1
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
2
|
Li M, Jiang Z, Xu X, Wu X, Liu Y, Chen K, Liao Y, Li W, Wang X, Guo Y, Zhang B, Wen L, Kee K, Tang F. Chromatin accessibility landscape of mouse early embryos revealed by single-cell NanoATAC-seq2. Science 2025; 387:eadp4319. [PMID: 40146829 DOI: 10.1126/science.adp4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
In mammals, fertilized eggs undergo genome-wide epigenetic reprogramming to generate the organism. However, our understanding of epigenetic dynamics during preimplantation development at single-cell resolution remains incomplete. Here, we developed scNanoATAC-seq2, a single-cell assay for transposase-accessible chromatin using long-read sequencing for scarce samples. We present a detailed chromatin accessibility landscape of mouse preimplantation development, revealing distinct chromatin signatures in the epiblast, primitive endoderm, and trophectoderm during lineage segregation. Differences between zygotes and two-cell embryos highlight reprogramming in chromatin accessibility during the maternal-to-zygotic transition. Single-cell long-read sequencing enables in-depth analysis of chromatin accessibility in noncanonical imprinting, imprinted X chromosome inactivation, and low-mappability genomic regions, such as repetitive elements and paralogs. Our data provide insights into chromatin dynamics during mammalian preimplantation development and lineage differentiation.
Collapse
Affiliation(s)
- Mengyao Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhenhuan Jiang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xueqiang Xu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei , China
| | - Yun Liu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Kexuan Chen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuhan Liao
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Wen Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xiao Wang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Bo Zhang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Kehkooi Kee
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fuchou Tang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
3
|
Nakatani T. Dynamics of replication timing during mammalian development. Trends Genet 2025:S0168-9525(25)00026-5. [PMID: 40082146 DOI: 10.1016/j.tig.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
Recent developments in low-input genomics techniques have greatly advanced the analysis of the order in which DNA is replicated in the genome - that is, replication timing (RT) - and its interrelationships with other processes. RT correlates or anticorrelates with genomic-specific parameters such as gene expression, chromatin accessibility, histone modifications, and the 3D structure of the genome, but the significance of how they influence each other and how they relate to biological processes remains unclear. In this review I discuss the results of recent analyses of RT, the time at which it is remodeled and consolidated during embryogenesis, how it influences development and differentiation, and the regulatory mechanisms and factors involved.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany.
| |
Collapse
|
4
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2025; 32:195-206. [PMID: 39327506 PMCID: PMC11802806 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Chen F, Luo AF, Pan KX, Gu H, Zhou CF, Zeng W, Liu S, Molenaar A, Ren HY, Huo LJ, Bi YZ. 3-methyl-4-nitrophenol disturbs the maternal-to-zygotic transition of early embryos by damaging mitochondrial function and histone modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117595. [PMID: 39798444 DOI: 10.1016/j.ecoenv.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts. SMART-seq2 transcriptome sequencing further confirmed that PNMC treatment disrupted global gene expression in 2-cell embryos, with differentially expressed genes enriched in multiple signaling pathways, including those related to autophagy, apoptosis, fertilization, embryonic development, transcription, and mRNA processing. Integration of transcriptome data with open databases revealed that both zygotic genome activation genes and maternal factors experienced significant transcript-level disruptions. Moreover, the study demonstrated that these gene expression changes were closely associated with mitochondrial dysfunction, evidenced by diminished mitochondrial membrane potential, reduced ATP production, aberrant expression of mitochondria-related genes, increased ROS accumulation, and heightened DNA damage in PNMC-treated embryos. Additionally, PNMC exposure induced defects in histone modification, as shown by altered levels of H3K9me3 and H3K27me3, H3K9ac and H3K27ac. Lastly, the findings indicated that PNMC triggered apoptosis in embryos, validated by elevated BAX and CASPASE3 expression, alongside positive TUNEL staining. In summary, PNMC exposure impairs the maternal-to-zygotic transition, likely through mitochondrial dysfunction and histone modification, culminating in developmental arrest and apoptosis in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - An-Feng Luo
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Kai-Xin Pan
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Chang-Fan Zhou
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Wei Zeng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Song Liu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Adrian Molenaar
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Rumen Microbiology and Animal Nutrition and Physiology AgResearch, Grasslands Campus, Fitzherbert Research Centre, Palmerston North 4410, New Zealand
| | - Hong-Yan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Zhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
6
|
Bondarieva A, Tachibana K. Genome folding and zygotic genome activation in mammalian preimplantation embryos. Curr Opin Genet Dev 2024; 89:102268. [PMID: 39383545 DOI: 10.1016/j.gde.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
The totipotent one-cell embryo, or zygote, gives rise to all germ layers and extraembryonic tissues that culminate in the development of a new organism. A zygote is produced at fertilisation by the fusion of differentiated germ cells, egg and sperm. The chromatin of parental genomes is reprogrammed and spatially reorganised in the early embryo. The 3D chromatin organisation is established de novo after fertilisation by a cohesin-dependent mechanism of loop extrusion that forms chromatin loops and topologically associating domains (TADs). Strengthening of TAD insulation is concomitant with the transcriptional 'awakening' of the embryo known as zygotic genome activation (ZGA). Whether and how these processes are causally linked remains poorly understood. In this review, we discuss recent findings of 3D chromatin organisation in mammalian gametes and embryos and how these are potentially related to ZGA.
Collapse
Affiliation(s)
- Anastasiia Bondarieva
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany.
| |
Collapse
|
7
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
10
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
11
|
Lee H, Han DW, Yoo S, Kwon O, La H, Park C, Lee H, Kang K, Uhm SJ, Song H, Do JT, Choi Y, Hong K. RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos. Anim Biosci 2024; 37:1021-1030. [PMID: 38419548 PMCID: PMC11065950 DOI: 10.5713/ab.23.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. METHODS In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. RESULTS We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. CONCLUSION These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.
Collapse
Affiliation(s)
- Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020,
China
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Ohbeom Kwon
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339,
Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
12
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
13
|
Wang W, Gao R, Yang D, Ma M, Zang R, Wang X, Chen C, Kou X, Zhao Y, Chen J, Liu X, Lu J, Xu B, Liu J, Huang Y, Chen C, Wang H, Gao S, Zhang Y, Gao Y. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev 2024; 38:168-188. [PMID: 38479840 PMCID: PMC10982698 DOI: 10.1101/gad.351189.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.
Collapse
Affiliation(s)
- Wen Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dongxu Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingli Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chuan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xuelian Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Lu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juntao Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
14
|
Hu Y, Wang Y, He Y, Ye M, Yuan J, Ren C, Wang X, Wang S, Guo Y, Cao Q, Zhou S, Wang B, He A, Hu J, Guo X, Shu W, Huo R. Maternal KLF17 controls zygotic genome activation by acting as a messenger for RNA Pol II recruitment in mouse embryos. Dev Cell 2024; 59:613-626.e6. [PMID: 38325372 DOI: 10.1016/j.devcel.2024.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Initiation of timely and sufficient zygotic genome activation (ZGA) is crucial for the beginning of life, yet our knowledge of transcription factors (TFs) contributing to ZGA remains limited. Here, we screened the proteome of early mouse embryos after cycloheximide (CHX) treatment and identified maternally derived KLF17 as a potential TF for ZGA genes. Using a conditional knockout (cKO) mouse model, we further investigated the role of maternal KLF17 and found that it promotes embryonic development and full fertility. Mechanistically, KLF17 preferentially binds to promoters and recruits RNA polymerase II (RNA Pol II) in early 2-cell embryos, facilitating the expression of major ZGA genes. Maternal Klf17 knockout resulted in a downregulation of 9% of ZGA genes and aberrant RNA Pol II pre-configuration, which could be partially rescued by introducing exogenous KLF17. Overall, our study provides a strategy for screening essential ZGA factors and identifies KLF17 as a crucial TF in this process.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | | | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Maosheng Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Yuan
- Bioinformatics Center of AMMS, Beijing, China
| | - Chao Ren
- Bioinformatics Center of AMMS, Beijing, China
| | - Xia Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Anlan He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | | | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China; Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| |
Collapse
|
15
|
Liu Z, Wang W, Xia Y, Gao Y, Wang Z, Li M, Presicce GA, An L, Du F. Overcoming the H4K20me3 epigenetic barrier improves somatic cell nuclear transfer reprogramming efficiency in mice. Cell Prolif 2024; 57:e13519. [PMID: 37322828 PMCID: PMC10771106 DOI: 10.1111/cpr.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Epigenetic reprogramming during fertilization and somatic cell nuclear transfer (NT) is required for cell plasticity and competent development. Here, we characterize the epigenetic modification pattern of H4K20me3, a repressive histone signature in heterochromatin, during fertilization and NT reprogramming. Importantly, the dynamic H4K20me3 signature identified during preimplantation development in fertilized embryos differed from NT and parthenogenetic activation (PA) embryos. In fertilized embryos, only maternal pronuclei carried the canonical H4K20me3 peripheral nucleolar ring-like signature. H4K20me3 disappeared at the 2-cell stage and reappeared in fertilized embryos at the 8-cell stage and in NT and PA embryos at the 4-cell stage. H4K20me3 intensity in 4-cell, 8-cell, and morula stages of fertilized embryos was significantly lower than in NT and PA embryos, suggesting aberrant regulation of H4K20me3 in PA and NT embryos. Indeed, RNA expression of the H4K20 methyltransferase Suv4-20h2 in 4-cell fertilized embryos was significantly lower than NT embryos. Knockdown of Suv4-20h2 in NT embryos rescued the H4K20me3 pattern similar to fertilized embryos. Compared to control NT embryos, knockdown of Suv4-20h2 in NT embryos improved blastocyst development ratios (11.1% vs. 30.5%) and full-term cloning efficiencies (0.8% vs. 5.9%). Upregulation of reprogramming factors, including Kdm4b, Kdm4d, Kdm6a, and Kdm6b, as well as ZGA-related factors, including Dux, Zscan4, and Hmgpi, was observed with Suv4-20h2 knockdown in NT embryos. Collectively, these are the first findings to demonstrate that H4K20me3 is an epigenetic barrier of NT reprogramming and begin to unravel the epigenetic mechanisms of H4K20 trimethylation in cell plasticity during natural reproduction and NT reprogramming in mice.
Collapse
Affiliation(s)
- Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Weiguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuhan Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuan Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zhisong Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Mingyang Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | | | - Liyou An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and TechnologyXinjiang UniversityUrumqiChina
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
16
|
Perera CD, Idrees M, Khan AM, Haider Z, Ullah S, Kang JS, Lee SH, Kang SM, Kong IK. PDGFRβ Activation Induced the Bovine Embryonic Genome Activation via Enhanced NFYA Nuclear Localization. Int J Mol Sci 2023; 24:17047. [PMID: 38069370 PMCID: PMC10707662 DOI: 10.3390/ijms242317047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-β (PDGFRβ) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRβ using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRβ. In addition, PDGFRβ mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRβ inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRβ-NFYA axis is critical for bovine embryonic genome activation and embryonic development.
Collapse
Affiliation(s)
- Chalani Dilshani Perera
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abdul Majid Khan
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Zaheer Haider
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Safeer Ullah
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Ji-Su Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Seo-Hyun Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Seon-Min Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
17
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
18
|
Sakamoto M, Abe S, Miki Y, Miyanari Y, Sasaki H, Ishiuchi T. Dynamic nucleosome remodeling mediated by YY1 underlies early mouse development. Genes Dev 2023; 37:590-604. [PMID: 37532472 PMCID: PMC10499016 DOI: 10.1101/gad.350376.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Nucleosome positioning can alter the accessibility of DNA-binding proteins to their cognate DNA elements, and thus its precise control is essential for cell identity and function. Mammalian preimplantation embryos undergo temporal changes in gene expression and cell potency, suggesting the involvement of dynamic epigenetic control during this developmental phase. However, the dynamics of nucleosome organization during early development are poorly understood. In this study, using a low-input MNase-seq method, we show that nucleosome positioning is globally obscure in zygotes but becomes well defined during subsequent development. Down-regulation of the chromatin assembly in embryonic stem cells can partially reverse nucleosome organization into a zygote-like pattern, suggesting a possible link between the chromatin assembly pathway and fuzzy nucleosomes in zygotes. We also reveal that YY1, a zinc finger-containing transcription factor expressed upon zygotic genome activation, regulates the de novo formation of well-positioned nucleosome arrays at the regulatory elements through identifying YY1-binding sites in eight-cell embryos. The YY1-binding regions acquire H3K27ac enrichment around the eight-cell and morula stages, and YY1 depletion impairs the morula-to-blastocyst transition. Thus, our study delineates the remodeling of nucleosome organization and its underlying mechanism during early mouse development.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuka Miki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Miyanari
- NanoLSI, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan;
| |
Collapse
|
19
|
Guo SM, Zhang YR, Ma BX, Zhou LQ, Yin Y. Regulation of cleavage embryo genes upon DRP1 inhibition in mouse embryonic stem cells. Front Cell Dev Biol 2023; 11:1191797. [PMID: 37255603 PMCID: PMC10225531 DOI: 10.3389/fcell.2023.1191797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Dynamic-related protein 1 (DRP1) is a key protein of mitochondrial fission. In this study, we found that inhibition of activity of DRP1 led to increased levels of cleavage embryo genes in mouse embryonic stem cells (mESCs), which might reflect a transient totipotency status derived from pluripotency. This result indicates that DRP1 inhibition in mESCs leads to a tendency to obtain a new expression profile similar to that of the 2C-like state. Meanwhile, we also noticed that the glycolysis/gluconeogenesis pathway and its related enzymes were significantly downregulated, and the key glycolytic enzymes were also downregulated in various 2C-like cells. Moreover, when DRP1 activity was inhibited from the late zygote when cleavage embryo genes started to express, development of early embryos was inhibited, and these cleavage embryo genes failed to be efficiently silenced at the late 2-cell (2C) stage. Taken together, our result shows that DRP1 plays an important role in silencing cleavage embryo genes for totipotency-to-pluripotency transition.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Xin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
21
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
22
|
Wang J, Zhou C, Gao S, Song X, Yang X, Fan J, Ren S, Ma L, Zhao J, Cui M, Song K, Wang M, Li C, Zheng Y, Luo F, Miao K, Bai X, Hutchins AP, Li L, Chang G, Zhao XY. Single-cell multiomics sequencing reveals the reprogramming defects in embryos generated by round spermatid injection. SCIENCE ADVANCES 2022; 8:eabm3976. [PMID: 35947654 PMCID: PMC9365279 DOI: 10.1126/sciadv.abm3976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Round spermatid injection (ROSI) technique holds great promise for clinical treatment of a proportion of infertile men. However, the compromised developmental potential of ROSI embryos largely limits the clinical application, and the mechanisms are not fully understood. Here, we describe the transcriptome, chromatin accessibility, and DNA methylation landscapes of mouse ROSI embryos derived from early-stage round spermatids using a single-cell multiomics sequencing approach. By interrogating these data, we identify the reprogramming defects in ROSI embryos at the pronuclear stages, which are mainly associated with the misexpression of a cohort of minor zygotic genome activation genes. We screen a small compound, A366, that can significantly increase the developmental potential of ROSI embryos, in which A366 can partially overcome the reprogramming defects by amending the epigenetic and transcriptomic states. Collectively, our study uncovers the reprogramming defects in ROSI embryos for understanding the mechanisms underlying compromised developmental potential and offers an avenue for ROSI technique optimization.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiaqi Fan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chaohui Li
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Kai Miao
- Center for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518060, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong 510700, P. R. China
| |
Collapse
|
23
|
Kong S, Lu Y, Tan S, Li R, Gao Y, Li K, Zhang Y. Nucleosome-Omics: A Perspective on the Epigenetic Code and 3D Genome Landscape. Genes (Basel) 2022; 13:1114. [PMID: 35885897 PMCID: PMC9323251 DOI: 10.3390/genes13071114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic information is loaded on chromatin, which involves DNA sequence arrangement and the epigenetic landscape. The epigenetic information including DNA methylation, nucleosome positioning, histone modification, 3D chromatin conformation, and so on, has a crucial impact on gene transcriptional regulation. Out of them, nucleosomes, as basal chromatin structural units, play an important central role in epigenetic code. With the discovery of nucleosomes, various nucleosome-level technologies have been developed and applied, pushing epigenetics to a new climax. As the underlying methodology, next-generation sequencing technology has emerged and allowed scientists to understand the epigenetic landscape at a genome-wide level. Combining with NGS, nucleosome-omics (or nucleosomics) provides a fresh perspective on the epigenetic code and 3D genome landscape. Here, we summarized and discussed research progress in technology development and application of nucleosome-omics. We foresee the future directions of epigenetic development at the nucleosome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (S.K.); (Y.L.); (S.T.); (R.L.); (Y.G.); (K.L.)
| |
Collapse
|
24
|
Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq. Stem Cell Reports 2022; 17:1730-1742. [PMID: 35750045 PMCID: PMC9287678 DOI: 10.1016/j.stemcr.2022.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Collapse
|