1
|
Becker J, Domenger C, Choksi P, Krämer C, Baumgartl C, Maiakovska O, Kim JJ, Weinmann J, Huber G, Schmidt F, Thirion C, Müller OJ, Willenbring H, Grimm D. Identification of a robust promoter in mouse and human hepatocytes by in vivo biopanning of a barcoded AAV library. Mol Ther 2025:S1525-0016(25)00301-6. [PMID: 40263935 DOI: 10.1016/j.ymthe.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Recombinant adeno-associated viruses (AAVs) are leading vectors for in vivo human gene therapy. An integral vector element is promoters, which control transgene expression in either a ubiquitous or cell-type-selective manner. Identifying optimal capsid-promoter combinations is challenging, especially when considering on- versus off-target expression. Here, we report a pipeline for in vivo promoter biopanning in AAV building on our AAV capsid barcoding technology and illustrate its potential by screening 53 promoters in 16 murine tissues using an AAV9 vector. Surprisingly, the 2.2-kb human glial fibrillary acidic protein (GFAP) promoter was the top hit in the liver, where it outperformed robust benchmarks such as the human α-1-antitrypsin promoter or the clinically used liver-specific promoter 1 (LP1). Analysis of hepatic cell populations revealed preferred GFAP promoter activity in hepatocytes. Notably, the GFAP promoter also surpassed the LP1 and cytomegalovirus promoters in human hepatocytes engrafted in an immune-deficient mouse. These findings establish the GFAP promoter as an exciting alternative for research and clinical applications requiring efficient and specific transgene expression in hepatocytes. Our pipeline expands the arsenal of technologies for high-throughput in vivo screening of viral vector components and is compatible with capsid barcoding, facilitating the combinatorial interrogation of complex AAV libraries.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Claire Domenger
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Pervinder Choksi
- Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Chiara Krämer
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Conradin Baumgartl
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Olena Maiakovska
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Jae-Jun Kim
- Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jonas Weinmann
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Georg Huber
- Revvity Gene Delivery GmbH, 82166 Gräfelfing, Germany
| | - Florian Schmidt
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Oliver J Müller
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, 24105 Kiel, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Holger Willenbring
- Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; BioQuant, Center for Integrative Infectious Diseases (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany; Faculty of Engineering Sciences, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Roy S. Emerging strategies targeting genes and cells in glaucoma. Vision Res 2025; 227:108533. [PMID: 39644708 PMCID: PMC11788065 DOI: 10.1016/j.visres.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Glaucoma comprises a heterogeneous set of eye conditions that cause progressive vision loss. Glaucoma has a complex etiology, with different genetic and non-genetic risk factors that differ across populations. Although difficult to diagnose in early stages, compromised cellular signaling, dysregulation of genes, and homeostatic imbalance are common precursors to injury and subsequent death of retinal ganglion cells (RGCs). Lowering intraocular pressure (IOP) remains the primary approach for managing glaucoma but IOP alone does not explain all glaucoma risks. Orthogonal approaches such as large-scale genetic screening, combined with studies of animal models have been instrumental in identifying genes and molecular pathways involved in glaucoma pathogenesis. Cell type dependent vulnerability among RGCs can reveal genetic basis for specific visual deficits. A growing body of knowledge and availability of modern tools to perform targeted assessments of cellular health in different animal models facilitate development of effective and timely interventions for vision rescue. This review highlights recent findings on genes, molecules, and cell types in the context of glaucoma pathophysiology and treatment.
Collapse
Affiliation(s)
- Suva Roy
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Radhakrishnan K, Zhang Y, Mustapha O, Weigel TK, Upchurch CM, Tian X, Herbert F, Huang W, Leitinger N, Eyo UB, Ai H, Ferris HA. 7-ketocholesterol contributes to microglia-driven increases in astrocyte reactive oxygen species in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633810. [PMID: 39868327 PMCID: PMC11761689 DOI: 10.1101/2025.01.19.633810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Oxidative stress is a prominent feature of Alzheimer's disease. Within this context, cholesterol undergoes oxidation, producing the pro-inflammatory product 7-ketocholesterol (7-KC). In this study, we observe elevated levels of 7-KC in the brains of the 3xTg mouse model of AD. To further understand the contribution of 7-KC on the oxidative environment, we developed a method to express a genetically encoded fluorescent hydrogen peroxide (H2O2) sensor in astrocytes, the primary source of cholesterol in the brain. With this sensor, we discovered that 7-KC increases H2O2 levels in astrocytes in vivo, but not when directly applied to astrocytes in vitro. Interestingly, when 7-KC was applied to a microglia cell line alone or mixed astrocyte and microglia cultures, it resulted in microglia activation and increased oxidative stress in astrocytes. Depletion of microglia from 3xTg mice resulted in reduced 7-KC in the brains of these mice. Taken together, these findings suggest that 7-KC, acting through microglia, contributes to increased astrocyte oxidative stress in AD. This study sheds light on the complex interplay between cholesterol oxidation, microglia activation, and astrocyte oxidative stress in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Radhakrishnan
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Oluwaseun Mustapha
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Thaddeus K. Weigel
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Franklin Herbert
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Wenyuan Huang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B. Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Heather A. Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Guo J, Gao K, Chen X, Liao C, Rui J, Zhou Y, Lao J. KDM4A facilitates neuropathic pain and microglial M1 polarization by regulating BDNF in a rat model of brachial plexus avulsion. Reg Anesth Pain Med 2024:rapm-2024-105801. [PMID: 39532465 DOI: 10.1136/rapm-2024-105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Many patients with brachial plexus avulsion (BPA) suffer from neuropathic pain, but the mechanism remains elusive. Modifications of histones, the proteins responsible for organizing DNA, may play an important role in neuropathic pain. Lysine demethylase 4A (KDM4A), an essential component of histone demethylase, can modify the function of chromatin and thus regulate the vital gene expressions. However, the mechanism by which KDM4A regulates neuropathic pain following BPA remains unclear. METHODS The pain model was developed in adult rats that received BPA surgery. Western blot, ELISA, and reverse transcription-PCR were used to examine the protein and mRNA levels of targeted genes. Immunofluorescence studies were conducted to analyze their cellular distribution in the spinal cord. Pharmacological and genetic methods were used to modulate the expression of KDM4A. Co-immunoprecipitation and chromatin immunoprecipitation PCR were used to assess the binding potential between KDM4A and the promoter of brain-derived neurotrophic factor (BDNF). RESULTS KDM4A and BDNF levels were significantly upregulated in the ipsilateral spinal cord dorsal horn in the BPA group compared with the sham surgery group. Additionally, knockdown of KDM4A decreased BDNF expression and microgliosis and reduced neuropathic pain-like behaviors in BPA rats. Conversely, KDM4A overexpression increased BDNF expression and microgliosis and exacerbated neuropathic pain. BDNF inhibitors and activators also regulated the activation of spinal microglia and neuropathic pain. Importantly, we showed that KDM4A modulates BDNF expression by regulating the methylation of histone 3 lysine 9 and histone 3 lysine 36 in its promoter region. CONCLUSION Current findings suggest that the upregulation of KDM4A increases BDNF expression in the spinal cord in rats after BPA, contributing to microgliosis, neuroinflammation, and neuropathic pain.
Collapse
Affiliation(s)
- Jinding Guo
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Kaiming Gao
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
| | - Xi Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Chengppeng Liao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jing Rui
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yingjie Zhou
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
5
|
Harkins AL, Ambegaokar PP, Keeler AM. Immune responses to central nervous system directed adeno-associated virus gene therapy: Does direct CNS delivery make a difference? Neurotherapeutics 2024; 21:e00435. [PMID: 39180957 PMCID: PMC11386282 DOI: 10.1016/j.neurot.2024.e00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Adeno-associated virus (AAV) mediated gene therapy is a leading gene delivery platform with potential to transform the landscape of treatment for neurological disorders. While AAV is deemed non-immunogenic compared to other viral vectors, adverse immune reactions have been observed in the clinic, raising concerns. As the central nervous system (CNS) has a tightly regulated immune system, characterized by a degree of tolerance, it has been considered a unique target for AAV gene therapy. AAV vectors have shown promising results for the treatment of several CNS disorders including Spinal Muscular Atrophy, Giant Axonal Neuropathy, Amyotrophic Lateral Sclerosis, Tay Sachs Disease, Parkinson's Disease, and others, demonstrating safety and success. The Food and Drug Administration (FDA) approval of Zolgensma and European Medicines Agency (EMA) approval of Upstaza, for Spinal Muscular Atrophy (SMA) and Aromatic l-amino acid decarboxylase deficiency (AADC) respectively, represent this success, all while highlighting significant differences in immune responses to AAV, particularly with regards to therapeutic administration route. AAV therapies like Upstaza that are injected directly into the immune-specialized brain have been characterized by mild immune response profiles and minor adverse events, whereas therapies like Zolgensma that are injected systemically demonstrate more robust immune stimulation and off-target toxicities. Despite these contrasting parallels, these therapeutics and others in the clinic have demonstrated clinical benefit for patients, warranting further exploration of immune responses to CNS-directed AAV clinical trials. Thus, in this review, we discuss effects of different routes of AAV administration on eliciting local and peripheral immune responses specifically observed in CNS-targeted trials.
Collapse
Affiliation(s)
- Ashley L Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, United States; Department of Neurology, University of Massachusetts Chan Medical School, United States; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, United States
| | - Prajakta P Ambegaokar
- Graduate Program in Translational Science, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, United States; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, United States
| | - Allison M Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, United States; Graduate Program in Translational Science, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, United States; NeuroNexus Institute, University of Massachusetts Chan Medical School, United States; Department of Pediatrics, University of Massachusetts Chan Medical School, United States; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, United States.
| |
Collapse
|
6
|
Kostin A, Alam MA, Saevskiy A, Alam MN. Chronic Astrocytic TNFα Production in the Preoptic-Basal Forebrain Causes Aging-like Sleep-Wake Disturbances in Young Mice. Cells 2024; 13:894. [PMID: 38891027 PMCID: PMC11171867 DOI: 10.3390/cells13110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Psychiatry, University of California, Los Angeles, CA 90025, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Medicine, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
7
|
He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q, Huang C. Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302916. [PMID: 38195869 PMCID: PMC10953562 DOI: 10.1002/advs.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.
Collapse
Affiliation(s)
- Liqiong He
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shengyun Ma
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Zijin Ding
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhifeng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Caiyun Xi
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kailu Zou
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Qingwei Deng
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Qulian Guo
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Changsheng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
8
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
9
|
Mahmoudi N, Wang Y, Moriarty N, Ahmed NY, Dehorter N, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Neuronal Replenishment via Hydrogel-Rationed Delivery of Reprogramming Factors. ACS NANO 2024; 18:3597-3613. [PMID: 38221746 DOI: 10.1021/acsnano.3c11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- ANU College of Engineering & Computer Science, Acton, ACT 2601, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Noorya Y Ahmed
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC 3217, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
10
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJM. An enhancer-AAV approach selectively targeting dentate granule cells of the mouse hippocampus. CELL REPORTS METHODS 2024; 4:100684. [PMID: 38211592 PMCID: PMC10831952 DOI: 10.1016/j.crmeth.2023.100684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice.
Collapse
Affiliation(s)
- Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Geoffrey A Vargish
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA; Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viktor Janos Oláh
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Guo Y, Chen J, Ji W, Xu L, Xie Y, He S, Lai C, Hou K, Li Z, Chen G, Wu Z. High-titer AAV disrupts cerebrovascular integrity and induces lymphocyte infiltration in adult mouse brain. Mol Ther Methods Clin Dev 2023; 31:101102. [PMID: 37753218 PMCID: PMC10518493 DOI: 10.1016/j.omtm.2023.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
The brain is often described as an "immune-privileged" organ due to the presence of the blood-brain-barrier (BBB), which limits the entry of immune cells. In general, intracranial injection of adeno-associated virus (AAV) is considered a relatively safe procedure. In this study, we discovered that AAV, a popular engineered viral vector for gene therapy, can disrupt the BBB and induce immune cell infiltration in a titer-dependent manner. First, our bulk RNA sequencing data revealed that injection of high-titer AAV significantly upregulated many genes involved in disrupting BBB integrity and antiviral adaptive immune responses. By using histologic analysis, we further demonstrated that the biological structure of the BBB was severely disrupted in the adult mouse brain. Meanwhile, we noticed abnormal leakage of blood components, including immune cells, within the brain parenchyma of high-titer AAV injected areas. Moreover, we identified that the majority of infiltrated immune cells were cytotoxic T lymphocytes (CTLs), which resulted in a massive loss of neurons at the site of AAV injection. In addition, antagonizing CTL function by administering antibodies significantly reduced neuronal toxicity induced by high-titer AAV. Collectively, our findings underscore potential severe side effects of intracranial injection of high-titer AAV, which might compromise proper data interpretation if unaware of.
Collapse
Affiliation(s)
- Yaowei Guo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Junliang Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Wenyu Ji
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Liang Xu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yu Xie
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Shu He
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chuying Lai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kaiyu Hou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Zeru Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Zheng Wu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Soltani Dehnavi S, Cembran A, Mahmoudi N, Caballero Aguilar LM, Wang Y, Cheeseman S, Malagutti N, Franks S, Long B, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Molecular camouflage by a context-specific hydrogel as the key to unlock the potential of viral vector gene therapy. CHEMICAL ENGINEERING JOURNAL 2023; 477:146857. [DOI: 10.1016/j.cej.2023.146857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Gleichman AJ, Kawaguchi R, Sofroniew MV, Carmichael ST. A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences. Nat Commun 2023; 14:7426. [PMID: 37973910 PMCID: PMC10654773 DOI: 10.1038/s41467-023-42746-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes, one of the most prevalent cell types in the central nervous system (CNS), are critically involved in neural function. Genetically manipulating astrocytes is an essential tool in understanding and affecting their roles. Adeno-associated viruses (AAVs) enable rapid genetic manipulation; however, astrocyte specificity of AAVs can be limited, with high off-target expression in neurons and sparsely in endothelial cells. Here, we report the development of a cassette of four copies of six miRNA targeting sequences (4x6T) which triggers transgene degradation specifically in neurons and endothelial cells. In combination with the GfaABC1D promoter, 4x6T increases astrocytic specificity of Cre with a viral reporter from <50% to >99% in multiple serotypes in mice, and confers astrocyte specificity in multiple recombinases and reporters. We also present empty vectors to add 4x6T to other cargo, independently and in Cre/Dre-dependent forms. This toolbox of AAVs allows rapid manipulation of astrocytes throughout the CNS, is compatible with different AAV serotypes, and demonstrates the efficacy of using multiplexed miRNA targeting sequences to decrease expression in multiple off-target cell populations simultaneously.
Collapse
Affiliation(s)
- Amy J Gleichman
- Department of Neurology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Wang J, Lu J, Zhu Y, Huang Q, Gu Q, Tian S, Ge J, Lin X, Sha W. Guanine-rich RNA sequence binding factor 1 regulates neuronal ferroptosis after spinal cord injury in rats via the GPX4 signaling pathway. Brain Res 2023; 1818:148497. [PMID: 37506966 DOI: 10.1016/j.brainres.2023.148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Spinal cord injury (SCI) can trigger multiple forms of neuronal cell death. Among these, ferroptosis stands out as a particularly important style of cell death due to its iron overload-dependent lipid peroxidative regulatory mechanism. The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein that has been implicated in cellular senescence, mitochondrial function, oxidative stress, erythropoiesis, and embryonic brain development. However, the function of GRSF1 in neuronal ferroptosis after SCI remains unclear. Here, we established a SCI rat model in vivo and evaluated the function of GRSF1 on neuronal ferroptosis by inhibiting and overexpressing GRSF1. We firstly verified the protein expression of GRSF1 and GPX4 at different time points after SCI. According of changes in expression, we chose 3 d post SCI to assess the effect of GRSF1 on ferroptosis. We found that GRSF1 expression decreased after SCI. In addition, GRSF1 was mainly localized in the cytoplasm of neurons. The results also showed that overexpression of GRSF1 promoted recovery of neurological functional after SCI. Further investigation revealed that GRSF1 might attenuate neuronal ferroptosis by regulating the GPX4 protein expression levels. In summary, our findings indicate that GRSF1 attenuates injury in SCI and reduces neuron ferroptosis and promotes functional recovery via GPX4.
Collapse
Affiliation(s)
- Jin Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Jinqi Lu
- Department of Pathology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Jianfei Ge
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| |
Collapse
|
15
|
Coulter OR, Walker CD, Risher ML. Astrocyte-specific Ca 2+ activity: Mechanisms of action, experimental tools, and roles in ethanol-induced dysfunction. Biochem Cell Biol 2023; 101:410-421. [PMID: 36989534 DOI: 10.1139/bcb-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Astrocytes are a subtype of non-neuronal glial cells that reside in the central nervous system. Astrocytes have extensive peripheral astrocytic processes that ensheathe synapses to form the tripartite synapse. Through a multitude of pathways, astrocytes can influence synaptic development and structural maturation, respond to neuronal signals, and modulate synaptic transmission. Over the last decade, strong evidence has emerged demonstrating that astrocytes can influence behavioral outcomes in various animal models of cognition. However, the full extent of how astrocytes influence brain function is still being revealed. Astrocyte calcium (Ca2+) signaling has emerged as an important driver of astrocyte-neuronal communication allowing intricate crosstalk through mechanisms that are still not fully understood. Here, we will review the field's current understanding of astrocyte Ca2+ signaling and discuss the sophisticated state-of-the-art tools and approaches used to continue unraveling astrocytes' interesting role in brain function. Using the field of pre-clinical ethanol (EtOH) studies in the context of alcohol use disorder, we focus on how these novel approaches have helped to reveal an important role for astrocyte Ca2+ function in regulating EtOH consumption and how astrocyte Ca2+ dysfunction contributes to the cognitive deficits that emerge after EtOH exposure in a rodent model.
Collapse
Affiliation(s)
- O R Coulter
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - C D Walker
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - M-L Risher
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| |
Collapse
|
16
|
Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci 2023; 16:1171101. [PMID: 37342100 PMCID: PMC10277488 DOI: 10.3389/fnmol.2023.1171101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Biomarkers are measurable substances that could be used as objective indicators for disease diagnosis, responses to treatments, and outcomes predictions. In this review, we summarized the data on a number of important biomarkers including glutamate, S100B, glial fibrillary acidic protein, receptor for advanced glycation end-products, intercellular adhesion molecule-1, von willebrand factor, matrix metalloproteinase-9, interleukin-6, tumor necrosis factor-a, activated protein C, copeptin, neuron-specific enolase, tau protein, gamma aminobutyric acid, blood glucose, endothelial progenitor cells, and circulating CD34-positive cells that could be potentially used to indicate the disease burden and/or predict clinical outcome of ischemic stroke. We examined the relationship between specific biomarkers and disease burden and outcomes and discussed the potential mechanisms underlying the relationship. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenzhen Wang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
17
|
Nemeth D, Luqman N, Chen L, Quan N. Aldh1l1-Cre/ER T2 is expressed in unintended cell types of the salivary gland, pancreas, and spleen. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000832. [PMID: 37273576 PMCID: PMC10238921 DOI: 10.17912/micropub.biology.000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023]
Abstract
The Aldh1l1-Cre/ER T2 mouse is a widely used transgenic mouse model to conditionally express Cre recombinase in astrocytes of the central nervous system. Currently, no reports show whether the Cre recombinase activity, driven by the Aldh1l1 promoter, acts in cells outside of its intended astrocyte population. We crossed the Aldh1l1-Cre/ER T2 mouse with a TdTomato reporter mouse line, ROSA26:CAG-LSL-TdTomato, to generate a fluorescent reporter for Aldh1l1 promoter activity. Gross anatomical observations reveal strong TdTomato expression in the spleen and exocrine glands-the salivary gland and the pancreas. We find TdTomato expression, a reporter of Cre activity, specifically targets serous cells in the parotid, submandibular, sublingual glands, and pancreas along with fibroblast-like cells within the submandibular lymph nodes and spleen. Our data indicate that the Aldh1l1-Cre/ER T2 mouse model has unintended Cre recombinase activity in exocrine glands, which may influence biological and behavioral data.
Collapse
Affiliation(s)
- Daniel Nemeth
- Stiles-Nicholson Brain Institute, College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - Numana Luqman
- Florida Atlantic University High School, Boca Raton, Florida, United States
| | - Loretta Chen
- College of Chemistry, Florida Atlantic University, Boca Raton, Florida, United States
| | - Ning Quan
- Stiles-Nicholson Brain Institute, College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| |
Collapse
|
18
|
Madeira D, Lopes CR, Simões AP, Canas PM, Cunha RA, Agostinho P. Astrocytic A 2A receptors silencing negatively impacts hippocampal synaptic plasticity and memory of adult mice. Glia 2023. [PMID: 37183905 DOI: 10.1002/glia.24384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Astrocytes are wired to bidirectionally communicate with neurons namely with synapses, thus shaping synaptic plasticity, which in the hippocampus is considered to underlie learning and memory. Adenosine A2A receptors (A2A R) are a potential candidate to modulate this bidirectional communication, since A2A R regulate synaptic plasticity and memory and also control key astrocytic functions. Nonetheless, little is known about the role of astrocytic A2A R in synaptic plasticity and hippocampal-dependent memory. Here, we investigated the impact of genetic silencing astrocytic A2A R on hippocampal synaptic plasticity and memory of adult mice. The genetic A2A R silencing in astrocytes was accomplished by a bilateral injection into the CA1 hippocampal area of a viral construct (AAV5-GFAP-GFP-Cre) that inactivate A2A R expression in astrocytes of male adult mice carrying "floxed" A2A R gene, as confirmed by A2A R binding assays. Astrocytic A2A R silencing alters astrocytic morphology, typified by an increment of astrocytic arbor complexity, and led to deficits in spatial reference memory and compromised hippocampal synaptic plasticity, typified by a reduction of LTP magnitude and a shift of synaptic long-term depression (LTD) toward LTP. These data indicate that astrocytic A2A R control astrocytic morphology and influence hippocampal synaptic plasticity and memory of adult mice in a manner different from neuronal A2A R.
Collapse
Affiliation(s)
- Daniela Madeira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Cátia R Lopes
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Ana P Simões
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula Agostinho
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| |
Collapse
|
19
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJ. A novel enhancer-AAV approach selectively targeting dentate granule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527045. [PMID: 37214904 PMCID: PMC10197561 DOI: 10.1101/2023.02.03.527045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mammalian brain contains the most diverse array of cell types of any organ, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type-specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has steadily improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time-consuming and expensive, presenting a significant barrier to entry for many investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several AAV vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed which overcome these limitations. Using a publicly available RNAseq dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here we identified a promising enhancer-AAV for targeting dentate granule cells and validated its selectivity in wild-type adult mice.
Collapse
|
20
|
Thoracic Jia-Ji electro-acupuncture mitigates low skeletal muscle atrophy and improves motor function recovery following thoracic spinal cord injury in rats. Am J Transl Res 2022; 14:8103-8116. [PMID: 36505337 PMCID: PMC9730098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The goal of this study was to determine whether electro-acupuncture (EA) stimulation might protect the motor endplate, minimize muscle atrophy in the hind limbs, and enhance functional recovery of rats with spinal cord injury (SCI). METHODS Sprague-Dawley adult female rats (n = 30) were randomly assigned into Sham, SCI, and EA + SCI groups (n = 10 each). Rats in the Sham and SCI groups were bound in prone position only for 30 min, and rats in the EA + SCI group were treated with electro-acupuncture. The EA was conducted from the first day after surgery, lasted for 30 mins, once every day for 28 consecutive days. RESULTS EA significantly prevented motor endplate degeneration, improved electrophysiological function, and ameliorated hindlimb muscle atrophy after SCI. Meanwhile, EA upregulated Tuj-1 expression, downregulated GFAP expression, and reduced glial scar formation. Additionally, after 4 weeks of EA treatment, the serum of SCI rats exhibited a reduced inflammatory response. CONCLUSION These findings suggest that EA can preserve the motor endplate and reduce muscular atrophy. In addition, EA has been shown to improve the function of upper and lower neurons, reduce glial scar formation, suppress systemic inflammation, and improve axon regeneration.
Collapse
|
21
|
Wu C, Liu R, Luo Z, Sun M, Qile M, Xu S, Jin S, Zhang L, Gross ER, Zhang Y, He S. Spinal cord astrocytes regulate myocardial ischemia-reperfusion injury. Basic Res Cardiol 2022; 117:56. [PMID: 36367592 PMCID: PMC10139732 DOI: 10.1007/s00395-022-00968-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Astrocytes play a key role in the response to injury and noxious stimuli, but its role in myocardial ischemia-reperfusion (I/R) injury remains largely unknown. Here we determined whether manipulation of spinal astrocyte activity affected myocardial I/R injury and the underlying mechanisms. By ligating the left coronary artery to establish an in vivo I/R rat model, we observed a 1.7-fold rise in glial fibrillary acidic protein (GFAP) protein level in spinal cord following myocardial I/R injury. Inhibition of spinal astrocytes by intrathecal injection of fluoro-citrate, an astrocyte inhibitor, decreased GFAP immunostaining and reduced infarct size by 29% relative to the I/R group. Using a Designer Receptor Exclusively Activated by Designer Drugs (DREADD) chemogenetic approach, we bi-directionally manipulated astrocyte activity employing GFAP promoter-driven Gq- or Gi-coupled signaling. The Gq-DREADD-mediated activation of spinal astrocytes caused transient receptor potential vanilloid 1 (TRPV1) activation and neuropeptide release leading to a 1.3-fold increase in infarct size, 1.2-fold rise in serum norepinephrine level and higher arrhythmia score relative to I/R group. In contrast, Gi-DREADD-mediated inhibition of spinal astrocytes suppressed TRPV1-mediated nociceptive signaling, resulting in 35% reduction of infarct size and 51% reduction of arrhythmia score from I/R group, as well as lowering serum norepinephrine level from 3158 ± 108 to 2047 ± 95 pg/mL. Further, intrathecal administration of TRPV1 or neuropeptide antagonists reduced infarct size and serum norepinephrine level. These findings demonstrate a functional role of spinal astrocytes in myocardial I/R injury and provide a novel potential therapeutic approach targeting spinal cord astrocytes for the prevention of cardiac injury.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Rongrong Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhaofei Luo
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Muge Qile
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shijin Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shiyun Jin
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Hicks C, Dhiman A, Barrymore C, Goswami T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering (Basel) 2022; 9:612. [PMID: 36354523 PMCID: PMC9687153 DOI: 10.3390/bioengineering9110612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
This paper reviews the predictive capabilities of blood-based biomarkers to quantify traumatic brain injury (TBI). Biomarkers for concussive conditions also known as mild, to moderate and severe TBI identified along with post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) that occur due to repeated blows to the head during one's lifetime. Since the pathways of these biomarkers into the blood are not fully understood whether there is disruption in the blood-brain barrier (BBB) and the time it takes after injury for the expression of the biomarkers to be able to predict the injury effectively, there is a need to understand the protein biomarker structure and other physical properties. The injury events in terms of brain and mechanics are a result of external force with or without the shrapnel, in the wake of a wave result in local tissue damage. Thus, these mechanisms express specific biomarkers kinetics of which reaches half-life within a few hours after injury to few days. Therefore, there is a need to determine the concentration levels that follow injury. Even though current diagnostics linking biomarkers with TBI severity are not fully developed, there is a need to quantify protein structures and their viability after injury. This research was conducted to fully understand the structures of 12 biomarkers by performing molecular dynamics simulations involving atomic movement and energies of forming hydrogen bonds. Molecular dynamics software, NAMD and VMD were used to determine and compare the approximate thermodynamic stabilities of the biomarkers and their bonding energies. Five biomarkers used clinically were S100B, GFAP, UCHL1, NF-L and tau, the kinetics obtained from literature show that the concentration values abruptly change with time after injury. For a given protein length, associated number of hydrogen bonds and bond energy describe a lower bound region where proteins self-dissolve and do not have long enough half-life to be detected in the fluids. However, above this lower bound, involving higher number of bonds and energy, we hypothesize that biomarkers will be viable to disrupt the BBB and stay longer to be modeled for kinetics for diagnosis and therefore may help in the discoveries of new biomarkers.
Collapse
Affiliation(s)
- Celeste Hicks
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Akshima Dhiman
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Chauntel Barrymore
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Tarun Goswami
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| |
Collapse
|
23
|
Pajarillo E, Demayo M, Digman A, Nyarko-Danquah I, Son DS, Aschner M, Lee E. Deletion of RE1-silencing transcription factor in striatal astrocytes exacerbates manganese-induced neurotoxicity in mice. Glia 2022; 70:1886-1901. [PMID: 35638297 PMCID: PMC9378447 DOI: 10.1002/glia.24226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1β, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mark Demayo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Laboratory for Molecular Nutrition of the Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
24
|
Le N, Appel H, Pannullo N, Hoang T, Blackshaw S. Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. Front Cell Dev Biol 2022; 10:914386. [PMID: 36200040 PMCID: PMC9527291 DOI: 10.3389/fcell.2022.914386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct reprogramming of retinal Müller glia is a promising avenue for replacing photoreceptors and retinal ganglion cells lost to retinal dystrophies. However, questions have recently been raised about the accuracy of studies claiming efficient glia-to-neuron reprogramming in retina that were conducted using GFAP mini promoter-driven adeno-associated virus (AAV) vectors. In this study, we have addressed these questions using GFAP mini promoter-driven AAV constructs to simultaneously overexpress the mCherry reporter and candidate transcription factors predicted to induce glia-to-neuron conversion, in combination with prospective genetic labeling of retinal Müller glia using inducible Cre-dependent GFP reporters. We find that, while control GFAP-mCherry constructs express faithfully in Müller glia, 5 out of 7 transcription factor overexpression constructs tested are predominantly expressed in amacrine and retinal ganglion cells. These findings demonstrate strong insert-dependent effects on AAV-based GFAP mini promoter specificity that preclude its use in inferring cell lineage relationships when studying glia-to-neuron conversion in retina.
Collapse
Affiliation(s)
- Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Pannullo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Surdyka M, Jesion E, Niewiadomska-Cimicka A, Trottier Y, Kalinowska-Pośka Ż, Figiel M. Selective transduction of cerebellar Purkinje and granule neurons using delivery of AAV-PHP.eB and AAVrh10 vectors at axonal terminal locations. Front Mol Neurosci 2022; 15:947490. [PMID: 36176957 PMCID: PMC9513253 DOI: 10.3389/fnmol.2022.947490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.
Collapse
Affiliation(s)
- Magdalena Surdyka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Ewelina Jesion
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Anna Niewiadomska-Cimicka
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Żaneta Kalinowska-Pośka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
- *Correspondence: Maciej Figiel
| |
Collapse
|
26
|
Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother 2022; 153:113500. [DOI: 10.1016/j.biopha.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
|
27
|
Boitet M, Eun H, Lee T, Kim J, Grailhe R. Non-invasive In Vivo Brain Astrogenesis and Astrogliosis Quantification Using a Far-red E2-Crimson Transgenic Reporter Mouse. Mol Neurobiol 2022; 59:6740-6753. [PMID: 36001234 DOI: 10.1007/s12035-022-02997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Despite the adaptation of major clinical imaging modalities for small animals, optical bioluminescence imaging technology is the main approach readily reporting gene activity. Yet, in vivo bioluminescence monitoring requires the administration and diffusion of a substrate to the tissues of interest, resulting in experimental variability, high reagent cost, long acquisition time, and stress to the animal. In our study, we avoid such issues upon generating a new transgenic mouse (GFAP-E2crimson) expressing the far-red fluorescent protein E2-crimson under the control of the glial fibrillary acidic protein (GFAP) promoter. Using microscopy, we validated the selective expression of the reporter in the astrocyte cell population and by non-invasive in vivo fluorescence imaging its detection through the scalps and skulls of live animals. In addition, we performed a longitudinal study validating by in vivo imaging that the E2-crimson fluorescence signal is up-regulated, in pups during astrogenesis and in adult mice during astrogliosis upon kainic acid administration. Furthermore, upon crossing GFAP-E2crimson transgenic with 5XFAD Alzheimer's disease mice model, we were able to quantify the chronic inflammation triggered by amyloid deposit and aging over 18 months. As many diseases and conditions can trigger neuroinflammation, we believe that the GFAP-E2crimson reporter mice model delivers tremendous value for the non-invasive quantification of astrogliosis responses in living animals.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Taekwan Lee
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
28
|
Aryal SP, Xia M, Ortinski PI, Richards CI. Study of Calcium Signaling in Astrocytes with a Novel Endoplasmic Reticulum-Targeted GCaMP Sensor. Curr Protoc 2022; 2:e491. [PMID: 35938843 PMCID: PMC9373517 DOI: 10.1002/cpz1.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The endoplasmic reticulum (ER), the major organelle for the storage of Ca2+ , maintains a concentration of Ca2+ much higher than in the cytosol or other subcellular organelles, such as the mitochondria. A variety of tools have been developed for measuring Ca2+ activity in neuronal and glial cells, but most of these sensors target either the plasma membrane (PM) or the cytosol. Though these sensors are important for measuring Ca2+ transients, they lack the capability to measure activity in the periphery of the ER or to measure low-amplitude events resulting from Ca2+ exchange between the ER and other organelles, such as the mitochondria. We recently developed an ER-targeted GCaMP6f anchored to the cytosolic side of the ER that can measure minute calcium exchange occurring in this region. In this article, we discuss detailed methods to characterize the ER-GCaMP6f sensor, utilize it for calcium imaging in cultured astrocytes, and assess its expression and calcium imaging in astrocytes in rodent brains. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression and characterization of ER-GCaMP6f Support Protocol 1: ER-GCaMP6f-expressing stable cell line generation Basic Protocol 2: In vitro calcium imaging with ER-GCaMP6f Support Protocol 2: Imaging of drug-induced calcium activity Alternate Protocol 1: Transduction of astrocytes with ER-GCaMP6f AAV Alternate Protocol 2: Calcium imaging of astrocytes with Fluo-4 AM Basic Protocol 3: In vivo ER-GCaMP6f expression and slice calcium imaging Support Protocol 3: Pharmacological studies with 2-APB in brain slices.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
29
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
30
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
31
|
Bhusal A, Nam Y, Seo D, Rahman MH, Hwang EM, Kim S, Lee W, Suk K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia 2022; 70:1902-1926. [DOI: 10.1002/glia.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- Division of Endocrinology, Department of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Seung‐Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group Kyungpook National University Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
- Brain Science and Engineering Institute Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
32
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
34
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
35
|
Aryal SP, Xia M, Adindu E, Davis C, Ortinski PI, Richards CI. ER-GCaMP6f: An Endoplasmic Reticulum-Targeted Genetic Probe to Measure Calcium Activity in Astrocytic Processes. Anal Chem 2022; 94:2099-2108. [PMID: 35061939 PMCID: PMC9047445 DOI: 10.1021/acs.analchem.1c04321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ca2+ is a major second messenger involved in cellular and subcellular signaling in a wide range of cells, including astrocytes, which use calcium ions to communicate with other cells in the brain. Even though a variety of genetically encoded Ca2+ indicators have been developed to study astrocyte calcium signaling, understanding the dynamics of endoplasmic reticulum calcium signaling is greatly limited by the currently available tools. To address this, we developed an endoplasmic reticulum-targeted calcium indicator, ER-GCaMP6f, which is anchored to the cytosolic side of the organelle and measures signaling that occurs in close proximity to the endoplasmic reticulum of astrocytes. Using a combination of confocal and super-resolution microscopy techniques, we demonstrate the localization of the indicator in the endoplasmic reticulum in both cell soma and processes of astrocytes. Combining ER-GCaMP6f with total internal reflection fluorescence microscopy, we show that Ca2+ fluctuations in small astrocytic processes can be detected, which are otherwise not observable with existing indicators and standard wide-field and confocal techniques. We also compared the ER-GCaMP6f indicator against currently used plasma membrane-tethered and cytosolic GCaMP6f indicators. ER-GCaMP6f identifies dynamics in calcium signaling of endoplasmic reticulum resident receptors that are missed by plasma membrane-anchored indicators. We also generated an adeno-associated virus (AAV5) and demonstrate that ER-GCaMP6f can be expressed in vivo and by measured calcium activity in brain slices. ER-GCaMP6f provides a powerful tool to study calcium signaling in close proximity to the endoplasmic reticulum in astrocyte cell soma and processes both in culture and in brain slices.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ebubechi Adindu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Caroline Davis
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
36
|
Rochat C, Bernard-Marissal N, Källstig E, Pradervand S, Perrin FE, Aebischer P, Raoul C, Schneider BL. Astrocyte-targeting RNA interference against mutated superoxide dismutase 1 induces motoneuron plasticity and protects fast-fatigable motor units in a mouse model of amyotrophic lateral sclerosis. Glia 2022; 70:842-857. [PMID: 34978340 PMCID: PMC9303637 DOI: 10.1002/glia.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell‐autonomous and noncell‐autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1G93A protein. An AAV‐gfaABC1D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes. The treatment leads to the progressive rescue of neuromuscular junction occupancy, to the recovery of the compound muscle action potential in the gastrocnemius muscle, and significantly improves neuromuscular function. In the spinal cord, gene therapy targeting astrocytes protects a small pool of the most vulnerable fast‐fatigable MN until disease end stage. In the gastrocnemius muscle of the treated SOD1G93A mice, the fast‐twitch type IIB muscle fibers are preserved from atrophy. Axon collateral sprouting is observed together with muscle fiber type grouping indicative of denervation/reinnervation events. The transcriptome profiling of spinal cord MN shows changes in the expression levels of factors regulating the dynamics of microtubules. Gene therapy delivering RNA interference against mutated SOD1 in astrocytes protects fast‐fatigable motor units and thereby improves neuromuscular function in ALS mice.
Collapse
Affiliation(s)
- Cylia Rochat
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne
| | - Nathalie Bernard-Marissal
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,INSERM, MMG, Aix-Marseille University, Marseille, France
| | - Emma Källstig
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva
| | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick Aebischer
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne
| | - Cédric Raoul
- INM, Université Montpellier, INSERM, Montpellier, France
| | - Bernard L Schneider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva
| |
Collapse
|
37
|
Kim SC, Kim A, Park JY, Hwang EM. Improved AAV vector system for cell-type-specific RNA interference. J Neurosci Methods 2021; 368:109452. [PMID: 34953938 DOI: 10.1016/j.jneumeth.2021.109452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a powerful technique to effectively silence or knock down gene function in mammalian cells. For better cell-type RNAi experiments in vivo, AAV vector-based RNA interference systems need to be improved. New method: In this study, we developed an AAV vector (CREon shRNA) that expressed CRE-dependent short hairpin RNA (shRNA) and fluorescent proteins simultaneously. RESULTS We verified the Cre-dependent knockdown efficiency of the newly developed CREon shRNA vector in both HEK293T cells overexpressing TREK-1 and PC3 cells with endogenous TREK-1. Next, we packaged this TREK-1 CREon vector with AAV and injected it into the hippocampus of the brain together with a synapsin or GFAP promoter-driven CRE virus, confirming that it works well cell-selectively even in vivo. Finally, this viral vector was applied to an animal model of LPS-induced depression to determine whether behavioral changes occurred. Comparison with existing methods: With the existing pSico or pAAV-Sico-Red vectors, expression of fluorescent protein disappears when shRNA is conditionally activated by CRE recombinase, but our Creon shRNA vector showed simultaneous expression of both shRNA and fluorescent protein. Thus, it offers the advantage of allowing easy visual distinction of knocked-down cells. CONCLUSION The newly improved CREon shRNA vector can be used as a novel research tool for conditional shRNA, and may be useful for various in vivo studies such as cancer and neurobiology.
Collapse
Affiliation(s)
- Seung-Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Ajung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
38
|
Gerasimov E, Erofeev A, Borodinova A, Bolshakova A, Balaban P, Bezprozvanny I, Vlasova OL. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci 2021; 22:9613. [PMID: 34502519 PMCID: PMC8431749 DOI: 10.3390/ijms22179613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons' spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Anastasia Borodinova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Pavel Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| |
Collapse
|
39
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
40
|
Zhang Z, Funcke JB, Zi Z, Zhao S, Straub LG, Zhu Y, Zhu Q, Crewe C, An YA, Chen S, Li N, Wang MY, Ghaben AL, Lee C, Gautron L, Engelking LJ, Raj P, Deng Y, Gordillo R, Kusminski CM, Scherer PE. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab 2021; 33:1624-1639.e9. [PMID: 34174197 PMCID: PMC8338877 DOI: 10.1016/j.cmet.2021.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.
Collapse
Affiliation(s)
- Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenzhen Zi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luke J Engelking
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
42
|
Borodinova AA, Balaban PM, Bezprozvanny IB, Salmina AB, Vlasova OL. Genetic Constructs for the Control of Astrocytes' Activity. Cells 2021; 10:cells10071600. [PMID: 34202359 PMCID: PMC8306323 DOI: 10.3390/cells10071600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes’ activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals. Therefore, efficient and sufficient targeting of astrocytes is a multiparametric process that requires a combination of specific AAV serotypes naturally predisposed to transduce astroglia with astrocyte-specific promoters in the AAV cassette. Inadequate combinations may result in off-target neuronal transduction to different degrees. Potentially, these constraints may be bypassed with the latest strategies of generating novel synthetic AAV serotypes with specified properties by rational engineering of AAV capsids or using directed evolution approach by searching within a more specific promoter or its replacement with the unique enhancer sequences characterized using modern molecular techniques (ChIP-seq, scATAC-seq, snATAC-seq) to drive the selective transgene expression in the target population of cells or desired brain regions. Realizing these strategies to restrict expression and to efficiently target astrocytic populations in specific brain regions or across the brain has great potential to enable future studies.
Collapse
Affiliation(s)
- Anastasia A. Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Correspondence:
| | - Ilya B. Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Alla B. Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Research Institute of Molecular Medicine and Pathobiochemistry, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
| |
Collapse
|
43
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
44
|
Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep 2021; 35:109048. [PMID: 33910014 PMCID: PMC8142687 DOI: 10.1016/j.celrep.2021.109048] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Brain injury causes astrocytes to assume a reactive state that is essential for early tissue protection, but how reactive astrocytes affect later reparative processes is incompletely understood. In this study, we show that reactive astrocytes are crucial for vascular repair and remodeling after ischemic stroke in mice. Analysis of astrocytic gene expression data reveals substantial activation of transcriptional programs related to vascular remodeling after stroke. In vivo two-photon imaging provides evidence of astrocytes contacting newly formed vessels in cortex surrounding photothrombotic infarcts. Chemogenetic ablation of a subset of reactive astrocytes after stroke dramatically impairs vascular and extracellular matrix remodeling. This disruption of vascular repair is accompanied by prolonged blood flow deficits, exacerbated vascular permeability, ongoing cell death, and worsened motor recovery. In contrast, vascular structure in the non-ischemic brain is unaffected by focal astrocyte ablation. These findings position reactive astrocytes as critical cellular mediators of functionally important vascular remodeling during neural repair.
Collapse
Affiliation(s)
- Michael R Williamson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Andrew K Dunn
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
45
|
Chen W, Yao S, Wan J, Tian Y, Huang L, Wang S, Akter F, Wu Y, Yao Y, Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J Control Release 2021; 333:129-138. [PMID: 33775685 DOI: 10.1016/j.jconrel.2021.03.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
The presence of the blood-brain barrier (BBB) remains a challenge in the treatment of central nervous system (CNS) diseases, as it hinders the infiltration of many therapeutic drugs into the brain parenchyma. Therefore, developing efficacious pharmacological agents that can traverse the BBB is crucial for optimal treatment of diseases of the CNS such as neurodegenerative conditions and brain tumors. Adeno-associated virus (AAV), one of the most promising gene therapy vectors, has been shown to cross the BBB safely and is non-pathogenic in nature and therefore has been utilized for numerous diseases of the CNS. Along with the development of protein engineering techniques such as directed evolution including DNA shuffling, a great number of BBB-crossing AAVs have been developed, that could be systemically injected for therapeutic benefit. In this review, we discuss several feasible approaches to improve transportation of therapeutic agents to the CNS. We also discuss the advantages of using BBB-crossing AAVs, their role as a gene delivery agent and highlight the different types of BBB-AAV vectors that have been developed in order to provide a greater insight into how they can be used in diseases of the CNS.
Collapse
Affiliation(s)
- Wenli Chen
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Wang
- Department of TCM, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Nuclear Medicine, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China.
| |
Collapse
|
46
|
Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H, Xu J. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 2021; 12:274. [PMID: 33723238 PMCID: PMC7960741 DOI: 10.1038/s41419-021-03546-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
47
|
O'Carroll SJ, Cook WH, Young D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front Mol Neurosci 2021; 13:618020. [PMID: 33505247 PMCID: PMC7829478 DOI: 10.3389/fnmol.2020.618020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Different glial cell types are found throughout the central (CNS) and peripheral nervous system (PNS), where they have important functions. These cell types are also involved in nervous system pathology, playing roles in neurodegenerative disease and following trauma in the brain and spinal cord (astrocytes, microglia, oligodendrocytes), nerve degeneration and development of pain in peripheral nerves (Schwann cells, satellite cells), retinal diseases (Müller glia) and gut dysbiosis (enteric glia). These cell type have all been proposed as potential targets for treating these conditions. One approach to target these cell types is the use of gene therapy to modify gene expression. Adeno-associated virus (AAV) vectors have been shown to be safe and effective in targeting cells in the nervous system and have been used in a number of clinical trials. To date, a number of studies have tested the use of different AAV serotypes and cell-specific promoters to increase glial cell tropism and expression. However, true glial-cell specific targeting for a particular glial cell type remains elusive. This review provides an overview of research into developing glial specific gene therapy and discusses some of the issues that still need to be addressed to make glial cell gene therapy a clinical reality.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Spinal Cord Injury Research Group, Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William H Cook
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah Young
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis 2021; 36:45-52. [PMID: 33201426 DOI: 10.1007/s11011-020-00630-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) diseases are some of the most difficult to treat because the blood-brain barrier (BBB) almost entirely limits the passage of many therapeutic drugs into the CNS. Gene therapy based on the adeno-associated virus (AAV) vector has the potential to overcome this problem. For example, an AAV serotype AAV9 has been widely studied for its ability to cross the BBB to transduce astrocytes, but its efficiency is limited. The emergence of AAV directed evolution technology provides a solution, and the variants derived from AAV9 directed evolution have been shown to have significantly higher crossing efficiency than AAV9. However, the mechanisms by which AAV crosses the BBB are still unclear. In this review, we focus on recent advances in crossing the blood-brain barrier with AAV vectors. We first review the AAV serotypes that can be applied to treating CNS diseases. Recent progress in possible AAV crossing the BBB and transduction mechanisms are then summarized. Finally, the methods to improve the AAV transduction efficiency are discussed.
Collapse
Affiliation(s)
- Dan Liu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| | - Mingyang Zhu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yuqian Zhang
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yong Diao
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
49
|
Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020; 12:pharmaceutics12121216. [PMID: 33334049 PMCID: PMC7765480 DOI: 10.3390/pharmaceutics12121216] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The era of the aging society has arrived, and this is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Such neurological disorders are serious costly diseases that have a significant impact on society, both globally and socially. Gene therapy has great promise for the treatment of neurological disorders, but only a few gene therapy drugs are currently available. Delivery to the brain is the biggest hurdle in developing new drugs for the central nervous system (CNS) diseases and this is especially true in the case of gene delivery. Nanotechnologies such as viral and non-viral vectors allow efficient brain-targeted gene delivery systems to be created. The purpose of this review is to provide a comprehensive review of the current status of the development of successful drug delivery to the CNS for the treatment of CNS-related disorders especially by gene therapy. We mainly address three aspects of this situation: (1) blood-brain barrier (BBB) functions; (2) adeno-associated viral (AAV) vectors, currently the most advanced gene delivery vector; (3) non-viral brain targeting by non-invasive methods.
Collapse
|
50
|
Liu Z, Klose K, Neuber S, Jiang M, Gossen M, Stamm C. Comparative analysis of adeno-associated virus serotypes for gene transfer in organotypic heart slices. J Transl Med 2020; 18:437. [PMID: 33208161 PMCID: PMC7673099 DOI: 10.1186/s12967-020-02605-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Vectors derived from adeno-associated viruses (AAVs) are widely used for gene transfer both in vitro and in vivo and have gained increasing interest as shuttle systems to deliver therapeutic genes to the heart. However, there is little information on their tissue penetration and cytotoxicity, as well as the optimal AAV serotype for transferring genes to diseased hearts. Therefore, we aimed to establish an organotypic heart slice culture system for mouse left ventricular (LV) myocardium and use this platform to analyze gene transfer efficiency, cell tropism, and toxicity of different AAV serotypes. Methods LV tissue slices, 300 µm thick, were prepared from 15- to 17-day-old transgenic alpha-myosin heavy-chain-mCherry mice using a vibrating microtome. Tissue slice viability in air-liquid culture was evaluated by calcein-acetoxymethyl ester staining, mCherry fluorescence intensity, and the tetrazolium assay. Four recombinant AAV serotypes (1, 2, 6, 8) expressing green fluorescent protein (GFP) under the CAG promoter were added to the slice surface. Gene transfer efficiency was quantified as the number of GFP-positive cells per slice. AAV cell tropism was examined by comparing the number of GFP-positive cardiomyocytes (CMs) and fibroblasts within heart slices. Results Slices retained viability in in vitro culture for at least 5 days. After adding AAV particles, AAV6-infected slices showed the highest number of GFP-expressing cells, almost exclusively CMs. Slice incubation with AAV1, 2, and 8 resulted in fewer GFP-positive cells, with AAV2 having the lowest gene transfer efficiency. None of the AAV serotypes tested caused significant cytotoxicity when compared to non-infected control slices. Conclusions We have established a readily available mouse organotypic heart slice culture model and provided evidence that AAV6 may be a promising gene therapy vector for heart failure and other cardiac diseases.
Collapse
Affiliation(s)
- Zihou Liu
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Klose
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Meng Jiang
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.,Helmholtz-Zentrum Geesthacht, Institute of Biomaterial Science, Teltow, Germany
| | - Christof Stamm
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany. .,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany. .,Helmholtz-Zentrum Geesthacht, Institute of Biomaterial Science, Teltow, Germany.
| |
Collapse
|