1
|
Kaushik K, Chapman G, Prakasam R, Batool F, Saleh M, Determan J, Huettner JE, Kroll KL. Requirements for the neurodevelopmental disorder-associated gene ZNF292 in human cortical interneuron development and function. Cell Rep 2025; 44:115597. [PMID: 40257863 DOI: 10.1016/j.celrep.2025.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/23/2025] Open
Abstract
Pathogenic mutation of the zinc-finger transcription factor ZNF292 is a recently defined contributor to human neurodevelopmental disorders (NDDs). However, the gene's roles in cortical development and regulatory networks under its control were previously undefined. Here, human stem cell models of ZNF292 deficiency, resembling pathogenic haploinsufficiency, are used to derive cortical inhibitory neuron progenitors and neurons. ZNF292-deficient progenitors undergo precocious differentiation but subsequently exhibit compromised interneuron maturation and function. In progenitors, genome-wide occupancy and transcriptomic analyses identify direct target genes controlling neuronal differentiation and synapse formation that are upregulated upon ZNF292 deficiency. By contrast, deficiency in interneurons compromises ZNF292 genome-wide association with and causes downregulation of direct target genes promoting interneuron maturation and function, including other NDD genes. ZNF292-deficient interneurons also exhibit altered channel activities, elevated GABA responsiveness, and hallmarks of neuronal hyperactivity. Together, the results of this work define neurodevelopmental requirements for ZNF292, some of which may contribute to pathogenic ZNF292 mutation-related NDDs.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiza Batool
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maamoon Saleh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julianna Determan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Wu J, Yu H, Dou X, Yin B, Hou L, Xue Y, Qiang B, Shu P, Peng X. Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411732. [PMID: 39776340 PMCID: PMC11848603 DOI: 10.1002/advs.202411732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice. Single-cell RNA sequencing analysis demonstrated that the knockout of Syncrip disrupts the late-stage neurogenesis, stalling transcriptional progression in RGCs. Mechanistically, Syncrip maintains the transcription of temporal process-related transcription factors by recruiting stabilization complexes through phase separation, crucially regulating the Notch signaling pathway that determines the fate of RGCs. Furthermore, pathogenic human mutations in Syncrip weaken its phase-separation capability, failing to form stable complexes normally. Thus, Syncrip acts as a mediator of posttranscriptional regulatory mechanisms, governing the fate progression of RGCs and the advancement of intrinsic temporal programs. This study establishes an intracellular mechanism for posttranscriptional regulation of progressive fate determination in cortical neurogenesis.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Haoyang Yu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xinyi Dou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
3
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Koene S, Ropers FG, Wieland J, Rybak T, Wildschut F, Berghuis D, Morgan A, Trelles MP, Scheepe JR, Bökenkamp R, Peeters-Scholte CMPCD, Braden R, Santen GWE. Clinical phenotype of FOXP1 syndrome: parent-reported medical signs and symptoms in 40 individuals. J Med Genet 2024; 61:399-404. [PMID: 38123995 DOI: 10.1136/jmg-2023-109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The first studies on patients with forkhead-box protein P1 (FOXP1) syndrome reported associated global neurodevelopmental delay, autism symptomatology, dysmorphic features and cardiac and urogenital malformations. The aim of this study was to assess the prevalence of congenital abnormalities in an unbiased cohort of patients with FOXP1 syndrome and to document rare complications. METHODS Patients with FOXP1 syndrome were included, mostly diagnosed via whole-exome sequencing for neurodevelopmental delay. A parent-report questionnaire was used to assess medical signs and symptoms, including questions about features rated as most burdensome by patients and their family. RESULTS Forty individuals were included, 20 females and 20 males. The mean age at assessment was 13.2 years (median 8.5 years; range 2-54 years; ≥18 years n = 7). Seven adults were included. All patients had developmental problems, including cognitive, communication, social-emotional and motor delays. The most prevalent medical signs and symptoms include delayed bladder control, sleeping problems, hypermetropia, strabismus, sacral dimple, undescended testes, abnormal muscle tone and airway infections. The most burdensome complaints for patients with FOXP1 syndrome, as perceived by parents, include intellectual disability, impaired communication, behaviour problems, lack of age-appropriate self-reliance, attention problems and anxiety. According to parents, patients have quite similar reported symptoms, although incontinence, obsessions and a complex sensory profile have a higher ranking. CONCLUSION The results of this study may be used to further guide medical management and identify patient priorities for future research targeted on those features of FOXP1 syndrome that most impair quality of life of patients and their families.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jannelien Wieland
- Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Tamara Rybak
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands
| | - Floor Wildschut
- Clinical Neurodevelopmental Sciences, Leiden University Clinical and Adolescent Child Studies, Leiden, Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Angela Morgan
- Victorian Clinical Genetics Service and Speech and Language, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Pilar Trelles
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry and Human Behaviour, Brown University, Providence, Rhode Island, USA
| | | | - Regina Bökenkamp
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ruth Braden
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Fabrizio N, Pankey CL, Martin K, Baker M, Felty CC. Novel autopsy and genetic findings in an acardiac twin: case report and literature review. Autops Case Rep 2024; 14:e2024477. [PMID: 38487033 PMCID: PMC10939183 DOI: 10.4322/acr.2024.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Twin reversed arterial perfusion (TRAP) sequence is a rare complication of monochorionic twinning whereby a donor twin perfuses an acardiac twin via aberrant vascular anastomoses. The resulting paradoxical retrograde blood flow supplying the acardiac twin is oxygen-poor, leading to some of the most severe malformations encountered in humans. Though the first descriptions of acardiac twins date back to at least the 16th century, the pathophysiologic processes which underpin the development of TRAP sequence are still being elucidated. Theories on the pathogenesis of TRAP sequence include deficiencies intrinsic to the embryo and primary abnormalities of the placental vasculature. Autopsy studies continue to provide clues to the underlying pathogenesis of TRAP sequence, and the characterization of the spectrum of manifestations that can be observed in acardiac twins. Herein, we present the clinical, autopsy, and molecular findings in a unique case of TRAP sequence. Novel findings include a primitive cloaca-like structure and chromosomal aberrations involving 6q11.1 and 15q25.1.
Collapse
Affiliation(s)
- Natalie Fabrizio
- West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | | | - Kathleen Martin
- West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | - Michael Baker
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, Lebanon, NH, United States
| | | |
Collapse
|
6
|
You H, Shi J, Huang F, Wei Z, Jones G, Du W, Hua J. Advances in Genetics and Epigenetics of Developmental Coordination Disorder in Children. Brain Sci 2023; 13:940. [PMID: 37371418 PMCID: PMC10296699 DOI: 10.3390/brainsci13060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Developmental coordination disorder (DCD) is a developmental disorder characterized by impaired motor coordination, often co-occurring with attention deficit disorder, autism spectrum disorders, and other psychological and behavioural conditions. The aetiology of DCD is believed to involve brain changes and environmental factors, with genetics also playing a role in its pathogenesis. Recent research has identified several candidate genes and genetic factors associated with motor impairment, including deletions, copy number variations, single nucleotide polymorphisms, and epigenetic modifications. This review provides an overview of the current knowledge in genetic research on DCD, highlighting the importance of continued research into the underlying genetic mechanisms. While evidence suggests a genetic contribution to DCD, the evidence is still in its early stages, and much of the current evidence is based on studies of co-occurring conditions. Further research to better understand the genetic basis of DCD could have important implications for diagnosis, treatment, and our understanding of the condition's aetiology.
Collapse
Affiliation(s)
- Haizhen You
- Department of Women and Children’s Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junyao Shi
- Women and Children Health Care Institution of Pudong District, Shanghai 200021, China
| | - Fangfang Huang
- Department of Women and Children’s Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiyun Wei
- Department of Women and Children’s Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gary Jones
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 6AA, UK
| | - Wenchong Du
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 6AA, UK
| | - Jing Hua
- Department of Women and Children’s Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
7
|
Rraku E, Kerstjens-Frederikse WS, Swertz MA, Dijkhuizen T, van Ravenswaaij-Arts CMA, Engwerda A. The phenotypic spectrum of terminal and subterminal 6p deletions based on a social media-derived cohort and literature review. Orphanet J Rare Dis 2023; 18:68. [PMID: 36964621 PMCID: PMC10039519 DOI: 10.1186/s13023-023-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.
Collapse
Affiliation(s)
- Eleana Rraku
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Engwerda A, Frentz B, Rraku E, de Souza NFS, Swertz MA, Plantinga M, Kerstjens-Frederikse WS, Ranchor AV, van Ravenswaaij-Arts CMA. Parent-reported phenotype data on chromosome 6 aberrations collected via an online questionnaire: data consistency and data availability. Orphanet J Rare Dis 2023; 18:60. [PMID: 36935495 PMCID: PMC10024830 DOI: 10.1186/s13023-023-02657-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Even with the introduction of new genetic techniques that enable accurate genomic characterization, knowledge about the phenotypic spectrum of rare chromosomal disorders is still limited, both in literature and existing databases. Yet this clinical information is of utmost importance for health professionals and the parents of children with rare diseases. Since existing databases are often hampered by the limited time and willingness of health professionals to input new data, we collected phenotype data directly from parents of children with a chromosome 6 disorder. These parents were reached via social media, and the information was collected via the online Chromosome 6 Questionnaire, which includes 115 main questions on congenital abnormalities, medical problems, behaviour, growth and development. METHODS Here, we assess data consistency by comparing parent-reported phenotypes to phenotypes based on copies of medical files for the same individual (n = 20) and data availability by comparing the data available on specific characteristics reported by parents (n = 34) to data available in existing literature (n = 39). RESULTS The reported answers to the main questions on phenotype characteristics were 85-95% consistent, and the consistency of answers to subsequent more detailed questions was 77-96%. For all but two main questions, significantly more data was collected from parents via the Chromosome 6 Questionnaire than was currently available in literature. For the topics developmental delay and brain abnormalities, no significant difference in the amount of available data was found. The only feature for which significantly more data was available in literature was a sub-question on the type of brain abnormality present. CONCLUSION This is the first study to compare phenotype data collected directly from parents to data extracted from medical files on the same individuals. We found that the data was highly consistent, and phenotype data collected via the online Chromosome 6 Questionnaire resulted in more available information on most clinical characteristics when compared to phenotypes reported in literature reports thus far. We encourage active patient participation in rare disease research and have shown that parent-reported phenotypes are reliable and contribute to our knowledge of the phenotypic spectrum of rare chromosomal disorders.
Collapse
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Eleana Rraku
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nadia F Simoes de Souza
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mirjam Plantinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Adelita V Ranchor
- Department of Health Psychology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| |
Collapse
|
9
|
Engwerda A, Kerstjens-Frederikse WS, Corsten-Janssen N, Dijkhuizen T, van Ravenswaaij-Arts CMA. The phenotypic spectrum of terminal 6q deletions based on a large cohort derived from social media and literature: a prominent role for DLL1. Orphanet J Rare Dis 2023; 18:59. [PMID: 36935482 PMCID: PMC10024851 DOI: 10.1186/s13023-023-02658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.
Collapse
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Nicole Corsten-Janssen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| |
Collapse
|
10
|
Engwerda A, Abbott KM, Hitzert MM, van Ravenswaaij-Arts CMA, Kerstjens-Frederikse WS. The role of TBX18 in congenital heart defects in humans not confirmed. Eur J Hum Genet 2023; 31:138-141. [PMID: 36418409 PMCID: PMC9905074 DOI: 10.1038/s41431-022-01242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marrit M Hitzert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- ATN/Jonx, Groningen, The Netherlands
| | | |
Collapse
|
11
|
Machida O, Shimojima KY, Shiihara T, Akamine S, Kira R, Hasegawa Y, Nishi E, Okamoto N, Nagata S, Yamamoto T. Interstitial deletions in the proximal regions of 6q: 12 original cases and a literature review. Intractable Rare Dis Res 2022; 11:143-148. [PMID: 36200032 PMCID: PMC9438003 DOI: 10.5582/irdr.2022.01065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022] Open
Abstract
Interstitial microdeletions in the proximal region of the long arm of chromosome 6 are rare. Herein we have reported 12 patients with developmental delays associated with interstitial microdeletions in 6q ranging from q12 to q22. The microdeletions were detected by chromosomal microarray testing. To confirm the clinical significance of these deletions, genotype-phenotype correlation analysis was performed using genetic and predicted loss-of-function data. SIM1 was recognized as the gene responsible for developmental delay, particularly in Prader-Willi syndrome-like phenotypes. Other genes possibly related to developmental delay were ZNF292, PHIP, KCNQ5, and NUS1. To further establish the correlation between the genotype and phenotype, more patient information is required.
Collapse
Affiliation(s)
- Osamu Machida
- Department of Genetic Medicine, Division of Advanced Biomedical Sciences, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Shiihara
- Department of Pediatric Neurology, Gunma Children's Medical Center, Gunma, Japan
| | - Satoshi Akamine
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Genetic Medicine, Division of Advanced Biomedical Sciences, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
- Address correspondence to:Toshiyuki Yamamoto, Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo 162-8666, Japan. E-mail:
| |
Collapse
|
12
|
TAB2 deletions and variants cause a highly recognisable syndrome with mitral valve disease, cardiomyopathy, short stature and hypermobility. Eur J Hum Genet 2021; 29:1669-1676. [PMID: 34456334 DOI: 10.1038/s41431-021-00948-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022] Open
Abstract
Deletions that include the gene TAB2 and TAB2 loss-of-function variants have previously been associated with congenital heart defects and cardiomyopathy. However, other features, including short stature, facial dysmorphisms, connective tissue abnormalities and a variable degree of developmental delay, have only been mentioned occasionally in literature and thus far not linked to TAB2. In a large-scale, social media-based chromosome 6 study, we observed a shared phenotype in patients with a 6q25.1 deletion that includes TAB2. To confirm if this phenotype is caused by haploinsufficiency of TAB2 and to delineate a TAB2-related phenotype, we subsequently sequenced TAB2 in patients with matching phenotypes and recruited patients with pathogenic TAB2 variants detected by exome sequencing. This identified 11 patients with a deletion containing TAB2 (size 1.68-14.31 Mb) and 14 patients from six families with novel truncating TAB2 variants. Twenty (80%) patients had cardiac disease, often mitral valve defects and/or cardiomyopathy, 18 (72%) had short stature and 18 (72%) had hypermobility. Twenty patients (80%) had facial features suggestive for Noonan syndrome. No substantial phenotypic differences were noted between patients with deletions and those with intragenic variants. We then compared our patients to 45 patients from the literature. All literature patients had cardiac diseases, but syndromic features were reported infrequently. Our study shows that the phenotype in 6q25.1 deletions is caused by haploinsufficiency of TAB2 and that TAB2 is associated not just with cardiac disease, but also with a distinct phenotype, with features overlapping with Noonan syndrome. We propose the name "TAB2-related syndrome".
Collapse
|
13
|
Opportunities and pitfalls of social media research in rare genetic diseases: a systematic review. Genet Med 2021; 23:2250-2259. [PMID: 34282302 DOI: 10.1038/s41436-021-01273-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Social media may be particularly valuable in research in rare genetic diseases because of the low numbers of patients and the rare disease community's robust online presence. The goal of this systematic review was to understand how social media is currently used in rare disease research and the characteristics of the participants in these studies. METHODS We conducted a systematic review of six databases to identify studies published in English between January 2004 and November 2020, of which 120 met inclusion criteria. RESULTS Most studies were observational (n = 114, 95.0%) and cross-sectional (n = 107, 89.2%), and more than half (n = 69, 57.5%) utilized only surveys. Only 101 rare diseases were included across all studies. Participant demographics, when reported, were predominantly female (70.1% ± 22.5%) and white (85.0% ± 11.0%) adult patients and caregivers. CONCLUSION Despite its potential benefits in rare disease research, the use of social media is still methodologically limited and the participants reached may not be representative of the rare disease population by gender, race, age, or rare disease type. As scholars explore using social media for rare disease research, careful attention should be paid to representativeness when studying this diverse patient community.
Collapse
|
14
|
Zhou R, Guo F, Xiang C, Zhang Y, Yang H, Zhang J. Systematic Study of Crucial Transcription Factors of Coptidis rhizoma Alkaloids against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2021; 12:2308-2319. [PMID: 34114461 DOI: 10.1021/acschemneuro.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coptidis rhizoma alkaloids (CRAs), extracted from Coptidis rhizoma, have been indicated to play important neuroprotective roles, but the mechanism underlying has not been determined, especially from the perspective of transcription factors (TFs). In this study, crucial TFs involved in the protective activity of CRA were revealed based on RNA-Seq technology, proteomics, and network pharmacological analysis of the effects of CRA on middle cerebral artery occlusion-mediated cerebral ischemia-reperfusion (I/R) injury. Importantly, CRA significantly reduced the infarction rate and neurological deficiency score. Moreover, CRA significantly decreased the levels of TNF-α, MCP-1, and IL-1β. In addition, seven TFs, including Ncor1, Smad1, Bhlhe41, Stat3, Sp100, Satb2, and Lrpprc, were found to be crucial TFs, and five of these TFs were associated with inflammation. Furthermore, eight compounds in CRA were associated with the identified TFs through network pharmacological analysis. The alteration of Lrpprc and Sabt2 was further confirmed by measuring their downstream genes, including Pigg, Hhatl, Wdr77, Mpped1, Arpp21, Ppfia3, Rims1, and Cacna2d1 by reverse transcriptase polymerase chain reaction. Thus, these seven TFs may be important targets in CRA-mediated protection against I/R injury. This research provides a new view of the protective effect of CRA against cerebral I/R injury and reveals new therapeutic targets for treating cerebral ischemia.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
15
|
Lévy J, Schell B, Nasser H, Rachid M, Ruaud L, Couque N, Callier P, Faivre L, Marle N, Engwerda A, van Ravenswaaij-Arts CMA, Plutino M, Karmous-Benailly H, Benech C, Redon S, Boute O, Boudry Labis E, Rama M, Kuentz P, Assoumani J, Maldergem LV, Dupont C, Verloes A, Tabet AC. EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. Clin Genet 2021; 100:396-404. [PMID: 34176129 DOI: 10.1111/cge.14017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We report 12 additional patients from nine unrelated pedigrees with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only EPHA7, suggesting a critical role of EPHA7 in a neurodevelopmental disability phenotype. We provide further evidence for EPHA7 deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.
Collapse
Affiliation(s)
- Jonathan Lévy
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Bérénice Schell
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Hala Nasser
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Myriam Rachid
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Lyse Ruaud
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Université de Paris Medical School, Paris, France.,INSERM UMR1141, Paris University, APHP, Robert-Debré Hospital, Paris, France
| | - Nathalie Couque
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Patrick Callier
- Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morgane Plutino
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | | | - Sylvia Redon
- Laboratoire de Génétique Moléculaire et Histocompatibilité, Service de Génétique Médicale, CHRU, Brest, France
| | - Odile Boute
- CHU Lille, Clinique de Génétique "Guy Fontaine", Lille, France
| | | | - Mélanie Rama
- CHU Lille, Institut de Génétique Médicale, Lille, France
| | - Paul Kuentz
- UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Lionel Van Maldergem
- Clinical Investigation Center 1431, INSERM, Besançon, France.,Center of Human Genetics, University of Franche-Comté, Besançon, France
| | - Céline Dupont
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Alain Verloes
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Université de Paris Medical School, Paris, France.,INSERM UMR1141, Paris University, APHP, Robert-Debré Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Neuroscience Department, Human Genetics and Cognitive Function Unit, Pasteur Institute, Paris, France
| |
Collapse
|
16
|
Síndrome de deleção 6q. SCIENTIA MEDICA 2021. [DOI: 10.15448/1980-6108.2021.1.37395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objetivos: Síndrome da deleção 6q é considerada uma anomalia cromossômica rara. Assim, nosso objetivo foi relatar um caso de um menino com essa síndrome, em Manaus/Amazonas.Descrição do caso: Menino com quatro anos de idade que apresenta atraso do crescimento e do desenvolvimento neuropsicomotor, dificuldades de ganho de peso e anormalidades na retina. A análise citogenética do paciente revelou cariótipo com 46, XY, del(6)(q25-qter).Conclusões: Este relato demonstrou a importância das análises citogenéticas para o diagnóstico preciso das anomalias congênitas, pois auxiliam no encaminhamento de tratamentos adequados aos pacientes e na ampliação de conhecimento científico relacionado a essa deleção.
Collapse
|
17
|
Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, Zeng A, Wang S, Zhou X, Li H, Zhang Q, Mo Q, Long J, Lan F, Chen Y, Hu J. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun 2021; 12:3005. [PMID: 34021134 PMCID: PMC8139980 DOI: 10.1038/s41467-021-22782-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.
Collapse
Affiliation(s)
- Seula Shin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfei Wang
- Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinling Mo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
18
|
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, Eichler EE. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med 2021; 13:63. [PMID: 33874999 PMCID: PMC8056596 DOI: 10.1186/s13073-021-00870-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Jill Rosenfeld
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bert B A De Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Agnese Scatigno
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Department of Pediatrics, Fondazione MBBM S. Gerardo Hospital, Monza, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Micah Pepper
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | - Heena Panjwani
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | | | - Farida Abid
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paldeep Atwal
- The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA
| | - Carlos A Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Meredith S Wright
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Clinique de Génétique, Hôpital Jeanne de Flandre, Bâtiment Modulaire, CHU, 59037, Lille Cedex, France
| | - Sophie Mathieu
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Celenie K Christensen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kerry M White
- Department of Medical and Molecular Genetics, IU Health, Indianapolis, IN, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Ashdod, Israel.,Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Edward J Espineli
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA.,The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.,Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shuang Yan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kory Keller
- Oregon Health & Science University, Corvallis, OR, USA
| | - Boris Keren
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alice Basinger
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Mary Kukolich
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Meredith Philips
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Lucia Ortega
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | | | - Mathilde Lauridsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kristina Sorensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital and BC Women's Hospital, Vancouver, BC, Canada
| | | | - Elena Lopez-Rangel
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre for Children, Vancouver, BC, Canada
| | - Paul Levy
- Department of Pediatrics, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Lotze
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jodie Vento
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA
| | | | - Shane Mckee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Candace Muss
- Al Dupont Hospital for Children, Wilmington, DE, USA
| | - John Pappas
- NYU Grossman School of Medicine, Department of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | | | | | - Marleen E H Simon
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kara Simpson
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Robert Stratton
- Department of Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Sabeen Syed
- Department of Pediatric Gastroenterology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Julien Thevenon
- Àrea de Genètica Clínica i Molecular, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Antonio Vitobello
- UF Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne and INSERM UMR1231 GAD, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie Bournez
- Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Rachel K Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Raphael A Bernier
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Goyal M, Faruq M, Gupta A, Shrivastava D, Shamim U. 6q13q14.3 Microdeletion Syndrome with Severe Hypotonia and Facial Dysmorphism: Genotype–Phenotype Correlation. J Pediatr Genet 2021; 12:141-143. [PMID: 37090827 PMCID: PMC10118712 DOI: 10.1055/s-0040-1721739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
AbstractHypotonia is a symptom of diminished tone of skeletal muscle and can be nongenetic or a part of genetic syndrome. Hypotonia, developmental delay, and facial dysmorphism are nonspecific findings observed in many genetic syndromes mostly in chromosomal microdeletion and duplication. Here we report a case with severe hypotonia and facial dysmorphism, diagnosed with deletion at 6q13q14.3 by array comparative genomic hybridization (CGH) at very early age. Recent genetic diagnostic technologies such as array CGH may enable clinicians to diagnose chromosomal abnormalities earlier and provide appropriate medical management
Collapse
Affiliation(s)
- Manisha Goyal
- Centre of Rare Diseases, Department of Pediatrics, SMS Medical College, Jaipur, Rajasthan, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashok Gupta
- Centre of Rare Diseases, Department of Pediatrics, SMS Medical College, Jaipur, Rajasthan, India
| | | | - Uzma Shamim
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
20
|
Bosch PJ, Peek SL, Smolikove S, Weiner JA. Akirin proteins in development and disease: critical roles and mechanisms of action. Cell Mol Life Sci 2020; 77:4237-4254. [PMID: 32361777 PMCID: PMC7606436 DOI: 10.1007/s00018-020-03531-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
The Akirin genes, which encode small, nuclear proteins, were first characterized in 2008 in Drosophila and rodents. Early studies demonstrated important roles in immune responses and tumorigenesis, which subsequent work found to be highly conserved. More recently, a multiplicity of Akirin functions, and the associated molecular mechanisms involved, have been uncovered. Here, we comprehensively review what is known about invertebrate Akirin and its two vertebrate homologues Akirin1 and Akirin2, highlighting their role in regulating gene expression changes across a number of biological systems. We detail essential roles for Akirin family proteins in the development of the brain, limb, and muscle, in meiosis, and in tumorigenesis, emphasizing associated signaling pathways. We describe data supporting the hypothesis that Akirins act as a "bridge" between a variety of transcription factors and major chromatin remodeling complexes, and discuss several important questions remaining to be addressed. In little more than a decade, Akirin proteins have gone from being completely unknown to being increasingly recognized as evolutionarily conserved mediators of gene expression programs essential for the formation and function of animals.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Abstract
Joint hypermobility refers to the ability that a joint has to move beyond its normal range of motion. It is common in the general population, particularly in children. While many individuals manifesting joint hypermobility are healthy, this feature can accompany a wide range of symptoms and systemic disorders, whose management can be influenced by their prompt recognition. Given the increasing attention that joint hypermobility is attracting in various fields of medicine, many practitioners are asked to approach more carefully joint hypermobility, in order to avoid over- and under-diagnosis of related disorders. Among the most common conditions featuring joint hypermobility there are hypermobility spectrum disorders and hereditary connective tissue disorders, in particular, the Ehlers-Danlos syndromes. In children, joint hypermobility also accompany a variety of disorders affecting neurodevelopment. The nature of such an association is protean, as joint hypermobility may occur in selected congenital neuromuscular disorders, monogenic multiple malformation/intellectual disability syndromes, and well-known and emerging genomic syndromes. In addition, joint hypermobility seems strongly associated with developmental coordination disorders. This review offers an overview on definitions, assessment procedures, patterns of associated manifestations and disorders related to joint hypermobility, as well as treatment principles of associated musculoskeletal pain for practitioners that are not familial with this issue but encounter people featuring this physical attribute in their daily activity.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy -
| |
Collapse
|
22
|
Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J Clin Med 2020; 9:E966. [PMID: 32244359 PMCID: PMC7230567 DOI: 10.3390/jcm9040966] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Korea; (S.H.Y.); (J.C.); (W.J.L.)
| |
Collapse
|
23
|
Granadillo JL, P A Stegmann A, Guo H, Xia K, Angle B, Bontempo K, Ranells JD, Newkirk P, Costin C, Viront J, Stumpel CT, Sinnema M, Panis B, Pfundt R, Krapels IPC, Klaassens M, Nicolai J, Li J, Jiang Y, Marco E, Canton A, Latronico AC, Montenegro L, Leheup B, Bonnet C, M Amudhavalli S, Lawson CE, McWalter K, Telegrafi A, Pearson R, Kvarnung M, Wang X, Bi W, Rosenfeld JA, Shinawi M. Pathogenic variants in TNRC6B cause a genetic disorder characterised by developmental delay/intellectual disability and a spectrum of neurobehavioural phenotypes including autism and ADHD. J Med Genet 2020; 57:717-724. [PMID: 32152250 DOI: 10.1136/jmedgenet-2019-106470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.
Collapse
Affiliation(s)
- Jorge Luis Granadillo
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Brad Angle
- Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Kelly Bontempo
- Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Patricia Newkirk
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | | | | | - Constanze T Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Bianca Panis
- Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre, Nijmgen, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University, Maastricht, The Netherlands
| | - Merel Klaassens
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jinliang Li
- Peking University First Hospital, Beijing, Beijing, China
| | - Yuwu Jiang
- Peking University First Hospital, Beijing, Beijing, China
| | - Elysa Marco
- UCSF Pediatric Brain Center, UCSF, San Francisco, California, USA
| | - Ana Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Leheup
- Service de Génétique clinique, Höpital Brabois, Centre Hospitalier Universitaire de Nancy, Nancy, Lorraine, France
| | - Celine Bonnet
- Centre Hospitalier Universitaire de Nancy, Nancy, Lorraine, France
| | | | | | | | | | | | - Malin Kvarnung
- Department of Clinical Genetics & Department of Molecular Medicine and Surgery, Karolinska University Hospital & Karolinska Institute, Stockholm, Sweden
| | - Xia Wang
- Baylor Genetics Laboratories, Houston, Texas, USA
| | - Weimin Bi
- Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Jill Anne Rosenfeld
- Baylor Genetics Laboratories, Houston, Texas, USA.,Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| |
Collapse
|
24
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
25
|
Middelkamp S, Vlaar JM, Giltay J, Korzelius J, Besselink N, Boymans S, Janssen R, de la Fonteijne L, van Binsbergen E, van Roosmalen MJ, Hochstenbach R, Giachino D, Talkowski ME, Kloosterman WP, Cuppen E. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants. Genome Med 2019; 11:79. [PMID: 31801603 PMCID: PMC6894143 DOI: 10.1186/s13073-019-0692-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Judith M Vlaar
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Jacques Giltay
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Jerome Korzelius
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Lisanne de la Fonteijne
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ron Hochstenbach
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wigard P Kloosterman
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Lin S, Shi S, Huang L, Lei T, Cai D, Hu W, Zhou Y, Luo Y. Is an analysis of copy number variants necessary for various types of kidney ultrasound anomalies in fetuses? Mol Cytogenet 2019; 12:31. [PMID: 31312255 PMCID: PMC6610977 DOI: 10.1186/s13039-019-0443-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to estimate the associations of copy number variants (CNVs) with fetal kidney ultrasound anomalies. A total of 331 fetuses with kidney ultrasound anomalies who underwent prenatal chromosomal microarray analyses were enrolled. The fetuses were classified into groups with isolated and nonisolated anomalies or according to the types of kidney anomalies. Results Clinically significant CNVs were identified in 3.4% or 7.3% of fetuses with isolated or nonisolated kidney anomalies, respectively. CNVs were more frequently identified in fetuses with abnormal embryonic migration of the kidneys (6.6%) than in fetuses with malformations of the renal parenchyma (4.7%) or anomalies of the urinary collecting system (3.4%). In particular, CNVs were most frequently detected in fetuses with ectopic kidneys (9.5%) but not in fetuses with horseshoe kidneys or isolated duplex kidneys. Among these CNVs, the most common were del(17)(q12q12) (1.2%) and del(22)(q11q11) (0.6%). The dup(17)(p12p12) and del(15)(q11.2q11.2) CNVs were identified in this study but not in previous studies. The del(X)(p11.4p11.4) and del(16)(p13.3p13.3) CNVs were further implicated as associated with kidney anomalies. Conclusions Fetuses with abnormal embryonic migration of the kidneys (particularly ectopic kidneys) showed a higher frequency of clinically significant CNVs, whereas fetuses with horseshoe kidneys or duplex kidneys were less frequently associated with these CNVs.
Collapse
Affiliation(s)
- Shaobin Lin
- 1Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080 Guangdong China
| | - Shanshan Shi
- 2Fetal Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Linhuan Huang
- 1Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080 Guangdong China
| | - Ting Lei
- 3Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danlei Cai
- 3Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenlong Hu
- 4Clinical Medical Research Center, Shenzhen people' s hospital, Shenzhen, China
| | - Yi Zhou
- 1Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080 Guangdong China
| | - Yanmin Luo
- 1Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080 Guangdong China
| |
Collapse
|
27
|
Bosch PJ, Fuller LC, Weiner JA. A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis 2019; 57:e23286. [PMID: 30801883 DOI: 10.1002/dvg.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved Akirin nuclear proteins interact with chromatin remodeling complexes at gene enhancers and promoters, and have been reported to regulate cell proliferation and differentiation. Of the two mouse Akirin genes, Akirin2 is essential during embryonic development, with known in vivo roles in immune system function and the formation of the cerebral cortex. Here we demonstrate that Akirin2 is critical for mouse myogenesis, a tightly regulated developmental process through which myoblast precursors fuse to form mature skeletal muscle fibers. Loss of Akirin2 in somitic muscle precursor cells via Sim1-Cre-mediated excision of a conditional Akirin2 allele results in neonatal lethality. Mutant embryos exhibit a complete lack of forelimb, intercostal, and diaphragm muscles due to extensive apoptosis and loss of Pax3-positive myoblasts. Severe skeletal defects, including craniofacial abnormalities, disrupted ossification, and rib fusions are also observed, attributable to lack of skeletal muscles as well as patchy Sim1-Cre activity in the embryonic sclerotome. We further show that Akirin2 levels are tightly regulated during muscle cell differentiation in vitro, and that Akirin2 is required for the proper expression of muscle differentiation factors myogenin and myosin heavy chain. Our results implicate Akirin2 as a major regulator of mammalian muscle formation in vivo.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
28
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Rosti G, Tassano E, Bossi S, Divizia MT, Ronchetto P, Servetti M, Lerone M, Pisciotta L, Mancardi MM, Veneselli E, Puliti A. Intragenic duplication of KCNQ5 gene results in aberrant splicing leading to a premature termination codon in a patient with intellectual disability. Eur J Med Genet 2018; 62:103555. [PMID: 30359776 DOI: 10.1016/j.ejmg.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/19/2018] [Accepted: 10/20/2018] [Indexed: 11/18/2022]
Abstract
The KCNQ5 gene, widely expressed in the brain, encodes a voltage-gated potassium channel (Kv7.5) important for neuronal function. Here, we report a novel KCNQ5 intragenic duplication at 6q13 spanning about 239 Kb of genomic DNA, identified by array comparative genomic hybridization (array-CGH). The duplication was found in heterozygosity in an adult patient affected by mild intellectual disability with history of absence epilepsy in adolescence, with no EEG nor MRI alterations. By in vitro analyses we demonstrated that this copy number variation (CNV) led to an aberrant transcript with exon 2-11 skipping and a premature stop codon causing, most likely, haploinsufficiency. The Kv7.5 channel plays an important role in the regulation of M-type current and afterhyperpolarization conductances which contribute to neuronal excitability. A recently published paper described KCNQ5 missense mutations in individuals with intellectual disability and treatment-resistant epilepsy that were thought to act through either loss-of-function or gain-of-function mechanisms, associated in both cases with altered neuronal excitability. In the case reported here, we showed that no functional protein can be produced from the allele involved by the intragenic duplication. This evidence strongly supports the hypothesis of KCNQ5 haploinsufficiency, which could lead to altered neuronal excitability, thus contributing to seizure susceptibility and intellectual disability.
Collapse
Affiliation(s)
- Giulia Rosti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Elisa Tassano
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simone Bossi
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | | | | | - Martina Servetti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Margherita Lerone
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Livia Pisciotta
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Edvige Veneselli
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aldamaria Puliti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|