1
|
Lu L, Ma Y, Tao Q, Xie J, Liu X, Wu Y, Zhang Y, Xie X, Liu M, Jin Y. Hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor AMSP-30 m attenuates CCl 4-induced liver fibrosis in mice by inhibiting the sonic hedgehog pathway. Chem Biol Interact 2025; 413:111480. [PMID: 40113123 DOI: 10.1016/j.cbi.2025.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Liver fibrosis is a passive and irreversible wound healing process caused by chronic liver injury. Research has shown that the upregulation of hypoxia inducible factor-1 alpha (HIF-1α) is closely related to the occurrence and development of liver fibrosis and HIF-1 α may be a promising target for the treatment of liver fibrosis. AMSP-30 m is a newly developed novel HIF-1α inhibitor by our group, which has strong anti-tumor and anti-inflammatory effects. In this study, we described the therapeutic effect and specific mechanism of AMSP-30 m on carbon tetrachloride (CCl4) induced liver fibrosis in mice. Liver fibrosis induced by CCl4 in mice and liver fibrosis induced by cobalt dichloride (CoCl2) in LX-2 cells (human hepatic stellate cell (HSC) line) were studied. Hematoxylin & eosin (H&E)and Masson's trichrome staining were used to observe pathological conditions. Western Blot, immunofluorescence and immunohistochemistry were used to detect protein expression and localization in cells, and quantitative real-time PCR analysis (qRT-PCR) was used to detect mRNA expression. Biochemical detection kits were used to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The results demonstrated that AMSP-30 m significantly alleviated pathological symptoms, reduced ALT and AST levels, and inhibited the expression of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1α1) in CCl4-induced liver fibrosis in mice. AMSP-30 m could significantly reduce the expression of HIF-1α and sonic hedgehog (Shh) pathway related proteins (Smoothened (Smo), Shh, and glioma-associated oncogene-1 (Gli-1)) in CCl4 induced liver fibrosis mice. AMSP-30 m also played a similar role in the CoCl2-induced anoxic liver fibrosis model of LX-2 cells. Further experiments showed that Cyclopamine (a Shh inhibitor) could significantly inhibit the increase of α-SMA and COL1α1 resulting from HIF-1α but not significantly inhibit HIF-1α induced by CoCl2 in LX-2 cells. And the combination of Cyclopamine and AMSP-30 m further reduced the expression of α-SMA and COL1α1 induced by HIF-1α. In summary, this study demonstrates that the HIF-1α inhibitor AMSP-30 m exerts a robust anti-fibrotic effect by inhibiting the Shh pathway, which is identified as a critical underlying mechanism. These findings suggest a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lili Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuchen Ma
- Pharmacy Department, Fuyang Cancer Hospital, Fuyang, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiuli Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mingming Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Ou J, Fang M, Chen M, Wang C, Xu X, Wang Q, Feng Y, Meng X. Dual-Color Visualization of Hepatic Fibrosis and Multidimensional Assessment of Therapeutic Drugs by a Multifunctional Single-Molecular Fluorescent Probe. ACS Sens 2025. [PMID: 40268867 DOI: 10.1021/acssensors.5c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
There is a high relevance between changes in ClO- levels/mitochondrial morphology and the development of hepatic fibrosis; however, the efficient tools that are capable of real-time monitoring both of them and exploring their interrelations are extremely rare. Herein, we developed a multifunctional fluorescent probe based on a "three-in-one" strategy, named Mito-XS, which is firmly anchored in mitochondria, allowing for the ratiometric detection of ClO- and the accurate analysis of mitochondrial morphology. Probe Mito-XS can sensitively capture the changes of ClO- levels in mitochondria and successfully achieve simultaneous real-time monitoring of ClO- levels and mitochondrial morphology during oxidative stress. Utilizing probe Mito-XS, the evaluations of three therapeutic drugs (silymarin, methyl ferulic acid, and puerarin) on protecting cells from CCl4-induced damage were visualized by assessing their capabilities of inhibiting ClO- levels and maintaining mitochondrial morphology. Furthermore, dual-color imaging in hepatic fibrosis mice models revealed the exacerbation of hepatic fibrosis, and the therapeutic effect of puerarin can be tracked by the fluctuation of ClO- levels. Therefore, probe Mito-XS is an effective imaging tool to monitor mitochondrial morphology and ClO- levels at the same time and has the potential to work as an evaluation tool to screen therapeutic drugs for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Jiale Ou
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Min Fang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chengyuan Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianyun Xu
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
3
|
Lu W, Yan L, Peng L, Wang X, Tang X, Du J, Lin J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in acute on chronic liver failure: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2025; 16:197. [PMID: 40254564 PMCID: PMC12010635 DOI: 10.1186/s13287-025-04303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Acute-on-chronic liver failure has become a serious global health burden, which is characterized by an acute deterioration of liver function, rapidly evolving organ failure, and high short-term mortality in patients with chronic liver disease. The pathogenesis includes extensive hepatic necrosis, which is related to intense systemic inflammation and subsequently causes the inflammatory cytokine storm, resulting in portal hypertension, organ dysfunction, and organ failure. Mesenchymal stem cells can function as seed cells to remodel and repair damaged liver tissues, thus showing potential therapeutic alternatives for patients with chronic liver disease. However, standard treatment protocols for mesenchymal stem cells in acute-on-chronic liver failure patients have not been established. METHODS We conducted a detailed search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library to find randomized controlled trials published before October 23, 2021. We formulated criteria for the literature screening according to the PICOS principle (Population, Intervention, Comparison, Outcome, Study design). Subsequently, the bias risk assessment tool was used to assess the quality of all enrolled studies. Finally, outcome measurements including the model of end-stage liver disease score, albumin, total bilirubin, coagulation function, and aminotransferase were extracted for statistical analysis. RESULTS A total of 7 clinical trials were included. The results of enrolled studies indicated that patients with acute-on-chronic liver failure who received mesenchymal stem cells inoculation showed a decreased MELD score in 4 weeks and 24 weeks, compared with counterparts who received conventional treatment. Reciprocally, mesenchymal stem cells inoculation improved the ALB levels in 4 weeks and 24 weeks. For secondary indicators, mesenchymal stem cells treatment significantly reduced INR levels and ALT levels, compared with the control group. Our results showed no significant differences in the incidence of adverse reactions or serious adverse events monitored in patients after mesenchymal stem cells inoculation. CONCLUSION This meta-analysis indicated that mesenchymal stem cell infusion is effective and safe in the treatment of patients with acute-on-chronic liver failure. Without increasing the incidence of adverse events or serious adverse events, MSC treatment improved liver function including a decrease in MELD score and an increase in ALB levels in patients with acute-on-chronic liver failure. However, large-cohort randomized controlled trials with longer follow-up periods are required to further confirm our conclusions.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lulu Peng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Lin
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
4
|
Tang ZM, Yuan P, Gao N, Lei JG, Ahmed M, Hua YX, Yang ZR, Li QY, Li HY. C-reactive protein attenuates CCl 4-induced acute liver injury by regulating complement system activation. Mol Immunol 2025; 180:44-54. [PMID: 40010008 DOI: 10.1016/j.molimm.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Acute liver injury is liver dysfunction caused by multiple factors without any pre-existing liver disease. C-reactive protein (CRP) is an acute-phase protein produced by hepatocytes, serving as a marker of inflammation and tissue damage. However, its role in CCl4-induced acute liver injury has not been elucidated. Here, we report that CRP protects against CCl4-induced acute liver injury by regulating complement activation. CRP knockout exacerbates CCl4-induced acute liver injury in mice and rats, markedly enhances tissue damage, and reduces survival. Administration of exogenous CRP to CRP-knockout mice rescues the CCl4-induced liver injury phenotype. The protective effect of CRP is independent of its cellular receptor FcγR2b and early metabolic pathways. Instead, CRP suppresses the late-phase amplification of inflammation by inhibiting terminal complement pathway overactivation in injured hepatocytes via factor H recruitment. In complement C3 knockout (C3-/-) mice, the protective effect of CRP against CCl4-induced acute liver injury is lost. These results suggest that CRP can alleviate CCl4-induced acute liver injury by regulating the complement pathway, providing a theoretical basis for CRP's potential involvement and regulation of disease severity.
Collapse
Affiliation(s)
- Zhao-Ming Tang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ning Gao
- Department of Infectious Disease, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia-Geng Lei
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mustafa Ahmed
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ze-Rui Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiu-Yu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Hai-Yun Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China..
| |
Collapse
|
5
|
Li L, Liu Y, Wang K, Mo J, Weng Z, Jiang H, Jin C. Stem cell exosomes: new hope and future potential for relieving liver fibrosis. Clin Mol Hepatol 2025; 31:333-349. [PMID: 39510097 PMCID: PMC12016649 DOI: 10.3350/cmh.2024.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Liver fibrosis is a chronic liver injury resulting from factors like viral hepatitis, autoimmune hepatitis, non-alcoholic steatohepatitis, fatty liver disease, and cholestatic liver disease. Liver transplantation is currently the gold standard for treating severe liver diseases. However, it is limited by a shortage of donor organs and the necessity for lifelong immunosuppressive therapy. Mesenchymal stem cells (MSCs) can differentiate into various liver cells and enhance liver function when transplanted into patients due to their differentiation and proliferation capabilities. Therefore, it can be used as an alternative therapy for treating liver diseases, especially for liver cirrhosis, liver failure, and liver transplant complications. However, due to the potential tumorigenic effects of MSCs, researchers are exploring a new approach to treating liver fibrosis using extracellular vesicles (exosomes) secreted by stem cells. Many studies show that exosomes released by stem cells can promote liver injury repair through various pathways, contributing to the treatment of liver fibrosis. In this review, we focus on the molecular mechanisms by which stem cell exosomes affect liver fibrosis through different pathways and their potential therapeutic targets. Additionally, we discuss the advantages of exosome therapy over stem cell therapy and the possible future directions of exosome research, including the prospects for clinical applications and the challenges to be overcome.
Collapse
Affiliation(s)
- Lihua Li
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Yongjie Liu
- Department of Cell biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, P. R. China
| | - Kunpeng Wang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Jinggang Mo
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Zhiyong Weng
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Hao Jiang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Chong Jin
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Huang R, Cui H, Yahya Ali Alshami MA, Fu C, Jiang W, Cai M, Zhou S, Zhu X, Hu C. LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis. Mol Metab 2025; 96:102132. [PMID: 40180177 PMCID: PMC12004974 DOI: 10.1016/j.molmet.2025.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVE Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. METHODS LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. RESULTS We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis. CONCLUSIONS Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
Collapse
Affiliation(s)
- Ruihua Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hanyu Cui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | | | - Chuankui Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wei Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Mingyuan Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shuhan Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoyun Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China.
| | - Changping Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; School of Pharmacy, Changzhi Medical College, Changzhi 046000, Shanxi, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha 410013 China.
| |
Collapse
|
7
|
Li W, Shi X, Zhang D, Hu J, Zhao S, Ye S, Wang J, Liu X, Zhang Q, Wang Z, Zhang Y, Yan L. Adipose derived mesenchymal stem cell-seeded regenerated silk fibroin scaffolds reverse liver fibrosis in mice. J Mater Chem B 2025; 13:4201-4213. [PMID: 40059659 DOI: 10.1039/d5tb00275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Liver fibrosis (LF) is an important process in the progression of chronic liver disease to cirrhosis. We have previously demonstrated that a regenerated silk fibroin scaffold loaded with adipose-derived stem cells (RSF + ADSCs) can repair acute liver injury. In this study, we established a chronic LF animal model using carbon tetrachloride (CCl4) and a high-fat diet. We then investigated the liver repair capacity after transplanting RSF + ADSC scaffolds and RSF scaffolds onto the liver surface of mice. Compared with the control group, the concentrations of ALT and AST in the serum were significantly reduced in the RSF and RSF + ADSC groups. HE staining and Masson trichrome staining revealed a decrease in the SAF score in both the RSF and RSF + ADSC groups. Meanwhile, the biomarkers of blood vessels and bile ducts, such as CD34, ERG, muc1, and CK19, were significantly elevated in the RSF + ADSC group. Finally, transcriptome analysis showed that the PPAR signaling pathway, which inhibits liver fibrosis, was significantly upregulated in both the RSF and RSF + ADSC groups. Our study suggests that, compared with RSF scaffolds alone, RSF + ADSCs have a significant repair effect on chronic LF in mice.
Collapse
Affiliation(s)
- Weilong Li
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaonan Shi
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Daxu Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jingjing Hu
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Shuo Zhao
- Department of Critical Care Medicine,Aerospace Central Hospital,Beijing,, PR China
| | - Shujun Ye
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Jingyi Wang
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaojiao Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Qian Zhang
- School of nursing, Lanzhou University, Gansu 730000, PR China
| | - Zhanbo Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Li Yan
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
8
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
9
|
Wang J, Huang D, Ren H, Zhao Y. Bioinspired Spatially Ordered Multicellular Lobules for Liver Regeneration. RESEARCH (WASHINGTON, D.C.) 2025; 8:0634. [PMID: 40099268 PMCID: PMC11912749 DOI: 10.34133/research.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Cell therapy is a promising strategy for acute liver failure (ALF), while its therapeutic efficacy is often limited by cell loss and poor arrangement. Here, inspired by liver microunits, we propose a novel spatially ordered multicellular lobules for the ALF treatment by using a microfluidic continuous spinning technology. The microfluidics with multiple microchannels was constructed by assembling parallel capillaries. Sodium alginate (Alg) solution encapsulating human umbilical vein endothelial cells (HUVECs), hepatocytes, and mesenchymal stem cells (MSCs) are introduced into the middle channel and the 6 parallel outer channels of the microfluidics, respectively. Simultaneously, Ca2+-loaded solutions are pumped through the innermost and outermost channels, forming a hollow microfiber with hepatocytes and MSCs alternately surrounding the HUVECs. These microfibers could highly resemble the cord-like structure of liver lobules, bringing about outstanding liver-like functions. We have demonstrated that in ALF rats, our biomimetic lobules can effectively suppress excessive inflammatory responses, decrease cell necrosis, and promote regenerative pathways, leading to satisfied therapeutic efficacy. These findings underscore the potential of spatially ordered multicellular microfibers in treating related diseases and improving traditional clinical methods.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Danqing Huang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Institute of Organoids on Chips Translational Research,
Henan Academy of Sciences, Zhengzhou 450009, China
| |
Collapse
|
10
|
Wang Q, Zhang W, Wang J, Zhang L, Qiu Y, Cheng Y. Embryonic lethal abnormal vision like 1-stabilized histone deacetylase 6 promotes hepatic stellate cell activation to accelerate liver fibrosis progression through ribosomal protein S5 downregulation. Cytojournal 2025; 22:30. [PMID: 40260071 PMCID: PMC12010813 DOI: 10.25259/cytojournal_221_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/03/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Histone deacetylase 6 (HDAC6) has been confirmed to participate in the regulation of liver fibrosis (LF) progression. This study aims to explore the role and mechanism of HDAC6 in the LF process. Material and Methods Serum samples were collected from liver cirrhosis (LC) patients and normal healthy individuals. Human hepatic stellate cells (HSC; LX-2) were stimulated with transforming growth factor β1 (TGF-β1) to mimic LF cell models. The levels of HDAC6, ribosomal protein S5 (RPS5), embryonic lethal abnormal vision like 1 (ELAVL1), and fibrosis-related markers were determined by quantitative real-time polymerase chain reaction or western blot. Cell proliferation and invasion were detected using cell counting kit 8 assay, 5-ethynyl-2'-deoxyuridine assay, and Transwell assay. The contents of inflammatory factors were examined using enzyme-linked immunosorbent assay. Furthermore, co-immunoprecipitation and RNA immunoprecipitation assays were performed to assess the interaction between HDAC6 and RPS5 or ELAVL1. The effect of ELAVL1 knockdown on HDAC6 mRNA stability was evaluated using Actinomycin D treatment assay. Results HDAC6 showed increased expression in LC patients. The knockdown of HDAC6 reduced TGF-β1-induced LX-2 cell proliferation, invasion, fibrosis, and inflammation. Moreover, HDAC6 reduced the acetylation of RPS5, and RPS5 knockdown reversed the inhibition effect of si-HDAC6 on TGF-β1-induced LX-2 cell proliferation, invasion, fibrosis, and inflammation. Meanwhile, ELAVL1 interacted with HDAC6 to stabilize its mRNA, thus inhibiting RPS5 expression. Conclusion Our data revealed that ELAVL1-stabilized HDAC6 promoted TGF-β1-induced HSC activation by repressing RPS5 acetylation, thus providing a novel target for alleviating LF progression.
Collapse
Affiliation(s)
- Qin Wang
- Department of Clinical Medicine, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
- Department of School of Medicine; Hainan University of Science and Technology, Hainan, China
| | - Wenjie Zhang
- Department of Clinical Medicine, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
| | - Jianping Wang
- Department of Clinical Medicine, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
| | - Li Zhang
- Department of Clinical Medicine, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
| | - Yiwen Qiu
- Department of Clinical Medicine, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
| | - Yan Cheng
- Department of Endocrinology and Metabolism, Gansu Second People’s Hospital Northwest University Affiliated Hospital for Nationalities, Gansu, China
| |
Collapse
|
11
|
Jin J, Yu J, Zhai C, Li H, Chen Z, Bao LD. Mechanism of Si Ni San Combined with Astragalus in Treating Hepatic Fibrosis: A Network Pharmacology and Molecular Docking Study. Mol Biotechnol 2025; 67:1077-1094. [PMID: 38696100 DOI: 10.1007/s12033-024-01106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2025]
Abstract
Si Ni San combined with Astragalus (SNSQ) has demonstrated significant efficacy in the treatment of hepatic fibrosis (HF), as confirmed by clinical practice. However, its pharmacological mechanism remains unclear. This study employs network pharmacology to identify key targets and proteins for molecular docking. Additionally, animal experiments were conducted to validate the network pharmacology results, providing further insights into the mechanism of SNSQ in treating HF. Effective compounds of SNSQ were screened from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopedia of Traditional Chinese Medicine (ETCM) databases. Molecular formula structures of these effective compounds were obtained from the PubChem database. Partial target proteins with a probability greater than 0.6 were sourced from the SWISS database. Uniprot IDs corresponding to these target proteins were retrieved from the SUPERPRED database. The remaining target proteins of the compounds were obtained from the Uniprot database based on the Uniprot IDs. The drug target proteins were then summarized. Target points related to HF were selected from the GeneCards and OMIM databases. Common target points were identified in the Venn diagram and imported into Cytoscape 3.9.1 software to construct the "SNSQ-effective compound-target pathway-HF" network. AutoDock software was used for molecular docking of compounds and target proteins with high-degree values. The common target points underwent GO function enrichment and KEGG pathway enrichment analysis using the DAVID database. An HF rat model was established, and serum AST and ALT activities were measured. The Hyp assay kit was utilized to detect the Hyp content in liver tissue. To the transcription levels of pro-inflammatory factors (IL-1β, TNF-α, IL-6) and anti-inflammatory factors (IL-10, TGF-β1, IL-4) in rat serum and liver.IL-1β, TNF-α, IL-10, and TGF-β1 were chosen for validation through ELISA. Western blotting and qRT-PCR were used to assess the expression of related proteins, namely NFKB1, NF-κBp65, NF-κBp50, α-SMA, and Col-1 in liver tissue. qRT-PCR was also employed to study the expression of ECM synthesis and proliferation-related genes, including Cyclin D1, TIMP1, COL1A1 in HSC-T6 cells and rat liver tissue, as well as the inhibition of the ECM-related gene MMP13 in HSC-T6 cells and rat liver tissue. A total of 16 valid compounds were predicted, with kaempferol, sitosterol, and isorhamnetin exhibiting high-degree values. KEGG enrichment analysis revealed that the target genes of SNSQ were enriched in multiple pathological pathways, with the NF-Kappa B signaling pathway being predominant. Molecular docking simulations indicated strong affinities between SNSQ's primary components-kaempferol, sitosterol, isorhamnetin-and NFKB1. Experimental results demonstrated significant reductions in AST, ALT, and Hyp levels in the SNSQ group. Pro-inflammatory factors (IL-1β, TNF-ɑ) were markedly reduced, while anti-inflammatory factors (IL-10, TGF-β1) were substantially increased. The protein expression and transcription levels of α-SMA and Col-1 were significantly decreased, whereas those of NFKB1, NF-κBp65, and NF-κBp50 were notably elevated. mRNA expression levels of Cyclin D1, TIMP1, COL1A1 in HSC-T6 cells and rat liver tissue were significantly decreased, whereas MMP13 mRNA expression level was significantly increased. Treatment of HF with SNSQ involves multiple targets and pathways, with a close association with the overexpression of NFKB1 and activation of the NF-Kappa B signaling pathway. Its mechanism is closely linked to the activation of inflammatory responses, HSC activation, and proliferation.
Collapse
Affiliation(s)
- Jiu Jin
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Jiuwang Yu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Chenxu Zhai
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Honggang Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Zeyu Chen
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Li-Dao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China.
- TCM Hospital of Mongolian Medicine in Hohhot, Hohhot, 010030, Inner Mongolia, People's Republic of China.
| |
Collapse
|
12
|
Qiu Y, Li Y, Li M, Wang Y, Shen M, Shao J, Zhang F, Xu X, Wang F, Zhang Z, Zheng S. NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs). Chin J Nat Med 2025; 23:322-333. [PMID: 40122662 DOI: 10.1016/s1875-5364(25)60836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 03/25/2025]
Abstract
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Shen
- Department of Biochemistry and Molecular Biology, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Liu H. Sorafenib and Treg Differentiation: A Paradigm Shift in Hepatocellular Carcinoma Management. Cell Mol Gastroenterol Hepatol 2025; 19:101478. [PMID: 39999950 PMCID: PMC12009096 DOI: 10.1016/j.jcmgh.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Hanyang Liu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Jiang W, Zeng Q, Liu CH, Wang Y, Wang S, Chen E, Wang M, Zhou T, Bai L, Wu D, Tang H. Huc-MSCs-derived exosomes alleviate non-alcoholic steatohepatitis by regulating macrophages polarization through miR-24-3p/STING axis. Stem Cell Res Ther 2025; 16:74. [PMID: 39984996 PMCID: PMC11846240 DOI: 10.1186/s13287-025-04197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND There's a scarcity of drugs effective against nonalcoholic steatohepatitis (NASH). Exosomes from Human umbilical cord mesenchymal stem cells (huc-MSCs) show potential in managing glycolipid metabolism and the immune response. Therefore, further investigations are required to explore their application in NASH and the underlying mechanisms. METHODS C57BL/6J mice were fed with a western diet for 12 weeks to induce NASH, and huc-MSCs exosomes (MSCs-exo) were administered during the feeding period. The effect of MSCs-exo was evaluated by monitoring changes in body weight, fat distribution, blood glucose, and insulin levels, and analyzing pathological alterations in liver tissue. Mechanism investigations were carried out using flow cytometry, immunofluorescence staining, and other experimental techniques. RESULTS MSCs-exo could reduce liver fat, inflammation, fibrosis, and improved metabolism to alleviate the progression of NASH. Besides, MSCs-exo could decrease macrophage accumulation in the liver, encouraging M2 over M1 macrophage polarization. Furthermore, our study found that MSCs-exo had a high expression of miR-24-3p, which may regulate macrophage polarization by targeting the interferon-stimulated genes (STING) gene in macrophages, with its overexpression amplifying MSCs-exo's NASH benefits. CONCLUSIONS These findings suggest that the therapeutic effect of MSCs-exo on NASH may be attributed to the regulation of macrophage M2 polarization through miR-24-3p targeting STING. This provides a scientific basis for future clinical application.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Wu RR, Nie DR, He FH, Li ZH, Xu F. Combined metabolomics and 16S rDNA sequence analyses of the gut microbiome reveal the action mechanism of Fructus Akebiae against hepatic fibrosis. Front Med (Lausanne) 2025; 11:1492383. [PMID: 39974825 PMCID: PMC11835924 DOI: 10.3389/fmed.2024.1492383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025] Open
Abstract
Objectives To explore the mechanism underlying the effect of Fructus Akebiae (FAE) against hepatic fibrosis in mice through combined network pharmacology, liver metabolomics, and 16S rDNA analyses of the gut microbiota. Methods In this study, we randomly divided mice into the control, model, FAE high-dose, FAE medium-dose, and FAE low-dose groups to analyze the pathological changes in the hepatic fibrosis and levels of the α-SMA, collagen 1, Nuclear Factor Kappa B (NF-κ B), Toll Like Receptor 4 (TLR4). The gut microbiota was analyzed through 16S rDNA sequencing analysis of liver metabolites using liquid chromatography-mass spectrometry. Furthermore, network pharmacology was used to determine the specific molecular regulation mechanism of FAE in hepatic fibrosis treatment. Results FAE treatment markedly improved the pathological changes in the hepatic fibrosis. Analysis revealed that FAE administration reversed the carbon tetrachloride (CCl4)-induced dysbiosis by increasing the abundance of Akkermansia and reducing that of Cyanobacteria. Additionally, metabolomic analysis showed that FAE treatment reversed the CCl4-induced metabolic disorders by regulating amino and nucleotide sugar metabolism. Furthermore, correlation analysis showed that Akkermansia and Verrucomicobiota were closely related to D-tolasaccharide and maltotetraose saccharide. Moreover, network pharmacology indicated that FAE might regulate the signaling pathway through the JUN/CASP3/NOS3/PTGS2/HSP90AA1 during treatment. Conclusion FAE may be a promising treatment for hepatic fibrosis, and its protective effects are associated with improvements in the microbiome and metabolic disorders.
Collapse
Affiliation(s)
- Rong-Rong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duo-Rui Nie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Fang-Hui He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhi-Hang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fei Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| |
Collapse
|
16
|
Gao Y, Wang H, Shi L, Lu P, Dai G, Zhang M, Han B, Cao M, Li Y, Rui Y. Erroneous Differentiation of Tendon Stem/Progenitor Cells in the Pathogenesis of Tendinopathy: Current Evidence and Future Perspectives. Stem Cell Rev Rep 2025; 21:423-453. [PMID: 39579294 DOI: 10.1007/s12015-024-10826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Tendinopathy is a condition characterized by persistent tendon pain, structural damage, and compromised functionality. Presently, the treatment for tendinopathy remains a formidable challenge, partly because of its unclear pathogenesis. Tendon stem/progenitor cells (TSPCs) are essential for tendon homeostasis, regeneration, remodeling, and repair. An innovative theory has been previously proposed, with insufficient evidence, that the erroneous differentiation of TSPCs may constitute one of the fundamental mechanisms underpinning tendinopathy. Over the past few years, there has been accumulating evidence for plausibility of this theory. In this review, we delve into alterations in the differentiation potential of TSPCs and the underlying mechanisms in the context of injury-induced tendinopathy, diabetic tendinopathy, and age-related tendinopathy to provide updated evidence on the erroneous differentiation theory. Despite certain limitations inherent in the existing body of evidence, the erroneous differentiation theory emerges as a promising and highly pertinent avenue for understanding tendinopathy. In the future, advanced methodologies will be harnessed to further deepen comprehension of this theory, paving the way for prospective developments in clinical therapies targeting TSPCs for the management of tendinopathy.
Collapse
Affiliation(s)
- Yucheng Gao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bowen Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
17
|
Zhou G, You Y, Wang B, Wang S, Feng T, Lai C, Xiang G, Yang K, Yao Y. A comprehensive evaluation system for ultrasound-guided infusion of human umbilical cord-derived MSCs in liver cirrhosis patients. Stem Cells Transl Med 2025; 14:szae081. [PMID: 39520328 PMCID: PMC11821905 DOI: 10.1093/stcltm/szae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Infusion of mesenchymal stem cells (MSCs) via portal vein is one of the main ways for MSCs transplantation to treat liver cirrhosis (LC). As the tissue of LC showed diffuse fibrosis and thickened Glission sheath, the soft pig-tail catheter, or central venous catheter can not successfully insert the portal vein. Thus, our study used an improved method and performed a relatively comprehensive system to evaluate the effect for human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation. METHOD Fifteen patients with hepatitis B-related cirrhosis were enrolled in the study, and we performed hUC-MSCs transplantation via portal vein by using an 16-G needle and 0.035-inch guide wire combined with 7FR "retentional metal stiffner trocar" of pig-tail catheter under the guidance of contrast-enhanced ultrasound. Serum liver function, fibrotic indicators, tissue stiffness, coagulation function, and hemodynamics were measured at weeks 4, 12, and 24 after MSCs transplantation. Liver biopsy was performed before and 24 weeks after hUC-MSCs transplantation. RESULT After hUC-MSCs transplantation, the prothrombin time was lower than before. The levels of hyaluronic acid and IV-C(Type IV collagen) in fibrotic indicators were significantly reduced, and the Young's modulus was also decreased. Moreover, liver biopsy showed that the lytic necrosis of hepatocyte was decreased. In liver hemodynamics, the portal vein diameter was decreased after hUC-MSCs transplantation. CONCLUSION hUC-MSCs transplantation can alleviate liver damage caused by LC. The improved "retentional metal stiffner trocar" of pig-tail catheter was safe and effective in the infusion of hUC-MSCs transplantation, which is worth promoting in clinical practice.
Collapse
Affiliation(s)
- Guo Zhou
- Department of Ultrasound, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Yijuan You
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Binghua Wang
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Simin Wang
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Tianhang Feng
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Ke Yang
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610072, People’s Republic of China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| |
Collapse
|
18
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
19
|
Lin Z, Cai W, Sun Y, Han B, Hu Y, He Z, Chen X. Mechanism and application of mesenchymal stem cells and their secreting extracellular vesicles in regulating CD4 +T cells in immune diseases. BIOPHYSICS REPORTS 2024; 10:403-415. [PMID: 39758422 PMCID: PMC11693500 DOI: 10.52601/bpr.2024.240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/07/2024] [Indexed: 01/07/2025] Open
Abstract
Mesenchymal stem cells (MSCs) show significant promise in treating immune diseases due to their ability to differentiate into various cell types and their immunomodulatory properties. However, the mechanisms by which MSCs regulate CD4+T cells, essential for immune responses, are not yet fully understood. This study aims to provide a comprehensive overview of how MSCs and their secreted extracellular vesicles (EVs) modulate CD4+T cells in immune diseases. We begin by discussing the immunomodulatory properties of MSCs and the factors contributing to their effectiveness. Following this, we explore how MSCs interact with CD4+T cells through various pathways, including the secretion of soluble factors, direct cell-cell contact, and EV-mediated communication. A key focus is on the therapeutic potential of MSC-derived EVs, which are rich in bioactive molecules such as proteins, lipids, and nucleic acids. These molecules can regulate the phenotype and function of CD4+T cells. The challenges and future perspectives in utilizing MSCs and EVs for immune-disease therapy are also addressed. Overall, this research aims to enhance our understanding of the mechanisms behind MSC-mediated regulation of CD4+T cells and provide insights into the potential use of MSCs and EVs as therapeutic tools in immune diseases. In summary, understanding how MSCs and their EVs control CD4+T cells can offer valuable perspectives for developing innovative immunotherapeutic approaches. Leveraging the immunomodulatory capacity of MSCs and EVs holds promise for managing immune-related disorders.
Collapse
Affiliation(s)
- Zehua Lin
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weisong Cai
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuechen Sun
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yifan Hu
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zuhong He
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Chen
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
20
|
Zhang L, Deng Y, Bai X, Wei X, Ren Y, Chen S, Deng H. Cell therapy for end-stage liver disease: Current state and clinical challenge. Chin Med J (Engl) 2024; 137:2808-2820. [PMID: 39602326 DOI: 10.1097/cm9.0000000000003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 11/29/2024] Open
Abstract
ABSTRACT Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Xu L, Yang J, Cao X, Chen J, Liu Z, Cai L, Yu Y, Huang H. Sequential system based on ferritin delivery system and cell therapy for modulating the pathological microenvironment and promoting recovery. Int J Pharm 2024; 664:124607. [PMID: 39159856 DOI: 10.1016/j.ijpharm.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The vicious crosstalk among capillarization of hepatic sinusoidal endothelial cells (LSECs), activation of hepatic stellate cells (aHSCs), and hepatocyte damage poses a significant impediment to the successful treatment of liver fibrosis. In this study, we propose a sequential combination therapy aimed at disrupting the malignant crosstalk and reshaping the benign microenvironment while repairing damaged hepatocytes to achieve effective treatment of liver fibrosis. Firstly, H-subunit apoferrin (Ferritin) was adopted to load platycodonin D (PLD) and MnO2, forming ferritin@MnO2/PLD (FMP) nanoparticles, which exploited the high affinity of ferritin for the highly expressed transferrin receptor 1 (TfR1) to achieve the precise targeted delivery of FMP in the liver. Upon PLD intervention, restoration of the fenestration pores in capillarized LSECs was facilitated by modulating the phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT) and Kruppel Like Factor 2 (KLF2) signaling pathways both in vitro and in vivo, enabling efficient entry of FMP into the Disse space. Subsequently, FMP NPs effectively inhibited HSC activation by modulating the TLR2/TLR4/NF-κB-p65 signaling pathway. Moreover, FMP NPs efficiently scavenged reactive oxygen species (ROS) and mitigated the expression of inflammatory mediators, thereby reshaping the microenvironment to support hepatocyte repair. Finally, administration of bone marrow mesenchymal stem cells (BMMSCs) was employed to promote the regeneration and functional recovery of damaged hepatocytes. In conclusion, the combined sequential therapy involving FMP and BMMSCs effectively attenuated liver fibrosis induced by CCl4 administration, resulting in significant amelioration of the fibrotic condition. The therapeutic strategy outlined in this study underscores the significance of disrupting the deleterious cellular interactions and remodeling the microenvironment, thereby presenting a promising avenue for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie Yang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liangliang Cai
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong 226001, China.
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
23
|
Liu H, Huang H, Liu Y, Yang Y, Deng H, Wang X, Zhou Z, Peng G, Jin S, Chen D, Zhong Z. Adipose-derived mesenchymal stem cells inhibit hepatic stellate cells activation to alleviate liver fibrosis via Hippo pathway. Stem Cell Res Ther 2024; 15:378. [PMID: 39449061 PMCID: PMC11515333 DOI: 10.1186/s13287-024-03988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Liver fibrosis is a common pathological process of chronic liver disease, characterized by excessive deposition of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been found to have potential therapy effect on liver fibrosis, but the mechanism involved was still unclear. The objective of this study is to investigate the therapeutic efficacy of adipose-derived mesenchymal stem cells (ADMSCs) on the treatment of liver fibrosis, with particular emphasis on elucidating the underlying mechanism of action through which ADMSCs inhibit the activation of hepatic stellate cells (HSCs). METHODS ADMSCs were isolated from adipose tissue and injected intravenously into hepatic fibrosis model of rats. The histopathological changes, liver function, collagen deposition, the expression of fibroin and Hippo pathway were evaluated. In vitro, ADMSCs were co-cultured with HSCs activated by transforming growth factor beta 1 (TGF-β1), and the inhibitor of Hippo pathway was used to evaluate the therapeutic mechanism of ADMSCs transplantation. RESULTS The results showed that after the transplantation of ADMSCs, the liver function of rats was improved, the degree of liver fibrosis and collagen deposition were reduced, and the Hippo signaling pathway was activated. In vitro, ADMSCs can effectively inhibit the proliferation and activation of HSCs induced by TGF-β1 treatment. However, the inhibitory effect of ADMSCs was weakened after blocking the Hippo signaling pathway. CONCLUSIONS ADMSCs inhibit HSCs activation by regulating YAP/TAZ, thereby promoting functional recovery after liver fibrosis. These findings lay a foundation for further investigation into the precise mechanism by which ADMSCs alleviate liver fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxue Yang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shouchao Jin
- Sichuan Jinbei Banshan Group Co Ltd, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Pan M, Li H, Shi X. A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. FRONT BIOSCI-LANDMRK 2024; 29:321. [PMID: 39344326 DOI: 10.31083/j.fbl2909321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Pan
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Xiaoyan Shi
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| |
Collapse
|
25
|
Xu Y, Wang XS, Zhou XL, Lu WM, Tang XK, Jin Y, Ye JS. Mesenchymal stem cell therapy for liver fibrosis need "partner": Results based on a meta-analysis of preclinical studies. World J Gastroenterol 2024; 30:3766-3782. [PMID: 39221071 PMCID: PMC11362880 DOI: 10.3748/wjg.v30.i32.3766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been demonstrated in several clinical studies. However, their low survival and liver implantation rates remain problematic. In recent years, a large number of studies in animal models of liver fibrosis have shown that MSCs combined with drugs can improve the efficacy of MSCs in the treatment of liver fibrosis alone and inhibit its progression to end-stage liver disease. This has inspired new ways of thinking about treating liver fibrosis. AIM To investigate the effectiveness and mechanisms of MSCs combined with drugs in treating liver fibrosis. METHODS Data sources included four electronic databases and were constructed until January 2024. The subjects, interventions, comparators, outcomes, and study design principle were used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Relevant randomised controlled trials were selected, and the final 13 studies were included in the final study. RESULTS A total of 13 studies were included after screening. Pooled analysis showed that MSCs combined with drug therapy significantly improved liver function, promoted the repair of damaged liver tissues, reduced the level of liver fibrosis-related indexes, and effectively ameliorated hepatic fibrosis by modulating the hepatic inflammatory microenvironment, promoting the homing of MSCs, and regulating the relevant signaling pathways, and the treatment efficacy was superior to MSCs alone. However, the combined treatment statistics showed no ame-lioration in serum albumin levels (standardized mean difference = 0.77, 95% confidence interval: -0.13 to 1.68, P = 0.09). CONCLUSION In conclusion, MSCs combined with drugs for treating liver fibrosis effectively make up for the shortcomings of MSCs in their therapeutic effects. However, due to the different drugs, the treatment mechanism and effect also differ. Therefore, more randomized controlled trials are needed to compare the therapeutic efficacy of different drugs in combination with MSCs, aiming to select the "best companion" of MSCs in treating hepatic fibrosis.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xue-Song Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Lei Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Wen-Ming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xing-Kun Tang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jun-Song Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cere-brovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
26
|
Chen L, Huang Y, Zhang N, Qu J, Fang Y, Fu J, Yuan Y, Zhang Q, Li H, Wen Z, Yuan L, Chen L, Xu Z, Li Y, Yan H, Izawa H, Li L, Xiang C. Single-cell RNA sequencing reveals reduced intercellular adhesion molecule crosstalk between activated hepatic stellate cells and neutrophils alleviating liver fibrosis in hepatitis B virus transgenic mice post menstrual blood-derived mesenchymal stem cell transplantation. MedComm (Beijing) 2024; 5:e654. [PMID: 39040848 PMCID: PMC11261812 DOI: 10.1002/mco2.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Liver fibrosis can cause hepatitis B virus (HBV)-associated hepatocellular carcinoma. Menstrual blood-derived mesenchymal stem cells (MenSCs) can ameliorate liver fibrosis through paracrine. Single-cell RNA sequencing (scRNA-seq) may be used to explore the roadmap of activated hepatic stellate cell (aHSC) inactivation to target liver fibrosis. This study established HBV transgenic (HBV-Tg) mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and demonstrated that MenSCs migrated to the injured liver to improve serological indices and reduce fibrotic accumulation. RNA-bulk analysis revealed that MenSCs mediated extracellular matrix accumulation and cell adhesion. Liver parenchymal cells and nonparenchymal cells were identified by scRNA-seq in the control, CCl4, and MenSC groups, revealing the heterogeneity of fibroblasts/HSCs. A CellChat analysis revealed that diminished intercellular adhesion molecule (ICAM) signaling is vital for MenSC therapy. Specifically, Icam1 in aHSCs acted on Itgal/Itgb2 and Itgam/Itgb2 in neutrophils, causing decreased adhesion. The expression of Itgal, Itgam, and Itgb2 was higher in CCl4 group than in the control group and decreased after MenSC therapy in neutrophil clusters. The Lcn2, Pglyrp1, Wfdc21, and Mmp8 had high expression and may be potential targets in neutrophils. This study highlights interacting cells, corresponding molecules, and underlying targets for MenSCs in treating HBV-associated liver fibrosis.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Qu
- Department of Respiratory DiseaseThoracic Disease CentreThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hang Li
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zuoshi Wen
- Department of CardiologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Li Yuan
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Lu Chen
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Huadong Yan
- Infectious Disease DepartmentShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouChina
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
27
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
28
|
Xu Y, Zhou X, Wang X, Jin Y, Zhou L, Ye J. Progress of mesenchymal stem cells (MSCs) & MSC-Exosomes combined with drugs intervention in liver fibrosis. Biomed Pharmacother 2024; 176:116848. [PMID: 38834005 DOI: 10.1016/j.biopha.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Liver fibrosis is an intrahepatic chronic damage repair response caused by various reasons such as alcoholic liver, fatty liver, viral hepatitis, autoimmune diseases, etc., and is closely related to the progression of liver disease. Currently, the mechanisms of liver fibrosis and its treatment are hot research topics in the field of liver disease remedy. Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential, which can ameliorate fibrosis through hepatic-directed differentiation, paracrine effects, and immunomodulation. However, the low inner-liver colonization rate, low survival rate, and short duration of intervention after stem cell transplantation have limited their wide clinical application. With the intensive research on liver fibrosis worldwide, it has been found that MSCs and MSCs-derived exosomes combined with drugs have shown better intervention efficiency than utilization of MSCs alone in many animal models of liver fibrosis. In this paper, we review the interventional effects and mechanisms of mesenchymal stem cells and their exosomes combined with drugs to alleviate hepatic fibrosis in vivo in animal models in recent years, which will provide new ideas to improve the efficacy of mesenchymal stem cells and their exosomes in treating hepatic fibrosis in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China.
| |
Collapse
|
29
|
Wei X, Luo D, Li H, Li Y, Cen S, Huang M, Jiang X, Zhong G, Zeng W. The roles and potential mechanisms of plant polysaccharides in liver diseases: a review. Front Pharmacol 2024; 15:1400958. [PMID: 38966560 PMCID: PMC11222613 DOI: 10.3389/fphar.2024.1400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Xianzhi Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Daimin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haonan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yagang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Shizhuo Cen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoping Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| |
Collapse
|
30
|
Astrakhanov A, Saparbayev S, Amanzholkyzy A, Iskakova A, Nurlanova G, Kurmangazin M. Assessment of Short-Term Effects of Cell Transplantation in Cirrhosis DUE to HCV. Asian Pac J Cancer Prev 2024; 25:2099-2104. [PMID: 38918672 PMCID: PMC11382860 DOI: 10.31557/apjcp.2024.25.6.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have highlighted the potential of fetal hepatic stem cells in regenerative treatments for liver diseases. This study aimed to evaluate the short-term effects of fetal stem cell transplantation in patients with liver cirrhosis resulting from chronic hepatitis C. MATERIALS AND METHODS Thirty patients with liver cirrhosis of all Child-Turcotte-Pugh classes due to chronic hepatitis C, aged 18 to 65 years, were selected for this study. A single intravenous dose of 1 ml containing 6*106 fetal hepatic stem cells, diluted in 20.0 ml of 0.9% sodium chloride solution, was administered. The efficacy of the treatment was assessed by measuring levels of ALT, AST, total and direct bilirubin, gamma-glutamyltranspeptidase, alkaline phosphatase, total protein, and albumin before and after cell therapy. RESULTS Post-treatment, a significant reduction was noted in the Child-Pugh score from 8 [6-9] to 7 [6-8] (p<0.001) and the MELD index from 11 [7-15] to 10 [7-14] (p=0.004). Skin itching decreased from 36.7% to 10%. Complaints of weakness increased significantly from 3.3% to 23.3% after 30 days of therapy (p=0.014), and the incidence of reduced appetite increased from 20% to 46.7% (p=0.021). No statistical differences were observed in the frequency of nosebleeds (86.7% initially vs. 90% at day 30, p=0.655) or drowsiness (63.3% initially vs. 76.7% at day 30, p=0.157). Significant reductions were noted in ALT levels by 35% and total bilirubin by 44%. The lack of significant changes in indicators of hepatic-cell insufficiency, particularly the protein-forming function as reflected in total protein and albumin levels, is likely due to the extent of liver tissue damage and thus a delayed recovery. CONCLUSION The findings of this study affirm the clinical efficacy and promise of fetal hepatic stem cell therapy as part of a comprehensive treatment regimen for patients with liver cirrhosis.
Collapse
Affiliation(s)
| | - Samat Saparbayev
- West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | - Aigerim Iskakova
- West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | | |
Collapse
|
31
|
Huang BH, Guo ZW, Lv BH, Zhao X, Li YB, Lv WL. A role for curcumin in preventing liver fibrosis in animals: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1396834. [PMID: 38855740 PMCID: PMC11157132 DOI: 10.3389/fphar.2024.1396834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Objective This meta-analysis aimed to determine the efficacy of curcumin in preventing liver fibrosis in animal models. Methods A systematic search was conducted on studies published from establishment to November 2023 in PubMed, Web of Science, Embase, Cochrane Library, and other databases. The methodological quality was assessed using Sycle's RoB tool. An analysis of sensitivity and subgroups were performed when high heterogeneity was observed. A funnel plot was used to assess publication bias. Results This meta-analysis included 24 studies involving 440 animals with methodological quality scores ranging from 4 to 6. The results demonstrated that curcumin treatment significantly improved Aspartate aminotransferase (AST) [standard mean difference (SMD) = -3.90, 95% confidence interval (CI) (-4.96, -2.83), p < 0.01, I2 = 85.9%], Alanine aminotransferase (ALT)[SMD = - 4.40, 95% CI (-5.40, -3.40), p < 0.01, I2 = 81.2%]. Sensitivity analysis of AST and ALT confirmed the stability and reliability of the results obtained. However, the funnel plot exhibited asymmetry. Subgroup analysis based on species and animal models revealed statistically significant differences among subgroups. Furthermore, curcumin therapy improved fibrosis degree, oxidative stress level, inflammation level, and liver synthesis function in animal models of liver fibrosis. Conclusion Curcumin intervention not only mitigates liver fibrosis but also enhances liver function, while concurrently modulating inflammatory responses and antioxidant capacity in animal models. This result provided a strong basis for further large-scale animal studies as well as clinical trials in humans in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024502671.
Collapse
Affiliation(s)
- Bo-Hao Huang
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Wei Guo
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-Han Lv
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhao
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Bo Li
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Li S, Ren QJ, Xie CH, Cui Y, Xu LT, Wang YD, Li S, Liang XQ, Wen B, Liang MK, Zhao XF. Taurine attenuates activation of hepatic stellate cells by inhibiting autophagy and inducing ferroptosis. World J Gastroenterol 2024; 30:2143-2154. [PMID: 38681990 PMCID: PMC11045481 DOI: 10.3748/wjg.v30.i15.2143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.
Collapse
Affiliation(s)
- Sen Li
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Qian-Jun Ren
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Can-Hao Xie
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Yang Cui
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Li-Tao Xu
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Yi-Dan Wang
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Su Li
- Department of Basic Science, Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Bin Wen
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Ming-Kun Liang
- Traditional Chinese Medicine Specialty Office, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Fang Zhao
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 541100, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
33
|
Lu Y, Lin B, Li M. The role of alpha-fetoprotein in the tumor microenvironment of hepatocellular carcinoma. Front Oncol 2024; 14:1363695. [PMID: 38660138 PMCID: PMC11039944 DOI: 10.3389/fonc.2024.1363695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant cancer worldwide, characterized by high morbidity and mortality rates. Alpha-fetoprotein (AFP) is a glycoprotein synthesized by the liver and yolk sac during fetal development. However, the serum levels of AFP exhibit a significant correlation with the onset and progression of HCC in adults. Extensive research has demonstrated that the tumor microenvironment (TME) plays a crucial role in the malignant transformation of HCC, and AFP is a key factor in the TME, promoting HCC development. The objective of this review was to analyze the existing knowledge regarding the role of AFP in the TME. Specifically, this review focused on the effect of AFP on various cells in the TME, tumor immune evasion, and clinical application of AFP in the diagnosis and treatment of HCC. These findings offer valuable insights into the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
- Institution of Tumor, Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
34
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages. Hepatol Commun 2024; 8:e0410. [PMID: 38551384 PMCID: PMC10984668 DOI: 10.1097/hc9.0000000000000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a major health care challenge worldwide with limited therapeutic options. Although mesenchymal stem/stromal cells (MSCs) represent a newly emerging therapeutic approach to treat ALD, thus far, there have been extensive efforts to try and enhance their efficacy, including genetically engineering MSCs. FGF21, an endocrine stress-responsive hormone, has been shown to regulate energy balance, glucose, and lipid metabolism and to enhance the homing of MSCs toward injured sites. Therefore, the purpose of this study was to investigate whether MSCs that overexpress FGF21 (FGF21-MSCs) improve the therapeutic effect of MSCs in treating ALD. METHODS Human umbilical cord-derived MSCs served as the gene delivery vehicle for the FGF21 gene. Human umbilical cord-derived MSCs were transduced with the FGF21 gene using lentiviral vectors to mediate FGF21 overexpression. We utilized both chronic Lieber-DeCarli and Gao-binge models of ethanol-induced liver injury to observe the therapeutic effect of FGF21-MSCs. Liver injury was phenotypically evaluated by performing biochemical methods, histology, and inflammatory cytokine levels. RESULTS Compared with MSCs alone, administration of MSCs overexpressing FGF21(FGF21-MSCs) treatment significantly enhanced the therapeutic effect of ALD in mice, as indicated by the alleviation of liver injury with reduced steatosis, inflammatory infiltration, oxidative stress, and hepatic apoptosis, and the promotion of liver regeneration. Mechanistically, FGF21 could facilitate the immunomodulatory function of MSCs on macrophages by setting metabolic commitment for oxidative phosphorylation, which enables macrophages to exhibit anti-inflammatory inclination. CONCLUSIONS Our data elucidate that MSC modification by FGF21 could enhance their therapeutic effect in ALD and may help in the exploration of effective MSCs-based cell therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Xiong B, Bai Y, Liu J, Li T, Wang Y, Zhou C. Dual neovascular targets of vascular endothelial growth factor receptors and platelet‐derived growth factor receptor ameliorate thioacetamide induced liver fibrosis in rats. PORTAL HYPERTENSION & CIRRHOSIS 2024; 3:1-13. [DOI: 10.1002/poh2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractAimsNeovascularization plays a crucial role in liver fibrosis (LF), and blocking vascular endothelial growth factor receptors (VEGFR) has been shown to improve fibrosis. The aim of our study was to investigate the role of dual neovascularization targets, VEGFR, and platelet‐derived growth factor receptor (PDGFR), in ameliorating fibrosis.MethodsIn vitro, we observed the effects of apatinib (APA) (a VEGFR inhibitor) and donafenib (DON) (a VEGFR and PDGFR inhibitor) on the activation, proliferation, and apoptosis of hepatic stellate cells (HSCs) from rats and humans. In vivo, we established a thioacetamide (TAA)‐induced liver fibrosis rat model to explore the antifibrosis effect of APA and DON. We used the method of random table to randomly divide the rats into 4 groups. We detected the expression of angiogenesis‐related proteins using Western blot and immunohistochemistry.ResultsAPA and DON inhibited the proliferation and activation of HSCs, promoted apoptosis of HSCs, and arrested the S phase of the cell cycle in vitro. We also found that DON had a stronger inhibitory effect on HSCs. In vivo, APA and DON ameliorated liver fibrosis, reduced collagen deposition and α‐SMA expression in rats, and DON had a stronger improvement effect. APA and DON downregulated the expression of VEGFR2 while inhibiting the phosphorylation of Akt and ERK1/2. DON can act through both VEGF and PDGF pathways, whereas APA can only act through the VEGF pathway.ConclusionAntiangiogenesis is a promising approach for the treatment of fibrosis. Compared with a single‐target drug (APA), the dual‐target drug (DON) can achieve better therapeutic effects.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Interventional Radiology The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Tongqiang Li
- Department of Interventional Radiology The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| |
Collapse
|
36
|
Tian S, Guo G, Zhou X, Liu Y, Jia G, Zheng L, Cui L, Wang K, Zhang M, Sun K, Ma S, Yang C, Zhou X, Guo C, Shang Y, Han Y. Identifying optimal candidates for autologous peripheral blood stem cell therapy in patients with decompensated liver cirrhosis: a prognostic scoring system. Stem Cell Res Ther 2024; 15:8. [PMID: 38167085 PMCID: PMC10763677 DOI: 10.1186/s13287-023-03622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Stem cell transplantation shows great potential to improve the long-term survival of cirrhosis patients. However, therapeutic effects may not be homogeneous across the whole study population. This study constructed an easy-to-use nomogram to improve prognostic prediction and aid in treatment decision making for cirrhotic patients. METHODS From August 2005 to April 2019, 315 patients with decompensated cirrhosis receiving autologous peripheral blood stem cell (PBSC) transplantation were enrolled in this study. They were randomly classified into training (2/3) and validation (1/3) groups. A predictive model was developed using Cox proportional hazard models and subsequently validated. The predictive performance of the model was evaluated and also compared with other prognostic models. RESULTS Age, creatinine, neutrophil-to-lymphocyte ratio, and Child-Turcotte-Pugh class were included in the nomogram as prognostic variables. The nomogram showed high discrimination power concerning the area under receiver operating characteristic curves (3/5-year AUC: 0.742/0.698) and good consistency suggested by calibration plots. Patients could be accurately stratified into poor- and good-outcome groups regarding liver-transplantation free survival after receiving PBSC therapy (P < 0.001). Compared with poor-outcome group, the liver function of patients listed for liver transplantation in the good-outcome group was significantly improved (P < 0.001). Besides, our nomogram achieved a higher C-index (0.685, 95% CI 0.633-0.738) and better clinical utility compared with other conventional prognostic models. CONCLUSIONS The proposed nomogram facilitated an accurate prognostic prediction for patients with decompensated cirrhosis receiving PBSC transplantation. Moreover, it also held the promise to stratify patients in clinical trials or practice to implement optimal treatment regimens for individuals.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Linhua Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kemei Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chunmei Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
37
|
Rui C, Chan MKS, Skutella T. Stem Cell Therapies and Ageing: Unlocking the Potential of Regenerative Medicine. Subcell Biochem 2024; 107:117-128. [PMID: 39693022 DOI: 10.1007/978-3-031-66768-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A multifaceted biological process of ageing culminates in the gradual decline of tissue and organ functions, escalating vulnerability to age-related diseases. Stem cell therapies, standing at the frontier of regenerative medicine, hold the potential to mitigate the challenges induced by ageing. By harnessing the unique regenerative capabilities of stem cells, these therapies aim to renew and heal ageing or damaged cells and tissues, thereby bolstering their function. In this chapter, we explore the potential of stem cell-based interventions against age-related degeneration, emphasising their underlying mechanisms, challenges, and future possibilities. As elucidated by the Buck Institute for Research on Aging, ageing is characterised by an accrual of macromolecular damage, genomic instability, and loss of heterochromatin (Campisi et al. Nature 571:183-192, 2019). These aspects culminate in stem cell fatigue and a dwindling tissue regenerative capacity. However, with the advent of stem cell therapy and regenerative medicine, we now hold the tools to reverse these age-induced changes by rejuvenating stem cells, the keystones of tissue regeneration, and fostering their proliferation and differentiation.
Collapse
Affiliation(s)
- Chen Rui
- Reproductive Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Thomas Skutella
- Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
38
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
39
|
Yu S, Yu S, Liu H, Liao N, Liu X. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases. Stem Cell Res Ther 2023; 14:235. [PMID: 37667383 PMCID: PMC10478247 DOI: 10.1186/s13287-023-03476-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Although mesenchymal stem cell (MSC) transplantation provides an alternative strategy for end-stage liver disease (ESLD), further widespread application of MSC therapy is limited owing to low cell engraftment efficiency. Improving cell engraftment efficiency plays a critical role in enhancing MSC therapy for liver diseases. In this review, we summarize the current status and challenges of MSC transplantation for ESLD. We also outline the complicated cell-homing process and highlight how low cell engraftment efficiency is closely related to huge differences in extracellular conditions involved in MSC homing journeys ranging from constant, controlled conditions in vitro to variable and challenging conditions in vivo. Improving cell survival and homing capabilities enhances MSC engraftment efficacy. Therefore, we summarize the current strategies, including hypoxic priming, drug pretreatment, gene modification, and cytokine pretreatment, as well as splenectomy and local irradiation, used to improve MSC survival and homing capability, and enhance cell engraftment and therapeutic efficiency of MSC therapy. We hope that this review will provide new insights into enhancing the efficiency of MSC engraftment in liver diseases.
Collapse
Affiliation(s)
- Shaoxiong Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
40
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
41
|
Zhou J, Shi Y. Mesenchymal stem/stromal cells (MSCs): origin, immune regulation, and clinical applications. Cell Mol Immunol 2023; 20:555-557. [PMID: 37225837 PMCID: PMC10229593 DOI: 10.1038/s41423-023-01034-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Jun Zhou
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|