1
|
Hartawan R, Pujianto DA, Dharmayanti NLPI, Soebandrio A. Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus. J Vet Sci 2022; 23:e24. [PMID: 35187881 PMCID: PMC8977538 DOI: 10.4142/jvs.21174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
Background Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.
Collapse
Affiliation(s)
- Risza Hartawan
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesian Research Center for Veterinary Science, Ministry of Agriculture, Bogor 16114, Indonesia
| | - Dwi Ari Pujianto
- Department of Medical Biology Pre Clinic, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Amin Soebandrio
- Eijkman Institute, Ministry of Research, Technology and Higher Education, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
Household Clusters of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Suzhou, China. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5565549. [PMID: 34664026 PMCID: PMC8520496 DOI: 10.1155/2021/5565549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023]
Abstract
Objectives The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus causing substantial morbidity and mortality worldwide. We performed a cross-sectional investigation of SARS-CoV-2 clusters in Suzhou to determine the transmissibility of the virus among close contacts and to assess the demographic and clinical characteristics between index and secondary cases. Methods We review the clustered patients with SARS-CoV-2 infections in Suzhou between 22 January and 29 February 2020. The demographic and clinical characteristics were compared between index and secondary cases. We calculated the basic reproduction number (R0) among close contacts with SLI model. Results By 22 February, 87 patients with SARS-CoV-2 infection were reported, including 50 sporadic and 37 clustered cases, who were generated from 13 clusters. On admission, 5 (20.8%) out of 24 secondary cases were asymptomatic. The male ratio of index cases was significantly higher than that of secondary cases. Additionally, the index cases were more likely to have fever and increased CRP levels than the secondary cases. The R0 values of clusters displayed a significantly declining trend over time for all clusters. The relative risk of infection in blood-related contacts of cases versus unrelated contacts was 1.60 for SARS-CoV-2 (95% CI: 0.42-2.95). Conclusions In conclusion, SARS-CoV-2 has great person-to-person transmission capability among close contacts. The secondary cases are more prone to have mild symptoms than index cases. There is no increased RR of secondary infection in blood relatives versus unrelated contacts. The high rate of asymptomatic SARS-CoV-2 infections highlights the urgent need to enhance active case finding strategy for early detection of infectious patients.
Collapse
|
3
|
Mutisari D, Muflihanah M, Wibawa H, Hendrawati F, Putra HH, Sulistyo KP, Ahmad A, Sjahril R, Mubin RH, Sari DK, Massi MN. Phylogenetic analysis of HPAI H5N1 virus from duck swab specimens in Indonesia. J Adv Vet Anim Res 2021; 8:346-354. [PMID: 34395607 PMCID: PMC8280988 DOI: 10.5455/javar.2021.h521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
Objective: A phylogenetic study was carried out on the avian influenza virus (AIV) isolated from a disease outbreak in Sidenreng Rappang Regency, South Sulawesi, Indonesia, in 2018. Material and Methods: Oropharyngeal swabs and organ samples were obtained from ducks that showed clinical symptoms: torticollis, fascial edema, neurological disorders, the corneas appear cloudy, and death occurs less than 1 day after symptoms appear. In this study, isolate A/duck/Sidenreng Rappang/07180110-11/2018 from duck was sequenced and characterized. Results: It was found that each gene segment of the virus has the highest nucleotide homology to the Indonesian highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.2.1c. Multiple alignments of the sample Hemagglutinin (HA) gene with the avian influenza references virus showed that the pattern of amino acid arrangement in the cleavage site PQRERRRK-RGLF is the characteristic of the HPAI virus. In addition, the HA gene contained Q222 (glutamine) and G224 (glycine), signifying a high affinity to avian receptor binding specificity (SA α2,3 Gal). Furthermore, there was no genetic reassortment of this virus based on the phylogenetic analysis of HA, NA, PB1, PB2, PA, NP, M, and NS genes. Conclusion: The HPAI H5N1 clade 2.3.2.1c virus was identified in duck farms in South Sulawesi, Indonesia.
Collapse
Affiliation(s)
- Dewi Mutisari
- Master of Biomedical Sciences, Graduate School Hasanuddin University, Makassar, Indonesia.,Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Muflihanah Muflihanah
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Yogyakarta, Indonesia
| | - Ferra Hendrawati
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hamdu Hamjaya Putra
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Kartika Priscillia Sulistyo
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Ahyar Ahmad
- Departement of Chemistry, Mathematics and Natural Science Faculty, Hasanuddin University, Makassar, Indonesia
| | - Rizalinda Sjahril
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Risna Halim Mubin
- Departement of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Dwi Kesuma Sari
- Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
5
|
Dharmayanti NLPI, Indriani R, Nurjanah D. Vaccine Efficacy on the Novel Reassortant H9N2 Virus in Indonesia. Vaccines (Basel) 2020; 8:vaccines8030449. [PMID: 32785201 PMCID: PMC7565121 DOI: 10.3390/vaccines8030449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Vaccination is one of the leading methods of controlling the spread of the Avian Influenza (AI) viruses in Indonesia. The variety of circulating viruses and their ability to mutate must be followed by updating the vaccine master seed used in the field. In this study, we identified the reassortant H9N2 viruses in chicken farms that showed significant problems in decreased egg production with high mortality. The reassortant H9N2 viruses derived the PB2 gene from the H5N1 virus. The pathogenicity test results of the reassortant virus showed various clinical signs of illness, a high mortality rate (10%), and decreased egg production down to 63.12% at two weeks post-infection. In a vaccine efficacy test, the vaccinated groups showed minimally decreased egg production that started to increase to more than 80% at 4-7 weeks post-challenge. Our study showed that inactivated bivalent and monovalent reassortant H9N2 vaccines can induce antibody response, reducing the mortality and virus shedding caused by reassortant H9N2 virus infection. The reassortant H9N2 virus is a threat that requires vigilance in poultry farms and the industry. The vaccines used in this study can be one of the options for control or prevention measures on farms infected with the reassortant H9N2 viruses.
Collapse
|
6
|
Lestari, Wibawa H, Lubis EP, Dharmawan R, Rahayu RA, Mulyawan H, Charoenkul K, Nasamran C, Poermadjaja B, Amonsin A. Co-circulation and characterization of HPAI-H5N1 and LPAI-H9N2 recovered from a duck farm, Yogyakarta, Indonesia. Transbound Emerg Dis 2019; 67:994-1007. [PMID: 31770478 DOI: 10.1111/tbed.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
In July 2016, an avian influenza outbreak in duck farms in Yogyakarta province was reported to Disease Investigation Center (DIC), Wates, Indonesia, with approximately 1,000 ducks died or culled. In this study, two avian influenza (AI) virus subtypes, A/duck/Bantul/04161291-OR/2016 (H5N1) and A/duck/Bantul/04161291-OP/2016 (H9N2) isolated from ducks in the same farm during an AI outbreak in Bantul district, Yogyakarta province, were sequenced and characterized. Our results showed that H5N1 virus was closely related to the highly pathogenic AI (HPAI) H5N1 of clade 2.3.2.1c, while the H9N2 virus was clustered with LPAI viruses from China, Vietnam and Indonesia H9N2 (CVI lineage). Genetic analysis revealed virulence characteristics for both in avian and in mammalian species. In summary, co-circulation of HPAI-H5N1 of clade 2.3.2.1c and LPAI-H9N2 was identified in a duck farm during an AI outbreak in Yogyakarta province, Indonesia. Our findings raise a concern of the potential risk of the viruses, which could increase viral transmission and/or threat to human health. Routine surveillance of avian influenza viruses should be continuously conducted to understand the dynamic and diversity of the viruses for influenza prevention and control in Indonesia and SEA region.
Collapse
Affiliation(s)
- Lestari
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Elly Puspasari Lubis
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Rama Dharmawan
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Rina Astuti Rahayu
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Herdiyanto Mulyawan
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Nasamran
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Bagoes Poermadjaja
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Alongkorn Amonsin
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Karo-Karo D, Bodewes R, Wibawa H, Artika M, Pribadi ES, Diyantoro D, Pratomo W, Sugama A, Hendrayani N, Indasari I, Wibowo MH, Muljono DH, Stegeman JA, Koch G. Reassortments among Avian Influenza A(H5N1) Viruses Circulating in Indonesia, 2015-2016. Emerg Infect Dis 2019; 25:465-472. [PMID: 30789142 PMCID: PMC6390736 DOI: 10.3201/eid2503.180167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) A(H5N1) viruses have been circulating since 2003 in Indonesia, with major impacts on poultry health, severe economic losses, and 168 fatal laboratory-confirmed human cases. We performed phylogenetic analysis on 39 full-genome H5N1 virus samples collected during outbreaks among poultry in 2015-2016 in West Java and compared them with recently published sequences from Indonesia. Phylogenetic analysis revealed that the hemagglutinin gene of all samples belonged to 2 genetic groups in clade 2.3.2.1c. We also observed these groups for the neuraminidase, nucleoprotein, polymerase, and polymerase basic 1 genes. Matrix, nonstructural protein, and polymerase basic 2 genes of some HPAI were most closely related to clade 2.1.3 instead of clade 2.3.2.1c, and a polymerase basic 2 gene was most closely related to Eurasian low pathogenicity avian influenza. Our results detected a total of 13 reassortment types among HPAI in Indonesia, mostly in backyard chickens in Indramayu.
Collapse
|
8
|
Adlhoch C, Brouwer A, Kuiken T, Miteva A, Mulatti P, Smietanka K, Staubach C, Gogin A, Muñoz Guajardo I, Baldinelli F. Avian influenza overview August - November 2018. EFSA J 2018; 16:e05573. [PMID: 32625795 PMCID: PMC7009621 DOI: 10.2903/j.efsa.2018.5573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 16 August and 15 November 2018, 14 highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments in Bulgaria and seven HPAI A(H5N6) outbreaks, one in captive birds in Germany and six in wild birds in Denmark and the Netherlands were reported in the European Union (EU). No human infection due to HPAI A(H5N8) and A(H5N6) viruses have been reported in Europe so far. Seroconversion of people exposed during outbreaks in Russia has been reported in one study. Although the risk of zoonotic transmission to the general public in Europe is considered to be very low, appropriate personal protection measures of people exposed will reduce any potential risk. Genetic clustering of the viruses isolated from poultry in Bulgaria suggests three separate introductions in 2016 and a continuing circulation and transmission of these viruses within domestic ducks. Recent data from Bulgaria provides further indication that the sensitivity of passive surveillance of HPAI A(H5N8) in domestic ducks may be significantly compromised. Increased vigilance is needed especially during the periods of cold spells in winter when aggregations of wild birds and their movements towards areas with more favourable weather conditions may be encouraged. Two HPAI outbreaks in poultry were reported during this period from western Russia. Low numbers of HPAI outbreaks were observed in Africa and Asia, no HPAI cases were detected in wild birds in the time period relevant for this report. Although a few HPAI outbreaks were reported in Africa and Asia during the reporting period, the probability of HPAI virus introductions from non‐EU countries via wild birds particularly via the north‐eastern route from Russia is increasing, as the fall migration of wild birds from breeding and moulting sites to the wintering sites continues. Furthermore, the lower temperatures and ultraviolet radiation in winter can facilitate the environmental survival of any potential AI viruses introduced to Europe.
Collapse
|