, Lin S. Single-cell transcriptome profiles the heterogeneity of tumor cells and microenvironments for different pathological endometrial cancer and identifies specific sensitive drugs. Cell Death Dis 2024; 15:571. [PMID: 39112478 PMCID: PMC11306564 DOI: 10.1038/s41419-024-06960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+ Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.
Collapse
Affiliation(s)
- Fang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyouye Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanpei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaole Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
Li J, Kong Z, Qi Y, Wang W, Su Q, Huang W, Zhang Z, Li S, Du E. Single-cell and bulk RNA-sequence identified fibroblasts signature and CD8 + T-cell - fibroblast subtype predicting prognosis and immune therapeutic response of bladder cancer, based on machine learning: bioinformatics multi-omics study. Int J Surg 2024; 110:4911-4931. [PMID: 38759695 PMCID: PMC11325897 DOI: 10.1097/js9.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS CAF-related genes of bladder cancer were identified by analysing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, 10 types of machine learning algorithms were utilised to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS Fifty-four BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRGI. High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS In summary, the authors established a novel FRGI and CD8-FRG subtype by large-scale datasets and organised analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zheng Kong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Qiang Su
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Shuai Li
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
14
|
Liu T, Wang Z, Xue X, Wang Z, Zhang Y, Mi Z, Zhao Q, Sun L, Wang C, Shi P, Yu G, Wang M, Sun Y, Xue F, Liu H, Zhang F. Single-cell transcriptomics analysis of bullous pemphigoid unveils immune-stromal crosstalk in type 2 inflammatory disease. Nat Commun 2024; 15:5949. [PMID: 39009587 PMCID: PMC11251189 DOI: 10.1038/s41467-024-50283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Bullous pemphigoid (BP) is a type 2 inflammation- and immunity-driven skin disease, yet a comprehensive understanding of the immune landscape, particularly immune-stromal crosstalk in BP, remains elusive. Herein, using single-cell RNA sequencing (scRNA-seq) and in vitro functional analyzes, we pinpoint Th2 cells, dendritic cells (DCs), and fibroblasts as crucial cell populations. The IL13-IL13RA1 ligand-receptor pair is identified as the most significant mediator of immune-stromal crosstalk in BP. Notably, fibroblasts and DCs expressing IL13RA1 respond to IL13-secreting Th2 cells, thereby amplifying Th2 cell-mediated cascade responses, which occurs through the specific upregulation of PLA2G2A in fibroblasts and CCL17 in myeloid cells, creating a positive feedback loop integral to immune-stromal crosstalk. Furthermore, PLA2G2A and CCL17 contribute to an increased titer of pathogenic anti-BP180-NC16A autoantibodies in BP patients. Our work provides a comprehensive insight into BP pathogenesis and shows a mechanism governing immune-stromal interactions, providing potential avenues for future therapeutic research.
Collapse
Affiliation(s)
- Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhe Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Zhao
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Gongqi Yu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
15
|
Wu Z, Zhang J, Jia Z, Yang Z, Liu S, Wang H, Zhao C, Zhao J, Tang Q, Xiong Y, Yang Y, Zhang Y, Zhou Z, Yue J, Xiao F, Sun Q, Gong A, Yao W, Li H, Song X, Ye Y, Zhu Y, Dong P, Ma F, Wu X, Gong W. TRIM21-mediated ubiquitylation of TAT suppresses liver metastasis in gallbladder cancer. Cancer Lett 2024; 592:216923. [PMID: 38697462 DOI: 10.1016/j.canlet.2024.216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyao Jia
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Huakai Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Qiuyi Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yichen Xiong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yue Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhe Zhou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xiao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Albie Gong
- Biochemistry, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Wenyan Yao
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Hong Y, Abudukeremu X, She F, Chen Y. SOAT1 in gallbladder cancer: Clinicopathological significance and avasimibe therapeutics. J Biochem Mol Toxicol 2024; 38:e23733. [PMID: 38770938 DOI: 10.1002/jbt.23733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The aim of this investigation was to evaluate the differential expression of the sterol O-acyltransferase 1 (SOAT1) protein in gallbladder cancer tissues and cells, investigate the impact of Avastin on the proliferation, migration, invasion capabilities of gallbladder cancer cells, and its potential to induce cell apoptosis. Immunohistochemical analysis of samples from 145 gallbladder cancer patients was conducted, along with analysis of SOAT1 protein, mRNA expression levels, and cholesterol content in gallbladder cancer cell lines SGC-996, NOZ, and gallbladder cancer (GBC)-SD using Western blot and q-PCR techniques. Furthermore, the effects of Avastin on the proliferation, migration, and invasion capabilities of these gallbladder cancer cell lines were studied, and its ability to induce cell apoptosis was evaluated using flow cytometry, Western blot, and immunohistochemical methods. Additionally, gene expression and pathway analysis were performed, and the synergistic therapeutic effects of Avastin combined with gemcitabine were tested in a gallbladder cancer xenograft model. The study found that SOAT1 expression was significantly upregulated in GBC tissues and positively correlated with lymph node metastasis and TNM staging. In vitro experiments demonstrated that Avastin significantly inhibited the proliferation, migration, and invasion capabilities of SGC-996 and GBC-SD cell lines and induced apoptosis. RNA sequencing analysis revealed multiple differentially expressed genes in cells treated with Avastin, primarily enriched in biological pathways such as signaling transduction, malignant tumors, and the immune system. In vivo, experiments confirmed that Avastin could effectively suppress tumor growth in a gallbladder cancer xenograft model and enhanced the treatment efficacy when used in combination with gemcitabine. Overall, these findings provide new insights and strategies for targeted therapy in gallbladder cancer.
Collapse
Affiliation(s)
- Yuqun Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Zhang Y, Zuo C, Li Y, Liu L, Yang B, Xia J, Cui J, Xu K, Wu X, Gong W, Liu Y. Single-cell characterization of infiltrating T cells identifies novel targets for gallbladder cancer immunotherapy. Cancer Lett 2024; 586:216675. [PMID: 38280478 DOI: 10.1016/j.canlet.2024.216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Gallbladder cancer (GBC) is among the most common malignancies of biliary tract system due to its limited treatments. The immunotherapeutic targets for T cells are appealing, however, heterogeneity of T cells hinds its further development. We systematically construct T cell atlas by single-cell RNA sequencing; and utilized the identified gene signatures of high_CNV_T cells to predict molecular subtyping towards personalized therapeutic treatments for GBC. We identified 12 T cell subtypes, where exhausted CD8+ T cells, activated/exhausted CD8+ T cells, and regulatory T cells were predominant in tumors. There appeared to be an inverse relationship between Th17 and Treg populations with Th17 levels significantly reduced, whereas Tregs were concomitantly increased. Furthermore, we first established subtyping criterion to identify three subtypes of GBC based on their pro-tumorigenic microenvironments, e.g., the type 1 group shows more M2 macrophages infiltration, while the type 2 group is infiltrated by highly exhausted CD8+ T cells, B cells and Tregs with suppressive activities. Our study provides valuable insights into T cell heterogeneity and suggests that molecular subtyping based on T cells might provide a potential immunotherapeutic strategy to improve GBC treatment.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Chunman Zuo
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China; Key Laboratory of Symbolic Computation and knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130022, China.
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Bo Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Junjie Xia
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China
| | - Jiangnan Cui
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China
| | - Keren Xu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| |
Collapse
|
18
|
Zhang Y, Sun H, Zhang W, Fu T, Huang S, Mou M, Zhang J, Gao J, Ge Y, Yang Q, Zhu F. CellSTAR: a comprehensive resource for single-cell transcriptomic annotation. Nucleic Acids Res 2024; 52:D859-D870. [PMID: 37855686 PMCID: PMC10767908 DOI: 10.1093/nar/gkad874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellSTAR) was thus developed. It is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique features, CellSTAR is expected to attract broad research interests from the technological innovations in single-cell transcriptomics, the studies of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https://idrblab.org/cellstar.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
19
|
Huang Q, Wang F, Hao D, Li X, Li X, Lei T, Yue J, Liu C. Deciphering tumor-infiltrating dendritic cells in the single-cell era. Exp Hematol Oncol 2023; 12:97. [PMID: 38012715 PMCID: PMC10680280 DOI: 10.1186/s40164-023-00459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Dendritic cells (DCs) serve as a pivotal link connecting innate and adaptive immunity by processing tumor-derived antigens and activating T cells. The advent of single-cell sequencing has revolutionized the categorization of DCs, enabling a high-resolution characterization of the previously unrecognized diversity of DC populations infiltrating the intricate tumor microenvironment (TME). The application of single-cell sequencing technologies has effectively elucidated the heterogeneity of DCs present in the tumor milieu, yielding invaluable insights into their subpopulation structures and functional diversity. This review provides a comprehensive summary of the current state of knowledge regarding DC subtypes in the TME, drawing from single-cell studies conducted across various human tumors. We focused on the categorization, functions, and interactions of distinct DC subsets, emphasizing their crucial roles in orchestrating tumor-related immune responses. Additionally, we delve into the potential implications of these findings for the identification of predictive biomarkers and therapeutic targets. Enhanced insight into the intricate interplay between DCs and the TME promises to advance our comprehension of tumor immunity and, in turn, pave the way for the development of more efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Fuhao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Di Hao
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu Li
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
20
|
Wu JX, Hua R, Luo XJ, Xie F, Yao L. Effects of cytoreductive surgery combined with hyperthermic perfusion chemotherapy on prognosis of patients with advanced gallbladder cancer. World J Gastrointest Surg 2023; 15:2413-2422. [PMID: 38111760 PMCID: PMC10725543 DOI: 10.4240/wjgs.v15.i11.2413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GC) is a common malignant tumor and one of the leading causes of cancer-related death worldwide. It is typically highly invasive, difficult to detect in the early stages, and has poor treatment outcomes, resulting in high mortality rates. The available treatment options for GC are relatively limited. One emerging treatment modality is hyperthermic intraperitoneal chemotherapy (HIPEC). HIPEC involves delivering heated chemotherapy directly into the abdominal cavity. It combines the strategies of surgical tumor resection and localized chemotherapy administration under hyperthermic conditions, aiming to enhance the concentration and effectiveness of drugs within the local tumor site while minimizing systemic toxicity. AIM To determine the effects of cytoreductive surgery (CRS) combined with HIPEC on the short-term prognosis of patients with advanced GC. METHODS Data from 80 patients treated at the Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine between January 2018 and January 2020 were retrospectively analyzed. The control group comprised 44 patients treated with CRS, and the research group comprised 36 patients treated with CRS combined with HIPEC. Then, the survival time and prognostic factors of the two groups were compared, as well as liver and kidney function indices before and six days after surgery. Adverse reactions and complications were recorded in both groups. RESULTS The baseline data of the research and control groups were similar (P > 0.05). Six days after surgery, the alanine aminotransferase, aspartate aminotransferase, total bilirubin, and direct bilirubin levels significantly decreased compared to the preoperative levels in both groups (P < 0.05). However, the values did not differ between the two groups six days postoperatively (P > 0.05). Similarly, the postoperative creatinine and blood urea nitrogen levels were significantly lower than the preoperative levels in both groups (P < 0.05), but they did not differ between the groups six days postoperatively (P > 0.05). Furthermore, the research group had fewer postoperative adverse reactions than the control group (P = 0.027). Finally, a multivariate Cox analysis identified the tumor stage, distant metastasis, and the treatment plan as independent factors affecting prognosis (P < 0.05). The three-year survival rate in the study group was higher than that in the control group (P = 0.002). CONCLUSION CRS combined with HIPEC lowers the incidence of adverse reactions and improves survival in patients with advanced GC.
Collapse
Affiliation(s)
- Jin-Xiu Wu
- Department of Hepatobiliary-Pancreatic Surgery, Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiang-Ji Luo
- Department of Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai 200438, China
| | - Feng Xie
- Department of Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai 200438, China
| | - Li Yao
- Department of Hepatobiliary-Pancreatic Surgery, Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
21
|
Lin S, Sun Y, Cao C, Zhu Z, Xu Y, Liu B, Hu B, Peng T, Zhi W, Xu M, Ding W, Ren F, Ma D, Li G, Wu P. Single-nucleus RNA sequencing reveals heterogenous microenvironments and specific drug response between cervical squamous cell carcinoma and adenocarcinoma. EBioMedicine 2023; 97:104846. [PMID: 37879219 PMCID: PMC10618708 DOI: 10.1016/j.ebiom.2023.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cervical squamous cell carcinoma (CSCC) and adenocarcinoma (CAde) are two major pathological types of cervical cancer (CC), but their high-resolution heterogeneity of tumor and immune microenvironment remains elusive. METHODS Here, we performed single-nucleus RNA sequencing (snRNA-seq) from five CSCC and three CAde samples, and systematically outlined their specific transcriptome atlas. FINDINGS We found CD8+ T cells in CSCC were more cytotoxic but lower exhausted compared to those in CAde, and phagocytic MRC1+ macrophages were specifically enriched in CSCC. Interestingly, we discovered that pro-tumoral cancer-associated myofibroblasts (myoCAFs) and cancer-associated vascular-fibroblasts (vCAFs) were more abundant in CSCC, and further verified their pro-metastatic roles in vitro. Furthermore, we also identified some specific chemotherapy drugs for CSCC (Dasatinib and Doramapimod) and CAde (Pyrimethamine and Lapatinib) by revealing their heterogeneity in transcriptomic profiles of malignant epithelial cells, and further verified their specific sensitivity in cell lines and constructed CC-derived organoids. Cell-cell communication networks revealed that the pathways of NRG1-ERBB2, and FN1-ITAG3 were specific for CAde and CSCC, respectively, which may partly explain the specificities of identified chemotherapy drugs. INTERPRETATION Our study described the immune heterogeneity and specific cellular interactions between CSCC and CAde, which could provide insights for uncovering pathogenesis and designing personalized treatment. FUNDINGS National Key R&D Program of China (2021YFC2701201), National Natural Science Foundation of China (82072895, 82141106, 82103134, 81903114).
Collapse
Affiliation(s)
- Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanhui Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhixian Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bai Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Ren
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Bai X, Chen J, Zhang W, Zhou S, Dong L, Huang J, He X. YTHDF2 promotes gallbladder cancer progression and gemcitabine resistance via m6A-dependent DAPK3 degradation. Cancer Sci 2023; 114:4299-4313. [PMID: 37700438 PMCID: PMC10637062 DOI: 10.1111/cas.15953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNA and involved in the carcinogenesis of various malignancies. However, the functions and mechanisms of m6A in gallbladder cancer (GBC) remain unclear. In this study, we investigated the role and underlying mechanism of the RNA-binding protein YT521-B homology domain-containing family protein 2 (YTHDF2), an m6A reader, in GBC. Herein, we detected that YTHDF2 was remarkably upregulated in GBC tissues compared to normal gallbladder tissues. Functionally, YTHDF2 overexpression promoted the proliferation, tumor growth, migration, and invasion of GBC cells while inhibiting the apoptosis in vitro and in vivo. Conversely, YTHDF2 knockdown induced opposite results. Mechanistically, we further investigated the underlying mechanism by integrating RNA immunoprecipitation sequencing (RIP-seq), m6A-modified RIP-seq, and RNA sequencing, which revealed that death-associated protein kinase 3 (DAPK3) is a direct target of YTHDF2. YTHDF2 binds to the 3'-UTR of DAPK3 mRNA and facilitates its degradation in an m6A-dependent manner. DAPK3 inhibition restores the tumor-suppressive phenotype induced by YTHDF2 deficiency. Moreover, the YTHDF2/DAPK3 axis induces the resistance of GBC cells to gemcitabine. In conclusion, we reveal the oncogenic role of YTHDF2 in GBC, demonstrating that YTHDF2 increases the mRNA degradation of the tumor suppressor DAPK3 in an m6A-dependent way, which promotes GBC progression and desensitizes GBC cells to gemcitabine. Our findings provide novel insights into potential therapeutic strategies for GBC.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Chen
- Department of GastroenterologyState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Wenqin Zhang
- Department of GastroenterologyState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Shengnan Zhou
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Liangbo Dong
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Jianhao Huang
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Xiaodong He
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
23
|
Ge W, Yue M, Lin R, Zhou T, Xu H, Wang Y, Mao T, Li S, Wu X, Zhang X, Wang Y, Ma J, Wang Y, Xue S, Shentu D, Cui J, Wang L. PLA2G2A + cancer-associated fibroblasts mediate pancreatic cancer immune escape via impeding antitumor immune response of CD8 + cytotoxic T cells. Cancer Lett 2023; 558:216095. [PMID: 36796670 DOI: 10.1016/j.canlet.2023.216095] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Our previous research defined a novel metabolic cancer associated fibroblasts subset (meCAFs) enriched in loose-type pancreatic ductal adenocarcinoma (PDAC) and related to CD8+ T cells accumulation. Consistently, the abundance of meCAFs was associated with poor prognosis but better immunotherapy responses in PDAC patients. However, the metabolic characteristic of meCAFs and its cross-talk with CD8+ T cells remain to be elucidated. In this study, we identified PLA2G2A as a marker of meCAFs. In particular, the abundance of PLA2G2A+ meCAFs was positively related to the accumulation of total CD8+ T cells and negatively correlated with clinical outcomes of PDAC patients and infiltration of intratumoral CD8+ T cells. We demonstrated that PLA2G2A+ meCAFs substantially attenuated the antitumor ability of tumor infiltrating CD8+ T cells and facilitated tumor immune escape in PDAC. Mechanistically, PLA2G2A regulated the function of CD8+ T cells as a pivotal soluble mediator via MAPK/Erk and NF-κB signaling pathways. In conclusion, our study identified the unrecognized role of PLA2G2A+ meCAFs in promoting tumor immune escape by impeding the antitumor immune function of CD8+ T cells, and strongly suggested PLA2G2A as a promising biomarker and therapeutic target for immunotherapy in PDAC.
Collapse
Affiliation(s)
- Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ming Yue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruirong Lin
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, Fuzhou, 350014, China
| | - Tianhao Zhou
- Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shumin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingyu Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shengbai Xue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Daiyuan Shentu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
24
|
The Application of Single-Cell RNA Sequencing in the Inflammatory Tumor Microenvironment. Biomolecules 2023; 13:biom13020344. [PMID: 36830713 PMCID: PMC9953711 DOI: 10.3390/biom13020344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The initiation and progression of tumors are complex. The cancer evolution-development hypothesis holds that the dysregulation of immune balance is caused by the synergistic effect of immune genetic factors and environmental factors that stimulate and maintain non-resolving inflammation. Throughout the cancer development process, this inflammation creates a microenvironment for the evolution and development of cancer. Research on the inflammatory tumor microenvironment (TME) explains the initiation and progression of cancer and guides anti-cancer immunotherapy. Single-cell RNA sequencing (scRNA-seq) can detect the transcription levels of cells at the single-cell resolution level, reveal the heterogeneity and evolutionary trajectory of infiltrated immune cells and cancer cells, and provide insight into the composition and function of each cell group in the inflammatory TME. This paper summarizes the application of scRNA-seq in inflammatory TME.
Collapse
|