1
|
Parua P, Ghosh S, Jana K, Seth A, Debnath B, Rout SK, Sarangi MK, Dash R, Halder J, Rajwar TK, Pradhan D, Rai VK, Dash P, Das C, Kar B, Ghosh G, Rath G. Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. Curr Pharm Des 2025; 31:753-773. [PMID: 39543801 DOI: 10.2174/0113816128334441241108050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments. AIM This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2. RESULTS AND DISCUSSION Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1. CONCLUSION Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pijus Parua
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Somnath Ghosh
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Koushik Jana
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Arnab Seth
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Saroj Kumar Rout
- LNK International, Inc., Hauppauge, New York-11788, United States
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow-226024, Uttar Pradesh, India
| | - Rasmita Dash
- Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar-752050, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
2
|
Wang Z, Shi Z, Liao X, Quan G, Dong H, Zhao P, Zhou Y, Shi N, Wang J, Wu Y, Qiao C, Li XY, Zhang R, Wang Z, Wang T, Gao X, Feng J, Luo L. Broad-Spectrum Engineered Multivalent Nanobodies Against SARS-CoV-1/2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402975. [PMID: 39373693 PMCID: PMC11615778 DOI: 10.1002/advs.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 Omicron sublineages escape most preclinical/clinical neutralizing antibodies in development, suggesting that previously employed antibody screening strategies are not well suited to counteract the rapid mutation of SARS-CoV-2. Therefore, there is an urgent need to screen better broad-spectrum neutralizing antibody. In this study, a comprehensive approach to design broad-spectrum inhibitors against both SARS-CoV-1 and SARS-CoV-2 by leveraging the structural diversity of nanobodies is proposed. This includes the de novo design of a fully human nanobody library and the camel immunization-based nanobody library, both targeting conserved epitopes, as well as the development of multivalent nanobodies that bind nonoverlapping epitopes. The results show that trivale B11-E8-F3, three nanobodies joined tandemly in trivalent form, have the broadest spectrum and efficient neutralization activity, which spans from SARS-CoV-1 to SARS-CoV-2 variants. It is also demonstrated that B11-E8-F3 has a very prominent preventive and some therapeutic effect in animal models of three authentic viruses. Therefore, B11-E8-F3 has an outstanding advantage in preventing SARS-CoV-1/SARS-CoV-2 infections, especially in immunocompromised populations or elderly people with high-risk comorbidities.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhuangzhuang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Guiqi Quan
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Hui Dong
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yangyihua Zhou
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jie Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yahui Wu
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xin ying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ran Zhang
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
3
|
Liu Y, Zhang J, Liu W, Pan Y, Ruan S, Nian X, Chen W, Sun L, Yin Q, Yue X, Li Q, Gui F, Wu C, Wang S, Yang Y, Jing Z, Long F, Wang Z, Zhang Z, Huang C, Duan K, Liang M, Yang X. Human monoclonal antibody F61 nasal spray effectively protected high-risk populations from SARS-CoV-2 variants during the COVID-19 pandemic from late 2022 to early 2023 in China. Emerg Microbes Infect 2024; 13:2284297. [PMID: 37970736 DOI: 10.1080/22221751.2023.2284297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Following the national dynamic zero-COVID strategy adjustment, the utilization of broad-spectrum nasal neutralizing antibodies may offer an alternative approach to controlling the outbreak of Omicron variants between late 2022 and early 2023 in China. This study involved an investigator-initiated trial (IIT) to assess the pharmacokinetic, safety and efficacy of the F61 nasal spray. A total of 2,008 participants were randomly assigned to receive F61 nasal spray (24 mg/0.8 mL/dose) or normal saline (0.8 mL/dose) and 1336 completed the follow-up in the IIT. Minimal absorption of F61 antibody into the bloodstream was detected in individuals receiving F61 nasal spray for seven consecutive days. No treatment-emergent adverse reactions of grade 3 severity or higher were reported. In the one-dose cohort, the 7-day cumulative SARS-CoV-2 infection rate was 79.0% in the F61 group and 82.6% in the placebo group, whereas, in the multiple-dose (once daily for 7 consecutive days) cohort, the rates were 6.55% in the F61 group and 23.83% in the placebo group. The laboratory-confirmed efficacy of F61 was 3.78% (-3.74%-10.75%) in the one-dose cohort and 72.19% (57.33%-81.87%) in the multiple-dose cohort. In the real-world study, 60,225 volunteers in four different regions were administered the F61 nasal spray based on the subject's wishes, over 90% efficacy rate was observed against different Omicron variants. The F61 nasal spray, with its favourable safety profile, could be a promising prophylactic monoclonal antibody against SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Ying Liu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan, People's Republic of China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wen Liu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
| | - Yongbing Pan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shunan Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Lina Sun
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
| | - Qiangling Yin
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Xin Yue
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Qingliang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Fang Gui
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Cong Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shuzhen Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| | - Zhaofei Jing
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Feiguang Long
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Zeyu Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan, People's Republic of China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| |
Collapse
|
4
|
Eliadis P, Mais A, Papazisis A, Loxa EK, Dimitriadis A, Sarrigeorgiou I, Backovic M, Agallou M, Zouridakis M, Karagouni E, Lazaridis K, Mamalaki A, Lymberi P. Novel Competitive ELISA Utilizing Trimeric Spike Protein of SARS-CoV-2, Could Identify More Than RBD-RBM Specific Neutralizing Antibodies in Hybrid Sera. Vaccines (Basel) 2024; 12:914. [PMID: 39204038 PMCID: PMC11359269 DOI: 10.3390/vaccines12080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50-90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones.
Collapse
Affiliation(s)
- Petros Eliadis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Annie Mais
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Alexandros Papazisis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Eleni K. Loxa
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Alexios Dimitriadis
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Ioannis Sarrigeorgiou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Université Paris Cité, CNRS-UMR3569, 75724 Paris, France;
| | - Maria Agallou
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Konstantinos Lazaridis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Avgi Mamalaki
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Peggy Lymberi
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| |
Collapse
|
5
|
Mahase V, Sobitan A, Yao Q, Shi X, Qin H, Kidane D, Tang Q, Teng S. Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant. Viruses 2024; 16:1150. [PMID: 39066312 PMCID: PMC11281596 DOI: 10.3390/v16071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The global effort to combat the COVID-19 pandemic faces ongoing uncertainty with the emergence of Variants of Concern featuring numerous mutations on the Spike (S) protein. In particular, the Omicron Variant is distinguished by 32 mutations, including 10 within its receptor-binding domain (RBD). These mutations significantly impact viral infectivity and the efficacy of vaccines and antibodies currently in use for therapeutic purposes. In our study, we employed structure-based computational saturation mutagenesis approaches to predict the effects of Omicron missense mutations on RBD stability and binding affinity, comparing them to the original Wuhan-Hu-1 strain. Our results predict that mutations such as G431W and P507W induce the most substantial destabilizations in the Wuhan-Hu-1-S/Omicron-S RBD. Notably, we postulate that mutations in the Omicron-S exhibit a higher percentage of enhancing binding affinity compared to Wuhan-S. We found that the mutations at residue positions G447, Y449, F456, F486, and S496 led to significant changes in binding affinity. In summary, our findings may shed light on the widespread prevalence of Omicron mutations in human populations. The Omicron mutations that potentially enhance their affinity for human receptors may facilitate increased viral binding and internalization in infected cells, thereby enhancing infectivity. This informs the development of new neutralizing antibodies capable of targeting Omicron's immune-evading mutations, potentially aiding in the ongoing battle against the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Adebiyi Sobitan
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Qiaobin Yao
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Xinghua Shi
- Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Hong Qin
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
6
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|
7
|
Tai W, Yang K, Liu Y, Li R, Feng S, Chai B, Zhuang X, Qi S, Shi H, Liu Z, Lei J, Ma E, Wang W, Tian C, Le T, Wang J, Chen Y, Tian M, Xiang Y, Yu G, Cheng G. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat Commun 2023; 14:8042. [PMID: 38052844 PMCID: PMC10697968 DOI: 10.1038/s41467-023-43798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
The respiratory system, especially the lung, is the key site of pathological injury induced by SARS-CoV-2 infection. Given the low feasibility of targeted delivery of antibodies into the lungs by intravenous administration and the short half-life period of antibodies in the lungs by intranasal or aerosolized immunization, mRNA encoding broadly neutralizing antibodies with lung-targeting capability can perfectly provide high-titer antibodies in lungs to prevent the SARS-CoV-2 infection. Here, we firstly identify a human monoclonal antibody, 8-9D, with broad neutralizing potency against SARS-CoV-2 variants. The neutralization mechanism of this antibody is explained by the structural characteristics of 8-9D Fabs in complex with the Omicron BA.5 spike. In addition, we evaluate the efficacy of 8-9D using a safe and robust mRNA delivery platform and compare the performance of 8-9D when its mRNA is and is not selectively delivered to the lungs. The lung-selective delivery of the 8-9D mRNA enables the expression of neutralizing antibodies in the lungs which blocks the invasion of the virus, thus effectively protecting female K18-hACE2 transgenic mice from challenge with the Beta or Omicron BA.1 variant. Our work underscores the potential application of lung-selective mRNA antibodies in the prevention and treatment of infections caused by circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wanbo Tai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruofan Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Enhao Ma
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Weixiao Wang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chongyu Tian
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ting Le
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jinyong Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yunfeng Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Li L, Chen X, Wang Z, Li Y, Wang C, Jiang L, Zuo T. Breakthrough infection elicits hypermutated IGHV3-53/3-66 public antibodies with broad and potent neutralizing activity against SARS-CoV-2 variants including the emerging EG.5 lineages. PLoS Pathog 2023; 19:e1011856. [PMID: 38048356 PMCID: PMC10721163 DOI: 10.1371/journal.ppat.1011856] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VOCs) calls for efforts to study broadly neutralizing antibodies elicited by infection or vaccination so as to inform the development of vaccines and antibody therapeutics with broad protection. Here, we identified two convalescents of breakthrough infection with relatively high neutralizing titers against all tested viruses. Among 50 spike-specific monoclonal antibodies (mAbs) cloned from their B cells, the top 6 neutralizing mAbs (KXD01-06) belong to previously defined IGHV3-53/3-66 public antibodies. Although most antibodies in this class are dramatically escaped by VOCs, KXD01-06 all exhibit broad neutralizing capacity, particularly KXD01-03, which neutralize SARS-CoV-2 from prototype to the emerging EG.5.1 and FL.1.5.1. Deep mutational scanning reveals that KXD01-06 can be escaped by current and prospective variants with mutations on D420, Y421, L455, F456, N460, A475 and N487. Genetic and functional analysis further indicates that the extent of somatic hypermutation is critical for the breadth of KXD01-06 and other IGHV3-53/3-66 public antibodies. Overall, the prevalence of broadly neutralizing IGHV3-53/3-66 public antibodies in these two convalescents provides rationale for novel vaccines based on this class of antibodies. Meanwhile, KXD01-06 can be developed as candidates of therapeutics against SARS-CoV-2 through further affinity maturation.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Xixian Chen
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
- University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zuowei Wang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Yunjian Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Chen Wang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Teng Zuo
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| |
Collapse
|
9
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Sarkar A, Santra D, Sundar Panja A, Maiti S. Immunoinformatics and MD-simulation data suggest that Omicron spike epitopes are more interacting to IgG via better MHC recognition than Delta variant. Int Immunopharmacol 2023; 123:110636. [PMID: 37499394 DOI: 10.1016/j.intimp.2023.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Recently, in Nov 2021, in South Africa, the SARS CoV-2 variant Omicron was found to be highly infectious and transmissible but with the least fatality. It occupies the nasopharynx-oropharynx and easily spreads. The epidemiological data/reports suggest that several vaccines failed to neutralize Omicron. It has a large number of spike mutations and the RNA/protein vaccines were developed from its predecessors that may justify its escape in most neutralization reactions. Its lower immuno-suppression/cytokine-storming/inflammatory-response effects need exploration. OBJECTIVES In the current study, we attempted to delineate the comparative interaction of different variants' spikes with multiple recognition sites on IgG and HLA-typing of MHC class and I and II. METHODS All SARS-CoV-2 spike-proteins/human-IgG/MHC-I & II were obtained from the NCBI/ PDB/GISAID database. Initial 3D-structures of the unavailable proteins were constructed by Homology-Modeling (Swissmodel-Expasy) and optimized (PROCHECK). Molecular-docking of spike-IgG/spike- I & MHC-II was performed (HADDOCK2.4/HawkDock) with active-residue screening (CPORT). Antigenicity of epitopes was determined (Vaxigen v2.0-server) and the epitope-model prepared (PEP-FOLD3-server). The binding-affinity/biological-interfaces/visualize were performed (PRODIGY-PyMOL2). We also examined the genesis of feasible transition pathways of functional docked complexes (iMODs) of MHC with different epitopes and antibodies of IgG with different variants. Further, Molecular-Dynamic-Simulation was performed by GROMACS 2023.1 software package. The MD-simulation was run with 100 ns (300 k-heating/1-atm pressure). RESULTS Surface-area with interactomes, H-bonding and polar/non-polar bonding were the highest in Omicron spike-IgG interaction. Unlike other variants, both the L and H chains of at least three different recognition sites of IgG interact with the N-terminal and C-terminal RBD of the S1-portion and partially bind to S2. In other cases, binding was observed in either NTD or CTD with a lesser number of bonding-interactomes, especially in Delta spike-Ab interaction. In the case of MHC class-I & II, the highest binding affinity/surface was noticed by Omicron and least by the Delta variant. The MD simulation data of lower RMSD values of the Delta and Omicron variants indicate improved structural stability and less departure from the initial conformation. Better binding to the IgG and MHC molecules explains Omicron's little ability in immune invasion.
Collapse
Affiliation(s)
- Aniket Sarkar
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Dipannita Santra
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Smarajit Maiti
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India; Agricure Biotech Research Society, Midnapore, 721101, India.
| |
Collapse
|
11
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
12
|
Guo Y, Zhang G, Yang Q, Xie X, Lu Y, Cheng X, Wang H, Liang J, Tang J, Gao Y, Shang H, Dai J, Shi Y, Zhou J, Zhou J, Guo H, Yang H, Qi J, Liu L, Ma S, Zhang B, Huo Q, Xie Y, Wu J, Dong F, Zhang S, Lou Z, Gao Y, Song Z, Wang W, Sun Z, Yang X, Xiong D, Liu F, Chen X, Zhu P, Wang X, Cheng T, Rao Z. Discovery and characterization of potent pan-variant SARS-CoV-2 neutralizing antibodies from individuals with Omicron breakthrough infection. Nat Commun 2023; 14:3537. [PMID: 37322000 PMCID: PMC10267556 DOI: 10.1038/s41467-023-39267-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 Omicron variant evades most currently approved neutralizing antibodies (nAbs) and caused drastic decrease of plasma neutralizing activity elicited by vaccination or prior infection, urging the need for the development of pan-variant antivirals. Breakthrough infection induces a hybrid immunological response with potentially broad, potent and durable protection against variants, therefore, convalescent plasma from breakthrough infection may provide a broadened repertoire for identifying elite nAbs. We performed single-cell RNA sequencing (scRNA-seq) and BCR sequencing (scBCR-seq) of B cells from BA.1 breakthrough-infected patients who received 2 or 3 previous doses of inactivated vaccine. Elite nAbs, mainly derived from the IGHV2-5 and IGHV3-66/53 germlines, showed potent neutralizing activity across Wuhan-Hu-1, Delta, Omicron sublineages BA.1 and BA.2 at picomolar NT50 values. Cryo-EM analysis revealed diverse modes of spike recognition and guides the design of cocktail therapy. A single injection of paired antibodies cocktail provided potent protection in the K18-hACE2 transgenic female mouse model of SARS-CoV-2 infection.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- Chinese Academy of Medical Sciences (CAMS)
- This work was supported by the National Program on Key Research Project of China (2018YFE0200400, 2021YFE0201900, 2021YFA1100900 and 2018YFA0507200),The Key Program of Natural Science Foundation of Tianjin (20JCYBJC01340), Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00001),Science and Technology Project of Tianjin (22ZYJDSS00080),the Non-CAMS Fundamental Research Funds for Central Research Institutes (3332021093), Application for Basic and Applied Basic Research Projects of Guangzhou Basic Research Program (SL2023A04J00076), Emergency Key Program of Guangzhou Laboratory (EKPGL2021008), R&D Program of Guangzhou Laboratory (SRPG22-003, SRPG22-002).
Collapse
Affiliation(s)
- Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China.
| | - Guangshun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yang Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jielin Tang
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Yuxin Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hangtian Guo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jianwei Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lijun Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qianyu Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi Xie
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China
| | - Junping Wu
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China
| | - Fang Dong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhiyong Lou
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoming Yang
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China.
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Fengjiang Liu
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Xinwen Chen
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Ximo Wang
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China.
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China.
| |
Collapse
|
13
|
Chu X, Ding X, Yang Y, Lu Y, Li T, Gao Y, Zheng L, Xiao H, Yang T, Cheng H, Huang H, Liu Y, Lou Y, Wu C, Chen Y, Yang H, Ji X, Guo H. Mechanism of an RBM-targeted rabbit monoclonal antibody 9H1 neutralizing SARS-CoV-2. Biochem Biophys Res Commun 2023; 660:43-49. [PMID: 37062240 PMCID: PMC10072977 DOI: 10.1016/j.bbrc.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to over 750 million infections and 6.8 million deaths worldwide since late 2019. Due to the continuous evolution of SARS-CoV-2, many significant variants have emerged, creating ongoing challenges to the prevention and treatment of the pandemic. Therefore, the study of antibody responses against SARS-CoV-2 is essential for the development of vaccines and therapeutics. Here we perform single particle cryo-electron microscopy (cryo-EM) structure determination of a rabbit monoclonal antibody (RmAb) 9H1 in complex with the SARS-CoV-2 wild-type (WT) spike trimer. Our structural analysis shows that 9H1 interacts with the receptor-binding motif (RBM) region of the receptor-binding domain (RBD) on the spike protein and by directly competing with angiotensin-converting enzyme 2 (ACE2), it blocks the binding of the virus to the receptor and achieves neutralization. Our findings suggest that utilizing rabbit-derived mAbs provides valuable insights into the molecular interactions between neutralizing antibodies and spike proteins and may also facilitate the development of therapeutic antibodies and expand the antibody library.
Collapse
Affiliation(s)
- Xiaoyu Chu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xinyu Ding
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China
| | - Yixuan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hang Xiao
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hao Cheng
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Haibin Huang
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Yang Liu
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Yang Lou
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Chao Wu
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China; Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
14
|
Guo H, Yang Y, Zhao T, Lu Y, Gao Y, Li T, Xiao H, Chu X, Zheng L, Li W, Cheng H, Huang H, Liu Y, Lou Y, Nguyen HC, Wu C, Chen Y, Yang H, Ji X. Mechanism of a rabbit monoclonal antibody broadly neutralizing SARS-CoV-2 variants. Commun Biol 2023; 6:364. [PMID: 37012333 PMCID: PMC10069731 DOI: 10.1038/s42003-023-04759-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the continuous evolution of SARS-CoV-2, the Omicron variant has emerged and exhibits severe immune evasion. The high number of mutations at key antigenic sites on the spike protein has made a large number of existing antibodies and vaccines ineffective against this variant. Therefore, it is urgent to develop efficient broad-spectrum neutralizing therapeutic drugs. Here we characterize a rabbit monoclonal antibody (RmAb) 1H1 with broad-spectrum neutralizing potency against Omicron sublineages including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, BA.3 and BA.4/5. Cryo-electron microscopy (cryo-EM) structure determination of the BA.1 spike-1H1 Fab complexes shows that 1H1 targets a highly conserved region of RBD and avoids most of the circulating Omicron mutations, explaining its broad-spectrum neutralization potency. Our findings indicate 1H1 as a promising RmAb model for designing broad-spectrum neutralizing antibodies and shed light on the development of therapeutic agents as well as effective vaccines against newly emerging variants in the future.
Collapse
Affiliation(s)
- Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yixuan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tiantian Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hang Xiao
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Xiaoyu Chu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wanting Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, 210008, China
| | - Hao Cheng
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Haibin Huang
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Yang Liu
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Yang Lou
- Yurogen Biosystem LLC, Wuhan, Hubei, 430075, China
| | - Henry C Nguyen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, 210008, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
15
|
Ong CP, Ye ZW, Tang K, Liang R, Xie Y, Zhang H, Qin Z, Sun H, Wang TY, Cheng Y, Chu H, Chan JFW, Jin DY, Yuan S. Comparative analysis of SARS-CoV-2 Omicron BA.2.12.1 and BA.5.2 variants. J Med Virol 2023; 95:e28326. [PMID: 36411262 DOI: 10.1002/jmv.28326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.
Collapse
Affiliation(s)
- Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Hongzhuo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Haoran Sun
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, P.R. China
| | - Tong-Yun Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yun Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, P.R. China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, P.R. China
| | - Jasper F-W Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, P.R. China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, P.R. China.,Guangzhou Laboratory, Guangzhou, Guangdong Province, P.R. China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, P.R. China.,Guangzhou Laboratory, Guangzhou, Guangdong Province, P.R. China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, P.R. China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, P.R. China
| |
Collapse
|