1
|
Russell IC, Lee D, Wootten D, Sexton PM, Bumbak F. Cryoelectron microscopy as a tool for illuminating activation mechanisms of human class A orphan G protein-coupled receptors. Pharmacol Rev 2025; 77:100056. [PMID: 40286430 DOI: 10.1016/j.pharmr.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are critically important medicinal targets, and the cryogenic electron microscopy (cryo-EM) revolution is providing novel high-resolution GPCR structures at a rapid pace. Orphan G protein-coupled receptors (oGPCRs) are a group of approximately 100 nonolfactory GPCRs for which endogenous ligands are unknown or not validated. The absence of modulating ligands adds difficulties to understanding the physiologic significance of oGPCRs and in the determination of high-resolution structures of isolated receptors that could facilitate drug discovery. Despite the challenges, cryo-EM structures of oGPCR-G protein complexes are emerging. This is being facilitated by numerous developments to stabilize GPCR-G protein complexes such as the use of dominant-negative G proteins, mini-G proteins, complex-stabilizing nanobodies or antibody fragments, and protein tethering methods. Moreover, many oGPCRs are constitutively active, which can facilitate complex formation in the absence of a known activating ligand. Consequently, in addition to providing templates for drug discovery, active oGPCR structures shed light on constitutive GPCR activation mechanisms. These comprise self-activation, whereby mobile extracellular portions of the receptor act as tethered agonists by occupying a canonical orthosteric-binding site in the transmembrane core, constitutive activity due to alterations to conserved molecular switches that stabilize inactive states of GPCRs, as well as receptors activated by cryptic ligands that are copurified with the receptor. Cryo-EM structures of oGPCRs are now being determined at a rapid pace and are expected to be invaluable tools for oGPCR drug discovery. SIGNIFICANCE STATEMENT: Orphan G protein-coupled receptors (GPCRs) provide large untapped potential for development of new medicines. Many of these receptors display constitutive activity, enabling structure determination and insights into observed GPCR constitutive activity including (1) self-activation by mobile receptor extracellular portions that function as tethered agonists, (2) modification of conserved motifs canonically involved in receptor quiescence and/or activation, and (3) activation by cryptic lipid ligands. Collectively, these studies advance fundamental understanding of GPCR function and provide opportunities for novel drug discovery.
Collapse
Affiliation(s)
- Isabella C Russell
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dongju Lee
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Fabian Bumbak
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Chang H, Li X, Tu H, Wu L, Yu Y, Liu J, Chen N, Shen WL, Hua T. Structural basis of oligomerization-modulated activation and autoinhibition of orphan receptor GPR3. Cell Rep 2025; 44:115478. [PMID: 40158220 DOI: 10.1016/j.celrep.2025.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/04/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
G protein-coupled receptor 3 (GPR3) is a class A orphan receptor characterized by high constitutive activity in the Gs signaling pathway. GPR3 has been implicated in Alzheimer's disease and the regulation of thermogenesis in human adipocytes, yet the molecular mechanisms underlying its self-activation and potential endogenous modulators remain unclear. In this study, we present cryo-electron microscopy (cryo-EM) structures of GPR3 in different oligomerization states, both in the absence and presence of G protein. Notably, in addition to the monomeric form of GPR3, our findings reveal a functional GPR3 dimer with an extensive dimer interface-a feature rarely observed in class A GPCRs. Moreover, oligomerization appears to be linked to a unique autoinhibition mechanism involving intracellular loops, which may regulate GPR3 signaling. Collectively, these results provide new insights into the oligomerization-modulated activation of orphan GPCRs, advancing our understanding of their signaling properties.
Collapse
Affiliation(s)
- Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hongqing Tu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Zhang B, Ge W, Ma M, Li S, Yu J, Yang G, Wang H, Li J, Li Q, Zeng R, Lu B, Shui W. Post-translational modifications orchestrate the intrinsic signaling bias of GPR52. Nat Chem Biol 2025:10.1038/s41589-025-01864-w. [PMID: 40087539 DOI: 10.1038/s41589-025-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
Despite recent advances in G-protein-coupled receptor (GPCR) biology, the regulation of GPCR activation, signaling and function by post-translational modifications (PTMs) remains largely unexplored. In this study of GPR52, an orphan GPCR with exceedingly high constitutive G-protein activity that is emerging as a neurotherapeutic target, we discovered its disproportionately low arrestin recruitment activity. After profiling the N-glycosylation and phosphorylation patterns, we found that these two types of PTMs differentially shape the intrinsic signaling bias of GPR52. While N-terminal N-glycosylation promotes constitutive Gs signaling possibly through favoring the self-activating conformation, phosphorylation in helix 8, to our great surprise, suppresses arrestin recruitment and attenuates receptor internalization. In addition, we uncovered the counteracting roles of N-glycosylation and phosphorylation in modulating GPR52-dependent accumulation of the huntingtin protein in brain striatal cells. Our study provides new insights into the regulation of intrinsic signaling bias and cellular function of an orphan GPCR through distinct PTMs in different motifs.
Collapse
Affiliation(s)
- Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Wei Ge
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengna Ma
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jie Yu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Guang Yang
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Huilan Wang
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Qingrun Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rong Zeng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Claff T, Ebenhoch R, Kley JT, Magarkar A, Nar H, Weichert D. Structural basis for lipid-mediated activation of G protein-coupled receptor GPR55. Nat Commun 2025; 16:1973. [PMID: 40000629 PMCID: PMC11861906 DOI: 10.1038/s41467-025-57204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
GPR55 is an orphan G protein-coupled receptor (GPCR) and represents a promising drug target for cancer, inflammation, and metabolic diseases. The endogenous activation of lipid GPCRs can be solely mediated by membrane components and different lipids have been proposed as endogenous activators of GPR55, such as cannabinoids and lysophosphatidylinositols. Here, we determine high-resolution cryo-electron microscopy structures of the activated GPR55 in complex with heterotrimeric G13 and two structurally diverse ligands: the putative endogenous agonist 1-palmitoyl-2-lysophosphatidylinositol (LPI) and the synthetic agonist ML184. These results reveal insights into ligand recognition at GPR55, G protein coupling and receptor activation. Notably, an orthosteric binding site opening towards the membrane is observed in both structures, enabling direct interaction of the agonists with membrane lipids. The structural observations are supported by mutagenesis and functional experiments employing G protein dissociation assays. These findings will be of importance for the structure-based development of drugs targeting GPR55.
Collapse
Affiliation(s)
| | - Rebecca Ebenhoch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Jörg T Kley
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany
| | - Dietmar Weichert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Biberach an der Riß, Germany.
| |
Collapse
|
5
|
Duan Y, Xu Z, Hao B, Zhang A, Guo C, He Y. Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6. Proc Natl Acad Sci U S A 2025; 122:e2415426122. [PMID: 39847322 PMCID: PMC11789011 DOI: 10.1073/pnas.2415426122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G13 or Gq protein. These structures reveal a distinct ligand binding and recognition mode that differs significantly from that of LPAR1. Specifically, LPA uses its charged head to form an extensive polar interaction network with key polar residues on the extracellular side of transmembrane helix 5-6 and the extracellular loop 2. Structural comparisons and homology analysis suggest that the EDG and non-EDG families use two distinct modes for LPA binding. The structural observations are validated through functional mutagenesis studies. We further uncover the mechanisms of LPAR6 activation and principles of G-protein coupling. The structural information revealed by our study lays the groundwork for understanding LPAR6 signaling and provides a rational basis for designing compounds targeting LPAR6.
Collapse
Affiliation(s)
- Yaning Duan
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Zhenmei Xu
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Boyu Hao
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Anqi Zhang
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Changyou Guo
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Yuanzheng He
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin150001, China
| |
Collapse
|
6
|
Barekatain M, Johansson LC, Lam JH, Chang H, Sadybekov AV, Han GW, Russo J, Bliesath J, Brice N, Carlton MBL, Saikatendu KS, Sun H, Murphy ST, Monenschein H, Schiffer HH, Popov P, Lutomski CA, Robinson CV, Liu ZJ, Hua T, Katritch V, Cherezov V. Structural insights into the high basal activity and inverse agonism of the orphan receptor GPR6 implicated in Parkinson's disease. Sci Signal 2024; 17:eado8741. [PMID: 39626010 PMCID: PMC11850111 DOI: 10.1126/scisignal.ado8741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025]
Abstract
GPR6 is an orphan G protein-coupled receptor with high constitutive activity found in D2-type dopamine receptor-expressing medium spiny neurons of the striatopallidal pathway, which is aberrantly hyperactivated in Parkinson's disease. Here, we solved crystal structures of GPR6 without the addition of a ligand (a pseudo-apo state) and in complex with two inverse agonists, including CVN424, which improved motor symptoms in patients with Parkinson's disease in clinical trials. In addition, we obtained a cryo-electron microscopy structure of the signaling complex between GPR6 and its cognate Gs heterotrimer. The pseudo-apo structure revealed a strong density in the orthosteric pocket of GPR6 corresponding to a lipid-like endogenous ligand. A combination of site-directed mutagenesis, native mass spectrometry, and computer modeling suggested potential mechanisms for high constitutive activity and inverse agonism in GPR6 and identified a series of lipids and ions bound to the receptor. The structures and results obtained in this study could guide the rational design of drugs that modulate GPR6 signaling.
Collapse
Affiliation(s)
- Mahta Barekatain
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Linda C. Johansson
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jordy H. Lam
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Anastasiia V. Sadybekov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Russo
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Joshua Bliesath
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | | | | | - Hukai Sun
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Sean T. Murphy
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | - Hans H. Schiffer
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Petr Popov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Corinne A. Lutomski
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Vsevolod Katritch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
8
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Russell I, Zhang X, Bumbak F, McNeill SM, Josephs TM, Leeming MG, Christopoulos G, Venugopal H, Flocco MM, Sexton PM, Wootten D, Belousoff MJ. Lipid-Dependent Activation of the Orphan G Protein-Coupled Receptor, GPR3. Biochemistry 2024; 63:625-631. [PMID: 38376112 PMCID: PMC10919283 DOI: 10.1021/acs.biochem.3c00647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
The class A orphan G protein-coupled receptor (GPCR), GPR3, has been implicated in a variety of conditions, including Alzheimer's and premature ovarian failure. GPR3 constitutively couples with Gαs, resulting in the production of cAMP in cells. While tool compounds and several putative endogenous ligands have emerged for the receptor, its endogenous ligand, if it exists, remains a mystery. As novel potential drug targets, the structures of orphan GPCRs have been of increasing interest, revealing distinct modes of activation, including autoactivation, presence of constitutively activating mutations, or via cryptic ligands. Here, we present a cryo-electron microscopy (cryo-EM) structure of the orphan GPCR, GPR3 in complex with DNGαs and Gβ1γ2. The structure revealed clear density for a lipid-like ligand that bound within an extended hydrophobic groove, suggesting that the observed "constitutive activity" was likely due to activation via a lipid that may be ubiquitously present. Analysis of conformational variance within the cryo-EM data set revealed twisting motions of the GPR3 transmembrane helices that appeared coordinated with changes in the lipid-like density. We propose a mechanism for the binding of a lipid to its putative orthosteric binding pocket linked to the GPR3 dynamics.
Collapse
Affiliation(s)
- Isabella
C. Russell
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Xin Zhang
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Fabian Bumbak
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Samantha M. McNeill
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Tracy M. Josephs
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Michael G. Leeming
- Bio21
Molecular Science & Biotechnology Institute, Melbourne Mass Spectrometry
and Proteomics Facility, The University
of Melbourne, Melbourne, VIC 3052, Australia
| | - George Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Hariprasad Venugopal
- Ramaciotti
Centre for Cryo Electron Microscopy, Monash University, Clayton 3800, Victoria Australia
| | - Maria M. Flocco
- Mechanistic
and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB20AA, United Kingdom
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| |
Collapse
|
10
|
Liu W, Zhu M, Liu J, Su S, Zeng X, Fu F, Lu Y, Rao Z, Chen Y. Comparison of the effects of monounsaturated fatty acids and polyunsaturated fatty acids on the lipotoxicity of islets. Front Endocrinol (Lausanne) 2024; 15:1368853. [PMID: 38501107 PMCID: PMC10945794 DOI: 10.3389/fendo.2024.1368853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Background Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions Both MUFAs and PUFAs can effectively protect islet β cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.
Collapse
Affiliation(s)
- Wen Liu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyi Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Su
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zeng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|