1
|
Plasman M, Gonzalez-Voyer A, Bautista A, Díaz DE LA Vega-Pérez AH. Flexibility in thermal requirements: a comparative analysis of the wide-spread lizard genus Sceloporus. Integr Zool 2024. [PMID: 38880782 DOI: 10.1111/1749-4877.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Adaptation or acclimation of thermal requirements to environmental conditions can reduce thermoregulation costs and increase fitness, especially in ectotherms, which rely heavily on environmental temperatures for thermoregulation. Insight into how thermal niches have shaped thermal requirements across evolutionary history may help predict the survival of species during climate change. The lizard genus Sceloporus has a widespread distribution and inhabits an ample variety of habitats. We evaluated the effects of geographical gradients (i.e. elevation and latitude) and local environmental temperatures on thermal requirements (i.e. preferred body temperature, active body temperature in the field, and critical thermal limits) of Sceloporus species using published and field-collected data and performing phylogenetic comparative analyses. To contrast macro- and micro-evolutional patterns, we also performed intra-specific analyses when sufficient reports existed for a species. We found that preferred body temperature increased with elevation, whereas body temperature in the field decreased with elevation and increased with local environmental temperatures. Critical thermal limits were not related to the geographic gradient or environmental temperatures. The apparent lack of relation of thermal requirements to geographic gradient may increase vulnerability to extinction due to climate change. However, local and temporal variations in thermal landscape determine thermoregulation opportunities and may not be well represented by geographic gradient and mean environmental temperatures. Results showed that Sceloporus lizards are excellent thermoregulators, have wide thermal tolerance ranges, and the preferred temperature was labile. Our results suggest that Sceloporus lizards can adjust to different thermal landscapes, highlighting opportunities for continuous survival in changing thermal environments.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H Díaz DE LA Vega-Pérez
- Consejo Nacional de Humanidades, Ciencias, y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
2
|
Kar F, Nakagawa S, Noble DWA. Heritability and developmental plasticity of growth in an oviparous lizard. Heredity (Edinb) 2024; 132:67-76. [PMID: 37968348 PMCID: PMC10844306 DOI: 10.1038/s41437-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/17/2023] Open
Abstract
Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual's growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.
Collapse
Affiliation(s)
- Fonti Kar
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Daniel W A Noble
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia.
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
3
|
Anderson RO, Tingley R, Hoskin CJ, White CR, Chapple DG. Linking physiology and climate to infer species distributions in Australian skinks. J Anim Ecol 2023; 92:2094-2108. [PMID: 37661659 DOI: 10.1111/1365-2656.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.
Collapse
Affiliation(s)
- Rodolfo O Anderson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
5
|
Lindsay WR, Bererhi B, Ljungström G, Wapstra E, Olsson M. Quantitative genetics of breeding coloration in sand lizards; genic capture unlikely to maintain additive genetic variance. Heredity (Edinb) 2023; 130:329-334. [PMID: 36941410 PMCID: PMC10162981 DOI: 10.1038/s41437-023-00607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this "lek paradox" including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male-male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.
Collapse
Affiliation(s)
- Willow R Lindsay
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden
| | - Badreddine Bererhi
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden
| | | | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mats Olsson
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
6
|
Sasson D, Agali U, Brouk R, Hercules J, Kilmer J, Macchiano A, Ola-Ajose A, Fowler-Finn K. The potential for the evolution of thermally sensitive courtship behaviours in the treehopper, Enchenopa binotata. J Evol Biol 2022; 35:1442-1454. [PMID: 36129909 DOI: 10.1111/jeb.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
The ability of animals to adapt to warming will depend on the evolutionary potential of thermally sensitive traits. The number of studies measuring the quantitative genetics of a wide variety of thermally sensitive traits has steadily increased; however, no study has yet investigated the quantitative genetics of thermal sensitivity for courtship traits. Since courtship often precedes mating, the ability of these traits to respond to warming may impact reproduction and therefore population persistence. Here, we use classic quantitative genetics breeding design to estimate heritability of various aspects of the thermal sensitivity of courtship behaviours in the treehopper Enchenopa binotata. We generated individual-level thermal courtship activity curves for males and females and measured levels of genetic variation in the thermal sensitivity of courtship activity. We found low heritability with 95% credible intervals that did not approach zero for most traits. Levels of genetic variation were highest in traits describing thermal tolerance. We also found some evidence for genetic correlations between traits within but not across sexes. Together, our results suggest that the range of temperatures over which these treehoppers actively court can evolve, although it remains unclear whether adaptation can happen quickly enough to match the speed of warming.
Collapse
Affiliation(s)
- Daniel Sasson
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA.,South Carolina Department of Natural Resources, Charleston, South Carolina, USA
| | - Uchechukwu Agali
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA.,Harris-Stowe State University, St. Louis, Missouri, USA
| | - Rachel Brouk
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacob Hercules
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA.,University of Missouri, Columbia, Missouri, USA
| | - Joey Kilmer
- Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Anthony Macchiano
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Abisiola Ola-Ajose
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA.,Harris-Stowe State University, St. Louis, Missouri, USA
| | - Kasey Fowler-Finn
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Abstract
The integration of life-history, behavioural and physiological traits into a ‘pace-of-life syndrome’ is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in ‘pace-of-life’ are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, Rmax, but not thermal optimum Topt, in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a ‘cold–hot’ axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher Topt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.
Collapse
Affiliation(s)
- Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
8
|
McTernan MR, Sears MW. Repeatability of Voluntary Thermal Maximum and Covariance with Water Loss Reveal Potential for Adaptation to Changing Climates. Physiol Biochem Zool 2022; 95:113-121. [PMID: 34986078 DOI: 10.1086/717938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough climate warming poses a grave threat to amphibians, little is known about the capacity of this group to evolve in response to warming. The capacity of key traits to evolve depends on the presence of genetic variation on which selection can act. Here, we use repeatability estimates to estimate the potential upper bounds of heritable genetic variation in voluntary and critical thermal maxima of gray-cheeked salamanders (Plethodon metcalfi). Increases in thermal tolerance may also require concordant increases in resistance to water loss because hotter temperatures incur greater evaporative risk. Therefore, we also tested for a correlation between voluntary thermal maxima and resistance to water loss and conducted an acclimation study to test for covariation between these traits in response to warming. Voluntary thermal maxima exhibited low to moderate levels of repeatability (R=0.32, P=0.045), while critical thermal maxima exhibited no statistically significant repeatability (R=0.10, P=0.57). Voluntary thermal maxima also correlated positively with resistance to water loss (R=0.31, P=0.025) but only when controlling for body mass. Voluntary thermal maxima and resistance to water loss also exhibited different acclimatory responses across control (12°C-18°C) and warm (18°C-24°C) temperature regimes, indicating a potential decoupling of traits in different thermal environments. By addressing the repeatability of thermal tolerance and the potential for covariation with resistance to water loss, we begin to address some of the key requirements of amphibians to evolve in warming climates.
Collapse
|
9
|
Neel LK, Logan ML, Nicholson DJ, Miller C, Chung AK, Maayan I, Degon Z, DuBois M, Curlis JD, Taylor Q, Keegan KM, McMillan WO, Losos JB, Cox CL. Habitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior. Biotropica 2021. [DOI: 10.1111/btp.12951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Michael L. Logan
- University of Nevada Reno NV USA
- Smithsonian Tropical Research Institute Panama City Panama
| | - Daniel J. Nicholson
- Smithsonian Tropical Research Institute Panama City Panama
- Queen Mary University London London UK
| | | | - Albert K. Chung
- Georgia Southern University Statesboro GA USA
- University of California, Los Angeles Los Angeles CA USA
| | | | - Zach Degon
- Georgia Southern University Statesboro GA USA
| | | | | | | | | | - W. O. McMillan
- Smithsonian Tropical Research Institute Panama City Panama
| | | | - Christian L. Cox
- Georgia Southern University Statesboro GA USA
- Florida International University Miami FL USA
| |
Collapse
|
10
|
Coggins BL, Pearson AC, Yampolsky LY. Does geographic variation in thermal tolerance in Daphnia represent trade-offs or conditional neutrality? J Therm Biol 2021; 98:102934. [PMID: 34016356 DOI: 10.1016/j.jtherbio.2021.102934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/20/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Geographic variation in thermal tolerance in Daphnia seems to represent genetic load at the loci specifically responsible for heat tolerance resulting from conditional neutrality. We see no evidence of trade-offs between fitness-related traits at 25 °C vs. 10 °C or between two algal diets across Daphnia magna clones from a variety of locations representing the opposite ends of the distribution of long-term heat tolerance. Likewise, we found no evidence of within-environment trade-offs between heat tolerance and fitness-related traits in any of the environments. Neither short-term and long-term heat tolerance shows any consistent relationship with lipid fluorescence polarization and lipid peroxidation across clones or environments. Pervasive positive correlations between fitness-related traits indicate differences in genetic load rather than trade-off based local adaptation or thermal specialization. For heat tolerance such differences may be caused by either relaxation of stabilizing selection due to lower exposure to high temperature extremes, i.e., conditional neutrality, or by small effective population size followed by the recent range expansion.
Collapse
Affiliation(s)
- B L Coggins
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; Department of Biological Sciences, University of Notre Dame, IN, 46556, USA
| | - A C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; University of Basel, Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
11
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
12
|
Cox CL, Tribble HO, Richardson S, Chung AK, Curlis JD, Logan ML. Thermal ecology and physiology of an elongate and semi-fossorial arthropod, the bark centipede. J Therm Biol 2020; 94:102755. [DOI: 10.1016/j.jtherbio.2020.102755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
|
13
|
Goulet CT, Hart W, Phillips BL, Llewelyn J, Wong BBM, Chapple DG. No behavioral syndromes or sex‐specific personality differences in the southern rainforest sunskink (
Lampropholis similis
). Ethology 2020. [DOI: 10.1111/eth.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Celine T. Goulet
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Wes Hart
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Ben L. Phillips
- School of Biosciences University of Melbourne Parkville Vic. Australia
- Centre for Tropical Biodiversity and Climate James Cook University Townsville Qld Australia
| | - John Llewelyn
- Centre for Tropical Biodiversity and Climate James Cook University Townsville Qld Australia
- Global Ecology Lab College of Science and Engineering Flinders University Adelaide SA Australia
| | - Bob B. M. Wong
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - David G. Chapple
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
14
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
15
|
Logan ML, Cox CL. Genetic Constraints, Transcriptome Plasticity, and the Evolutionary Response to Climate Change. Front Genet 2020; 11:538226. [PMID: 33193610 PMCID: PMC7531272 DOI: 10.3389/fgene.2020.538226] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
In situ adaptation to climate change will be critical for the persistence of many ectotherm species due to their relative lack of dispersal capacity. Climate change is causing increases in both the mean and the variance of environmental temperature, each of which may act as agents of selection on different traits. Importantly, these traits may not be heritable or have the capacity to evolve independently from one another. When genetic constraints prevent the "baseline" values of thermal performance traits from evolving rapidly, phenotypic plasticity driven by gene expression might become critical. We review the literature for evidence that thermal performance traits in ectotherms are heritable and have genetic architectures that permit their unconstrained evolution. Next, we examine the relationship between gene expression and both the magnitude and duration of thermal stress. Finally, we identify genes that are likely to be important for adaptation to a changing climate and determine whether they show patterns consistent with thermal adaptation. Although few studies have measured narrow-sense heritabilities of thermal performance traits, current evidence suggests that the end points of thermal reaction norms (tolerance limits) are moderately heritable and have the potential to evolve rapidly. By contrast, performance at intermediate temperatures has substantially lower evolutionary potential. Moreover, evolution in many species appears to be constrained by genetic correlations such that populations can adapt to either increases in mean temperature or temperature variability, but not both. Finally, many species have the capacity for plastic expression of the transcriptome in response to temperature shifts, with the number of differentially expressed genes increasing with the magnitude, but not the duration, of thermal stress. We use these observations to develop a conceptual model that describes the likely trajectory of genome evolution in response to changes in environmental temperature. Our results indicate that extreme weather events, rather than gradual increases in mean temperature, are more likely to drive genetic and phenotypic change in wild ectotherms.
Collapse
Affiliation(s)
- Michael L Logan
- Department of Biology, University of Nevada, Reno, Reno, NV, United States.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
16
|
Moghadam NN, Sidhu K, Summanen PAM, Ketola T, Kronholm I. Quantitative genetics of temperature performance curves of Neurospora crassa. Evolution 2020; 74:1772-1787. [PMID: 32432345 DOI: 10.1111/evo.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Earth's temperature is increasing due to anthropogenic CO 2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.
Collapse
Affiliation(s)
- Neda N Moghadam
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Karendeep Sidhu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Pauliina A M Summanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
17
|
Logan ML, Minnaar IA, Keegan KM, Clusella‐Trullas S. The evolutionary potential of an insect invader under climate change*. Evolution 2019; 74:132-144. [DOI: 10.1111/evo.13862] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Michael L. Logan
- University of Nevada‐Reno Reno Nevada 89557
- Smithsonian Tropical Research Institute Panama City Panama
- Stellenbosch UniversityDepartment of Botany and Zoology and Centre of Excellence for Invasion Biology Stellenbosch South Africa
| | - Ingrid A. Minnaar
- Stellenbosch UniversityDepartment of Botany and Zoology and Centre of Excellence for Invasion Biology Stellenbosch South Africa
| | | | - Susana Clusella‐Trullas
- Stellenbosch UniversityDepartment of Botany and Zoology and Centre of Excellence for Invasion Biology Stellenbosch South Africa
| |
Collapse
|
18
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Gilbert AL, Miles DB. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance. Am Nat 2019; 194:344-355. [DOI: 10.1086/704208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Llewelyn J, Macdonald SL, Moritz C, Martins F, Hatcher A, Phillips BL. Adjusting to climate: Acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integr Zool 2019; 13:411-427. [PMID: 29316349 DOI: 10.1111/1749-4877.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialization means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in 7 physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (i) recently field-collected animals; (ii) the same animals following laboratory acclimation; and (iii) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little to no effect on most traits. These results suggest that, while specialized, tropical ectotherms may be capable of rapid shifts in climate-relevant traits.
Collapse
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Stewart L Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Felipe Martins
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia
| | - Ben L Phillips
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
O'Sullivan RJ, Aykanat T, Johnston SE, Kane A, Poole R, Rogan G, Prodöhl PA, Primmer CR, McGinnity P, Reed TE. Evolutionary stasis of a heritable morphological trait in a wild fish population despite apparent directional selection. Ecol Evol 2019; 9:7096-7111. [PMID: 31312431 PMCID: PMC6617767 DOI: 10.1002/ece3.5274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
Comparing observed versus theoretically expected evolutionary responses is important for our understanding of the evolutionary process, and for assessing how species may cope with anthropogenic change. Here, we document directional selection for larger female size in Atlantic salmon, using pedigree-derived estimates of lifetime reproductive success as a fitness measure. We show the trait is heritable and, thus, capable of responding to selection. The Breeder's Equation, which predicts microevolution as the product of phenotypic selection and heritability, predicted evolution of larger size. This was at odds, however, with the observed lack of either phenotypic or genetic temporal trends in body size, a so-called "paradox of stasis." To investigate this paradox, we estimated the additive genetic covariance between trait and fitness, which provides a prediction of evolutionary change according to Robertson's secondary theorem of selection (STS) that is unbiased by missing variables. The STS prediction was consistent with the observed stasis. Decomposition of phenotypic selection gradients into genetic and environmental components revealed a potential upward bias, implying unmeasured factors that covary with trait and fitness. These results showcase the power of pedigreed, wild population studies-which have largely been limited to birds and mammals-to study evolutionary processes on contemporary timescales.
Collapse
Affiliation(s)
- Ronan James O'Sullivan
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Susan E. Johnston
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adam Kane
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | | | - Ger Rogan
- Marine Institute, FurnaceNewportMayoIreland
| | - Paulo A. Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Medical Biology CentreQueen's University BelfastBelfastUK
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Philip McGinnity
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Thomas Eric Reed
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
22
|
Gilbert AL, Miles DB. Spatiotemporal variation in thermal niches suggests lability rather than conservatism of thermal physiology along an environmental gradient. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Temperature variation throughout a species range can be extensive and exert divergent spatiotemporal patterns of selection. The estimation of phenotypic differences of populations along environmental gradients provides information regarding population-level responses to changing environments and evolutionary lability in climate-relevant traits. However, few studies have found physiological differentiation across environmental gradients attributable to behavioural thermoregulation buffering physiological evolution. Here, we compared thermal sensitivity of physiological performance among three populations of the ornate tree lizard (Urosaurus ornatus) along a 1100 m elevational gradient in southeastern Arizona across years in order to determine whether spatial differences in thermal environments are capable of driving local physiological differentiation. Lizards exhibited significant population-level differences in thermal physiology. The thermal traits of lizards at low elevations included warmer body temperatures and higher preferred and critical thermal temperatures. In contrast, lizards at higher elevations had cooler body temperatures and lower preferred and critical thermal temperatures. Populations also exhibited differences in the optimal temperature for performance and thermal performance breadth. The direction of population variation was consistent across years. Environmental gradients can provide model systems for studying the evolution of thermal physiology, and our study is one of the first to suggest that population differentiation in thermal physiology could be more prominent than previously thought.
Collapse
Affiliation(s)
- Anthony L Gilbert
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| |
Collapse
|
23
|
Muñoz MM, Bodensteiner BL. Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution. Integr Org Biol 2019; 1:oby002. [PMID: 33791511 PMCID: PMC7671085 DOI: 10.1093/iob/oby002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution.
Collapse
Affiliation(s)
- M M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| | - B L Bodensteiner
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
24
|
Herrando-Pérez S, Ferri-Yáñez F, Monasterio C, Beukema W, Gomes V, Belliure J, Chown SL, Vieites DR, Araújo MB. Intraspecific variation in lizard heat tolerance alters estimates of climate impact. J Anim Ecol 2018; 88:247-257. [PMID: 30303530 DOI: 10.1111/1365-2656.12914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/15/2018] [Indexed: 11/30/2022]
Abstract
Research addressing the effects of global warming on the distribution and persistence of species generally assumes that population variation in thermal tolerance is spatially constant or overridden by interspecific variation. Typically, this rationale is implicit in sourcing one critical thermal maximum (CTmax ) population estimate per species to model spatiotemporal cross-taxa variation in heat tolerance. Theory suggests that such an approach could result in biased or imprecise estimates and forecasts of impact from climate warming, but limited empirical evidence in support of those expectations exists. We experimentally quantify the magnitude of intraspecific variation in CTmax among lizard populations, and the extent to which incorporating such variability can alter estimates of climate impact through a biophysical model. To do so, we measured CTmax from 59 populations of 15 Iberian lizard species (304 individuals). The overall median CTmax across all individuals from all species was 42.8°C and ranged from 40.5 to 48.3°C, with species medians decreasing through xeric, climate-generalist and mesic taxa. We found strong statistical support for intraspecific differentiation in CTmax by up to a median of 3°C among populations. We show that annual restricted activity (operative temperature > CTmax ) over the Iberian distribution of our study species differs by a median of >80 hr per 25-km2 grid cell based on different population-level CTmax estimates. This discrepancy leads to predictions of spatial variation in annual restricted activity to change by more than 20 days for six of the study species. Considering that during restriction periods, reptiles should be unable to feed and reproduce, current projections of climate-change impacts on the fitness of ectotherm fauna could be under- or over-estimated depending on which population is chosen to represent the physiological spectra of the species in question. Mapping heat tolerance over the full geographical ranges of single species is thus critical to address cross-taxa patterns and drivers of heat tolerance in a biologically comprehensive way.
Collapse
Affiliation(s)
- Salvador Herrando-Pérez
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Francisco Ferri-Yáñez
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Camila Monasterio
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Wouter Beukema
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Verónica Gomes
- Research Center in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (lnBIO), Universidade do Porto, Vairão, Portugal
| | - Josabel Belliure
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David R Vieites
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Miguel B Araújo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain.,InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Universidade de Évora, Évora, Portugal.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|