1
|
Cheng H, Zhang M, Fang G, Li M, Zhang R, Xie Q, Han S, Lv J, Deng M. The Transcription Factor CcMYB330 Regulates Capsaicinoid Biosynthesis in Pepper Fruits. Int J Mol Sci 2025; 26:1438. [PMID: 40003905 PMCID: PMC11854957 DOI: 10.3390/ijms26041438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Pepper is an important vegetable and economic crop, and the MYB family is one of the most numerous transcription factor families in plants, extensively participating in various biological processes such as plant growth, development, and stress resistance. In this study, CcMYB330 is identified as a differentially expressed gene in the pepper fruit, and CcMYB330 is expressed with higher expression levels in the placenta and pericarp at different development stages of pepper fruit. Analysis of the promoter cis-elements revealed that this gene contains not only core elements but also environmental factor response elements and plant hormone response elements. The silencing of CcMYB330 could reduce the capsaicinoid accumulation in pepper fruit, while the overexpression of CcMYB330 could increase capsaicinoid accumulation. Additionally, silencing or overexpressing CcMYB330 could regulate the expression of structural genes involved in capsaicinoid biosynthesis. In addition, through yeast one-hybrid experiments, we identified an interaction between CcMYB330 and the capsaicinoid biosynthesis structural gene CcPAL. Further evidence from EMSA experiments and dual luciferase assays confirmed that CcMYB330 can bind to the cis-element ACCAACAACCAAA in the CcPAL promoter. These results indicate that CcMYB330 may regulate the synthesis of capsaicinoids by modulating structural genes in the capsaicinoid biosynthesis pathway, providing new insights into the regulatory mechanisms of capsaicinoid synthesis.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Mingxian Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Guining Fang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Mengjuan Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Ruihao Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Qiaoli Xie
- College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shu Han
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (H.C.); (M.Z.); (G.F.); (M.L.); (R.Z.); (S.H.)
| |
Collapse
|
2
|
Wang Y, Li X, Qiu H, Chen R, Xiong A, Xu Z, Miao W, Chen R, Wang P, Hou X, Yu H, Yang B, Yang S, Suo H, Zou X, Liu Z, Ou L. The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits. PLANT PHYSIOLOGY 2025; 197:kiaf013. [PMID: 39797909 DOI: 10.1093/plphys/kiaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025]
Abstract
Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient. Here, we identified the MADS-box transcription factor RIPENING INHIBITOR (MADS-RIN) in pepper (Capsicum annuum), which regulates ripening in climacteric tomato (Solanum lycopersicum) fruits, using weighted gene co-expression network analysis. We found MADS-RIN can directly bind to the promoters of carotenoid biosynthetic genes phytoene synthase 1 (PSY1) and capsanthin/capsorubin synthase (CCS) and the promoter of DIVARICATA1 to activate their expression, thereby regulating carotenoid biosynthesis directly or indirectly. The physical interaction between MADS-RIN and DIVARICATA1 enhances the transactivation effect on PSY1 and CCS. The self-transactivation of MADS-RIN demonstrates its capability to expedite the above process under specific conditions. Interestingly, chromatin immunoprecipitation sequencing assays revealed consistency and divergence of potential targets of MADS-RIN in climacteric tomato and nonclimacteric pepper fruits, suggesting potential conservation and variation of MADS-RIN in regulating ripening and carotenoid metabolism. The present study illustrates the regulatory mechanism of the MADS-RIN-DIVARICATA1 module in capsanthin biosynthesis in pepper, providing targets for breeding high-quality peppers. These findings enrich our understanding of the regulatory network of carotenoid biosynthesis and offer insights into the complex mechanisms of MADS-RIN in climacteric/nonclimacteric fruit ripening and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Yinggang Wang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Yuelushan Lab, Changsha 410128, China
| | - Xinhui Li
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huixia Qiu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Ruting Chen
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhisheng Xu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd., Changsha, Hunan 410119, China
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Wang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410125, China
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huiyang Yu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Sha Yang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan Suo
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Xuexiao Zou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Yuelushan Lab, Changsha 410128, China
| | - Zhoubin Liu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
3
|
Gai S, Su L, Tang C, Xia M, Zhou Z. The antagonistic effects of red and blue light radiation on leaf and stem development of pepper (Capsicum annuum L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112338. [PMID: 39608575 DOI: 10.1016/j.plantsci.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Light spectrum plays an essential role in influencing the growth and development of vegetable seedlings in industrial seedling raising. Currently, blue light, red light, and their combination are utilized in industrial seedling raising. However, the theoretical basis behind the screening of red and blue light combinations remains unclear. Therefore, we utilized pepper seedlings to investigate the effects mechanism of B (blue light, 450 nm) and R (red light, 660 nm) light-emitting diodes (pc-LED) on stem and leaf development,the full spectrum light was used as a control (W). The growth of pepper seedlings was evaluated by measuring indicators such as leaf, stem growth, and cellular ultrastructure, and try to reveal the regulatory pathways of auxin in leaves at the level of gene expression and transcriptome analysis. The results indicated that compared to W, the blue light led to shorter internodes and reduced plant height, while the red light resulted in larger leaves and elongated internodes of pepper seedlings. Ultrastructural analysis revealed that the antagonism was associated with the longitudinal elongation and transverse expansion of the stem and the expansion efficiency of leaf epidermal cells. Further analysis indicated that cell proliferation and leaf growth were regulated by the phytohormone pathway through light signaling. The blue light upregulated the expression of CaRAX in the phytohormone pathway, while red light increased the expression of CaGRF and CaARF, thereby influencing leaf size. These findings offer new insights into spectral screening for industrial seedling cultivation.
Collapse
Affiliation(s)
- Shujie Gai
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Liujuan Su
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Chengzhu Tang
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Mao Xia
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Zhi Zhou
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Mao S, Wang J, Guo Z, Huang H, Wang S, Fei D, Liu J, Wu Q, Nie J, Wu Q, Huang K. Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response. PHYSIOLOGIA PLANTARUM 2025; 177:e70037. [PMID: 39790042 DOI: 10.1111/ppl.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.
Collapse
Affiliation(s)
- Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Zhijun Guo
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Huiping Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Shengze Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Dandan Fei
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Juan Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qi Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jin Nie
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
5
|
Luo F, Huang Y, Sun Y, Guan J, Li M, Liu T, Qi H. Transcription Factor CmWRKY13 Regulates Cucurbitacin B Biosynthesis Leading to Bitterness in Oriental Melon Fruit ( Cucumis melo var. Makuwa Makino). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24697-24710. [PMID: 39460931 DOI: 10.1021/acs.jafc.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Bitterness, caused by cucurbitacin B (CuB), is one of the important traits that affects melon fruit quality and consumer acceptance. Therefore, the detailed mechanism behind the regulation of CuB biosynthesis on melon fruit needs to be further explored. This study investigated CuB content and transcriptomes of "YMR" melon fruit treated by 5 and 20 mg L-1 CPPU. The content of CuB reaches its peak in 5 days and then decreases. WGCNA identified the WRKY transcription factor (TF), CmWRKY13, coexpressed with CuB biosynthetic genes (Cm180, Cm170, Cm160, and CmACT). Yeast one-hybrid, dual-luciferase, and transient gene expression assays were conducted and suggested that the nucleus-localized CmWRKY13 transactivated the promoters of CuB biosynthetic genes and participated in the regulation of CuB biosynthesis. Furthermore, CmWRKY13 could interact with CmBt, the fruit bitterness-specific TF, which synergistically activated CuB biosynthetic gene expression. These findings provide a novel mechanistic insight for CuB biosynthesis and regulation in melon cultivation.
Collapse
Affiliation(s)
- Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yushan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yinhan Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - JingYue Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
6
|
Li XJ, Zhou XH, Bao AK. Genome-wide analysis of the R2R3-MYB gene family and identification of candidate genes that regulate isoflavone biosynthesis in red clover (Trifolium pratense). Int J Biol Macromol 2024; 282:137182. [PMID: 39489260 DOI: 10.1016/j.ijbiomac.2024.137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Red clover (Trifolium pratense) is a perennial legume with high feeding and medicinal value attributed to its abundant isoflavone content. Previous studies reported that R2R3-MYB transcription factors are involved in the biosynthesis of isoflavones; however, their specific role in red clover remains poorly understood. Through comprehensive genome-wide and transcriptome analyses, a total of 138 TpR2R3-MYB genes were identified and classified into 30 distinct subgroups within a phylogenetic tree. Importantly, six of these subgroups showed associations with isoflavone biosynthesis in red clover. The majority of segmental duplication events (Ka/Ks < 1) indicated that the TpR2R3-MYB gene underwent strong purifying selection during evolution. The qRT-PCR analysis demonstrated high expression levels of TpMYB79 and TpMYB53 in Minshan red clover at full flowering stage, consistent with the trend for isoflavone content determination, suggesting that TpMYB79 and TpMYB53 might be important regulators of isoflavone biosynthesis in red clover. Additionally, we observed nucleus and vacuole membrane localization of TpMYB53 and TpMYB79, with TpMYB53 primarily exerting transcriptional activation through its C-terminal activation motifs while TpMYB79 exhibited no transcriptional activity. These findings provided a foundation for the study of the biological function of R2R3-MYB transcription factors in red clover.
Collapse
Affiliation(s)
- Xiao-Jia Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Yang Y, Gao C, Ye Q, Liu C, Wan H, Ruan M, Zhou G, Wang R, Li Z, Diao M, Cheng Y. The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2887. [PMID: 39458834 PMCID: PMC11511365 DOI: 10.3390/plants13202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future.
Collapse
Affiliation(s)
- Yuanling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Ming Diao
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| |
Collapse
|
8
|
Yu S, Zhang W, Zhang L, Wu D, Fu G, Yang M, Wu K, Wu Z, Deng Q, Zhu J, Fu H, Lu X, Wang Z, Cheng S. Negative regulation of CcPAL2 gene expression by the repressor transcription factor CcMYB4-12 modulates lignin and capsaicin biosynthesis in Capsicum chinense fruits. Int J Biol Macromol 2024; 280:135592. [PMID: 39276895 DOI: 10.1016/j.ijbiomac.2024.135592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.
Collapse
Affiliation(s)
- Shuang Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Wei Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Liping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Dan Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Genying Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mengxian Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kun Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhuo Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qin Deng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jie Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Huizhen Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xu Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Zhiwei Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Li Q, Fu C, Yang B, Yu H, He H, Xu Q, Miao W, Liu R, Chen W, Zhang Z, Zou X, Hu B, Ou L. Stem lodging Resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L. HORTICULTURE RESEARCH 2024; 11:uhae169. [PMID: 39135730 PMCID: PMC11317896 DOI: 10.1093/hr/uhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Lodging presents a significant challenge in cultivating high-yield crops with extensive above-ground biomass, yet the molecular mechanisms underlying this phenomenon in the Solanaceae family remain largely unexplored. In this study, we identified a gene, CaSLR1 (Capsicum annuum Stem Lodging Resistance 1), which encodes a MYELOBLASTOSIS (MYB) family transcription factor, from a lodging-affected C. annuum EMS mutant. The suppression of CaSLR1 expression in pepper led to notable stem lodging, reduced thickness of the secondary cell wall, and decreased stem strength. A similar phenotype was observed in tomato with the knockdown of SlMYB61, the orthologous gene to CaSLR1. Further investigations demonstrated that CaNAC6, a gene involved in secondary cell wall (SCW) formation, is co-expressed with CaSLR1 and acts as a positive regulator of its expression, as confirmed through yeast one-hybrid, dual-luciferase reporter assays, and electrophoretic mobility shift assays. These findings elucidate the CaNAC6-CaSLR1 module that contributes to lodging resistance, emphasizing the critical role of CaSLR1 in the lodging resistance regulatory network.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Rongyun Liu
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
10
|
Satyawan D, Nugroho K, Terryana RT, Fitrahtunnisa, Kirana R, Priyatno TP, Lestari P, Syukur M, Sobir, Faizal A, Mulya K. Surviving mutations: how an Indonesian Capsicum frutescens L. cultivar maintains capsaicin biosynthesis despite disruptive mutations. GENETIC RESOURCES AND CROP EVOLUTION 2024; 71:2949-2963. [DOI: 10.1007/s10722-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2025]
|
11
|
Chen W, Wang X, Sun J, Wang X, Zhu Z, Ayhan DH, Yi S, Yan M, Zhang L, Meng T, Mu Y, Li J, Meng D, Bian J, Wang K, Wang L, Chen S, Chen R, Jin J, Li B, Zhang X, Deng XW, He H, Guo L. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat Commun 2024; 15:4295. [PMID: 38769327 PMCID: PMC11106260 DOI: 10.1038/s41467-024-48643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.
Collapse
Affiliation(s)
- Weikai Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xiangfeng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Zhangsheng Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shu Yi
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ming Yan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Lili Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 262500, China
| | - Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Yu Mu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jun Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Dian Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ke Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ruidong Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jingyun Jin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| |
Collapse
|
12
|
Burgos-Valencia E, Echevarría-Machado I, Ortega-Lule G, Medina-Lara F, García-Laynes F, Martínez-Estévez M, Narváez-Zapata J. Haplotype analysis, regulatory elements and docking simulation of structural models of different AT3 copies in the genus Capsicum. J Biomol Struct Dyn 2024:1-14. [PMID: 38354741 DOI: 10.1080/07391102.2024.2317991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Capsaicinoids are responsible for the pungency in Capsicum species. These are synthesized by the Capsaicin synthase (CS) encoded by the AT3 gene, which catalyzes the transference of an acyl moiety from a branched-chain fatty acid-CoA ester to the vanillylamine to produce capsaicinoids. Some AT3 gene copies have been identified on the Capsicum genome. The absence of capsaicinoid in some nonpungent accessions is related to mutant AT3 alleles. The differences between CS protein copies can affect the tridimensional structure of the protein and the affinity for its substrates, and this could affect fruit pungency. This study characterized 32 AT3 sequences covering Capsicum pungent and non-pungent accessions. These were clustered in AT3-D1 and AT3-D2 groups and representative sequences were analyzed. Genomic upstream analysis shows different regulatory elements, mainly responsive to light and abiotic stress. AT3-D1 and AT3-D2 gene expression was confirmed in fruit tissues of C. annuum. Amino acid substitutions close to the predictable HXXXD and DFGWG motifs were also identified. AT3 sequences were modeled showing a BAHD acyltransferase structure with two connected domains. A pocket with different shape, size and composition between AT3 models was found inside the protein, with the conserved motif HXXXD exposed to it, and a channel for their accessibility. CS substrates exhibit high interaction energies with the His and Asp conserved residues. AT3 models have different interaction affinities with the (E)-8-methylnon-6-enoyl-CoA, 8-methylnonanoyl-CoA and vanillylamine substrates. These results suggested that AT3-D1 and AT3-D2 sequences encode CS enzymes with different regulatory factors and substratum affinities.
Collapse
Affiliation(s)
- Eduardo Burgos-Valencia
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Gustavo Ortega-Lule
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Fátima Medina-Lara
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Federico García-Laynes
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Manuel Martínez-Estévez
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - José Narváez-Zapata
- Instituto Politécnico Nacional - Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| |
Collapse
|
13
|
Nakaniwa R, Misawa Y, Nakasato S, Sano K, Tanaka Y, Nakatani S, Kobata K. Biochemical Aspects of Putative Aminotransferase Responsible for Converting Vanillin to Vanillylamine in the Capsaicinoid Biosynthesis Pathway in Capsicum Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:559-565. [PMID: 38134368 DOI: 10.1021/acs.jafc.3c07369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The biosynthesis pathway of capsaicinoids includes the conversion of vanillin to vanillylamine, where putative aminotransferase (pAMT) is thought to be the enzyme responsible in Capsicum plants. The objectives of this study were to prove that pAMT is the enzyme responsible for this conversion in plants and to clarify its catalytic properties using biochemical methods. Both an extract of habanero placenta and recombinant pAMT (rpAMT) constructed by using an Escherichia coli expression system were able to convert vanillin to vanillylamine in the presence of γ-aminobutyric acid as an amino donor and pyridoxal phosphate as a coenzyme. Conversion from vanillin to vanillylamine by the placenta extract was significantly attenuated by adding an anti-pAMT antibody to the reaction system. The amino donor specificity and affinity for vanillin of rpAMT were similar to those of the placenta extract. We thus confirmed that pAMT is the enzyme responsible for the conversion of vanillin to vanillylamine in capsaicinoid synthesis in Capsicum fruits. Therefore, we propose that pAMT should henceforth be named vanillin aminotransferase (VAMT).
Collapse
Affiliation(s)
- Ryota Nakaniwa
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yuki Misawa
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Saika Nakasato
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Saitama 350-0295, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| |
Collapse
|
14
|
Gan Y, Yu B, Liu R, Shu B, Liang Y, Zhao Y, Qiu Z, Yan S, Cao B. Systematic analysis of the UDP-glucosyltransferase family: discovery of a member involved in rutin biosynthesis in Solanum melongena. FRONTIERS IN PLANT SCIENCE 2023; 14:1310080. [PMID: 38197083 PMCID: PMC10774229 DOI: 10.3389/fpls.2023.1310080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, Gros C, Boyaci HF, Ozalp R, Borovsky Y, Schafleitner R, Barchenger D, Finkers R, Brouwer M, Stein N, Rabanus-Wallace MT, Giuliano G, Voorrips R, Paran I, Lefebvre V. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1508-1528. [PMID: 37602679 DOI: 10.1111/tpj.16425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.
Collapse
Affiliation(s)
- Louis McLeod
- INRAE, GAFL, Montfavet, France
- INRAE, A2M, Montfavet, France
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pontecagnano Faiano, Italy
| | | | | | | | - Ramazan Ozalp
- Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Türkiye
| | - Yelena Borovsky
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Roland Schafleitner
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Derek Barchenger
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Corre, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | | | - Giovanni Giuliano
- Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
| | - Roeland Voorrips
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Ilan Paran
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | | |
Collapse
|
16
|
Wu M, Northen TR, Ding Y. Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1272363. [PMID: 38023861 PMCID: PMC10663375 DOI: 10.3389/fpls.2023.1272363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Plants produce a diverse range of specialized metabolites that play pivotal roles in mediating environmental interactions and stress adaptation. These unique chemical compounds also hold significant agricultural, medicinal, and industrial values. Despite the expanding knowledge of their functions in plant stress interactions, understanding the intricate biosynthetic pathways of these natural products remains challenging due to gene and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with broad substrate specificity. In the past decade, substantial progress in genomics, transcriptomics, metabolomics, and proteomics has made the exploration of plant specialized metabolism more feasible than ever before. Notably, recent advances in integrative multi-omics and computational approaches, along with other technologies, are accelerating the discovery of plant specialized metabolism. In this review, we present a summary of the recent progress in the discovery of plant stress-related specialized metabolites. Emphasis is placed on the application of advanced omics-based approaches and other techniques in studying plant stress-related specialized metabolism. Additionally, we discuss the high-throughput methods for gene functional characterization. These advances hold great promise for harnessing the potential of specialized metabolites to enhance plant stress resilience in the future.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Trent R. Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yezhang Ding
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
17
|
Xu W, Huang H, Li X, Yang M, Chi S, Pan Y, Li N, Paterson AH, Chai Y, Lu K. CaHMA1 promotes Cd accumulation in pepper fruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132480. [PMID: 37683343 DOI: 10.1016/j.jhazmat.2023.132480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The main planting areas for pepper (Capsicum sp.) are high in cadmium (Cd), which is the most prevalent heavy metal pollutant worldwide. Breeding pepper cultivars with low Cd levels can promote sustainable agricultural production and ensure the safety of pepper products. To identify breeding targets for reducing Cd accumulation in pepper fruits, we performed a genome-wide association study on 186 accessions. Polymorphisms were associated with fruit Cd content in a genomic region containing a homolog of Arabidopsis (Arabidopsis thaliana) Heavy metal-transporting ATPase 1 (HMA1) encoding a P-type ATPase. In two cultivars with contrasting Cd accumulation, transcriptome analysis revealed differentially expressed genes enriched for carbohydrate metabolism and photosynthesis in fruits with high Cd accumulation, and a Cd2+/Zn2+-exporting ATPase gene (HMA). Heterologous expression of CaHMA1 in yeast increases Cd sensitivity. Overexpression of CaHMA1 conferred a severe increase in Cd content in Arabidopsis plants, whereas reduced CaHMA1 expression in pepper fruits decreased Cd content. We propose that CaHMA1 expression may be an important component of the high Cd accumulation in pepper plants.
Collapse
Affiliation(s)
- Weihong Xu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - He Huang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Sunlin Chi
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nannan Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Andrew H Paterson
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA.
| | - Yourong Chai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X, Sun B. Virus-Induced Gene Silencing in the Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3162. [PMID: 37687408 PMCID: PMC10490191 DOI: 10.3390/plants12173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced gene silencing (VIGS), a transient transformation system, could be an optimal choice for validating gene function in the tea plant. In this study, phytoene desaturase (PDS), a carotenoid biosynthesis gene, was used as a reporter to evaluate the VIGS system. The injection sites of the leaves (leaf back, petiole, and stem) for infiltration were tested, and the results showed that petiole injection had the most effective injection, without leading to necrotic lesions that cause the leaves to drop. Tea leaves were inoculated with Agrobacterium harboring a tobacco rattle virus plasmid (pTRV2) containing a CsPDS silencing fragment. The tea leaves exhibited chlorosis symptoms 7-14 days after inoculation, depending on the cultivar. In the chlorosis plants, the coat protein (CP) of tobacco rattle virus (TRV) was detected and coincided with the lower transcription of CsPDS and reduced chlorophyll content compared with the empty vector control, with 81.82% and 54.55% silencing efficiency of 'LTDC' and 'YSX', respectively. These results indicate that the VIGS system with petiole injection could quickly and effectively silence a gene in tea plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| |
Collapse
|
19
|
Zeng D, Si C, Zhang M, Duan J, He C. ERF5 enhances protocorm-like body regeneration via enhancement of STM expression in Dendrobium orchid. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2071-2085. [PMID: 37212722 DOI: 10.1111/jipb.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Orchid plants develop protocorms upon germination and produce protocorm-like structures called protocorm-like bodies (PLBs) from protocorms and somatic cells via tissue culture. Protocorm-like bodies have broad technical application potential in the orchid industry and their regeneration is a distinct developmental process in the plant kingdom. However, little is known about this unparalleled developmental program. In this study, we identified a PLB-abundant gene, ethylene response factor (ERF), and a transcription factor named DoERF5, and determined its important role in PLB regeneration in Dendrobium orchid. Overexpression of DoERF5 in Dendrobium greatly enhanced the PLB regeneration from PLB and stem explants, and upregulated the expression of WOUND-INDUCED DEDIFFERENTIATION (DoWIND) homologs and SHOOT MERISTEMLESS (DoSTM), as well as the genes involved in cytokinin biosynthesis (DoIPT) and the cytokinin response factors (DoARRs). However, silencing DoERF5 reduced the regeneration rate of PLBs, and downregulated the expression of DoWIND homologs, DoSTM and DoARRs. We demonstrated that DoERF5 is directly bound to the DoSTM promoter and regulates its expression. In addition, overexpression of DoSTM in Dendrobium orchid resulted in favorable regeneration of PLBs. Our results clarify that DoERF5 regulates the regeneration of PLB by enhancing DoSTM expression. Our findings provide new insights into how DoERF5 mediates PLB regeneration and offers technical potential in improving clonal propagation, preservation, and the bioengineering of orchids.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
20
|
Song J, Sun B, Chen C, Ning Z, Zhang S, Cai Y, Zheng X, Cao B, Chen G, Jin D, Li B, Bian J, Lei J, He H, Zhu Z. An R-R-type MYB transcription factor promotes non-climacteric pepper fruit carotenoid pigment biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:724-741. [PMID: 37095638 DOI: 10.1111/tpj.16257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.
Collapse
Affiliation(s)
- Jiali Song
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binmei Sun
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zuoyang Ning
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuanglin Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Cai
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiongjie Zheng
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, 401120, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
21
|
Cheng Z, Mu C, Li X, Cheng W, Cai M, Wu C, Jiang J, Fang H, Bai Y, Zheng H, Geng R, Xu J, Xie Y, Dou Y, Li J, Mu S, Gao J. Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo ( Phyllostachys edulis). HORTICULTURE RESEARCH 2023; 10:uhad122. [PMID: 37554343 PMCID: PMC10405134 DOI: 10.1093/hr/uhad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/01/2023] [Indexed: 08/10/2023]
Abstract
Roots are essential for plant growth and development. Bamboo is a large Poaceae perennial with 1642 species worldwide. However, little is known about the transcriptional atlas that underpins root cell-type differentiation. Here, we set up a modified protocol for protoplast preparation and report single-cell transcriptomes of 14 279 filtered single cells derived from the basal root tips of moso bamboo. We identified four cell types and defined new cell-type-specific marker genes for the basal root. We reconstructed the developmental trajectories of the root cap, epidermis, and ground tissues and elucidated critical factors regulating cell fate determination. According to in situ hybridization and pseudotime trajectory analysis, the root cap and epidermis originated from a common initial cell lineage, revealing the particularity of bamboo basal root development. We further identified key regulatory factors for the differentiation of these cells and indicated divergent root developmental pathways between moso bamboo and rice. Additionally, PheWOX13a and PheWOX13b ectopically expressed in Arabidopsis inhibited primary root and lateral root growth and regulated the growth and development of the root cap, which was different from WOX13 orthologs in Arabidopsis. Taken together, our results offer an important resource for investigating the mechanism of root cell differentiation and root system architecture in perennial woody species of Bambusoideae.
Collapse
Affiliation(s)
- Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiangyu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Miaomiao Cai
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hui Fang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Juan Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Shaohua Mu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
22
|
Zhang L, Wu D, Zhang W, Shu H, Sun P, Huang C, Deng Q, Wang Z, Cheng S. Genome-Wide Identification of WRKY Gene Family and Functional Characterization of CcWRKY25 in Capsicum chinense. Int J Mol Sci 2023; 24:11389. [PMID: 37511147 PMCID: PMC10379288 DOI: 10.3390/ijms241411389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Pepper is renowned worldwide for its distinctive spicy flavor. While the gene expression characteristics of the capsaicinoid biosynthesis pathway have been extensively studied, there are already a few reports regarding transcriptional regulation in capsaicin biosynthesis. In this study, 73 WRKYs were identified in the genome of Capsicum chinense, and their physicochemical traits, DNA, and protein sequence characteristics were found to be complex. Combining RNA-seq and qRT-PCR data, the WRKY transcription factor CA06g13580, which was associated with the accumulation tendency of capsaicinoid, was screened and named CcWRKY25. CcWRKY25 was highly expressed in the placenta of spicy peppers. The heterologous expression of CcWRKY25 in Arabidopsis promoted the expression of genes PAL, 4CL1, 4CL2, 4CL3, CCR, and CCoAOMT and led to the accumulation of lignin and flavonoids. Furthermore, the expression of the capsaicinoid biosynthesis pathway genes (CBGs) pAMT, AT3, and KAS was significantly reduced in CcWRKY25-silenced pepper plants, resulting in a decrease in the amount of capsaicin. However, there was no noticeable difference in lignin accumulation. The findings suggested that CcWRKY25 could be involved in regulating capsaicinoid synthesis by promoting the expression of genes upstream of the phenylpropanoid pathway and inhibiting CBGs' expression. Moreover, the results highlighted the role of CcWRKY25 in controlling the pungency of pepper and suggested that the competitive relationship between lignin and capsaicin could also regulate the spiciness of the pepper.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Dan Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Wei Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Chuang Huang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Hu R, Wang J, Yang H, Wei D, Tang Q, Yang Y, Tian S, Wang Z. Comparative transcriptome analysis reveals the involvement of an MYB transcriptional activator, SmMYB108, in anther dehiscence in eggplant. FRONTIERS IN PLANT SCIENCE 2023; 14:1164467. [PMID: 37521920 PMCID: PMC10382176 DOI: 10.3389/fpls.2023.1164467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
Male sterility is a highly attractive agronomic trait as it effectively prevents self-fertilization and facilitates the production of high-quality hybrid seeds in plants. Timely release of mature pollen following anther dehiscence is essential for stamen development in flowering plants. Although several theories have been proposed regarding this, the specific mechanism of anther development in eggplant remains elusive. In this study, we selected an R2R3-MYB transcription factor gene, SmMYB108, that encodes a protein localized primarily in the nucleus by comparing the transcriptomics of different floral bud developmental stages of the eggplant fertile line, F142. Quantitative reverse transcription polymerase chain reaction revealed that SmMYB108 was preferentially expressed in flowers, and its expression increased significantly on the day of flowering. Overexpression of SmMYB108 in tobacco caused anther dehiscence. In addition, we found that SmMYB108 primarily functions as a transcriptional activator via C-terminal activation (amino acid 262-317). Yeast one-hybrid and dual-luciferase reporter assays revealed that genes (SmMYB21, SmARF6, and SmARF8) related to anther development targeted the SmMYB108 promoter. Overall, our results provide insights into the molecular mechanisms involved in the regulation of anther development by SmMYB108.
Collapse
Affiliation(s)
- Ruolin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Jiali Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huiqing Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
24
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Sharma N, Madan B, Khan MS, Sandhu KS, Raghuram N. Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1135675. [PMID: 37351205 PMCID: PMC10282765 DOI: 10.3389/fpls.2023.1135675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Bhumika Madan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - M. Suhail Khan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Kuljeet S. Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Nagar, Punjab, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
26
|
Li Y, Li H, Wang S, Li J, Bacha SAS, Xu G, Li J. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry ( Vaccinium spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1082245. [PMID: 37152168 PMCID: PMC10157174 DOI: 10.3389/fpls.2023.1082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
As a highly economic small fruit crop, blueberry is enjoyed by most people in terms of color, taste, and rich nutrition. To better understand its coloring mechanism on the process of ripening, an integrative analysis of the metabolome and transcriptome profiles was performed in three blueberry varieties at three developmental stages. In this study, 41 flavonoid metabolites closely related to the coloring in blueberry samples were analyzed. It turned out that the most differential metabolites in the ripening processes were delphinidin-3-O-arabinoside (dpara), peonidin-3-O-glucoside (pnglu), and delphinidin-3-O-galactoside (dpgal), while the most differential metabolites among different varieties were flavonols. Furthermore, to obtain more accurate and comprehensive transcripts of blueberry during the developmental stages, PacBio and Illumina sequencing technology were combined to obtain the transcriptome of the blueberry variety Misty, for the very first time. Finally, by applying the gene coexpression network analysis, the darkviolet and bisque4 modules related to flavonoid synthesis were determined, and the key genes related to two flavonoid 3', 5'-hydroxylase (F3'5'H) genes in the darkviolet module and one bHLH transcription factor in the bisque4 module were predicted. It is believed that our findings could provide valuable information for the future study on the molecular mechanism of flavonoid metabolites and flavonoid synthesis pathways in blueberries.
Collapse
Affiliation(s)
- Yinping Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Haifei Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Shiyao Wang
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Syed Asim Shah Bacha
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guofeng Xu
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
27
|
MYB24 Negatively Regulates the Biosynthesis of Lignin and Capsaicin by Affecting the Expression of Key Genes in the Phenylpropanoid Metabolism Pathway in Capsicum chinense. Molecules 2023; 28:molecules28062644. [PMID: 36985616 PMCID: PMC10054932 DOI: 10.3390/molecules28062644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The wide application of pepper is mostly related to the content of capsaicin, and phenylpropanoid metabolism and its branch pathways may play an important role in the biosynthesis of capsaicin. The expression level of MYB24, a transcription factor screened from the transcriptome data of the pepper fruit development stage, was closely related to the spicy taste. In this experiment, CcMYB24 was cloned from Hainan Huangdenglong pepper, a hot aromatic pepper variety popular in the world for processing, and its function was confirmed by tissue expression characteristics, heterologous transformation in Arabidopsis thaliana, and VIGS technology. The results showed that the relative expression level of CcMYB24 was stable in the early stage of pepper fruit development, and increased significantly from 30 to 50 days after flowering. Heterologous expression led to a significant increase in the expression of CcMYB24 and decrease in lignin content in transgenic Arabidopsis thaliana plants. CcMYB24 silencing led to a significant increase in the expression of phenylpropanoid metabolism pathway genes PAL, 4CL, and pAMT; lignin branch CCR1 and CAD; and capsaicin pathway CS, AT3, and COMT genes in the placenta of pepper, with capsaicin content increased by more than 31.72% and lignin content increased by 20.78%. However, the expression of PAL, pAMT, AT3, COMT, etc., in the corresponding pericarps did not change significantly. Although CS, CCR1, and CAD increased significantly, the relative expression amount was smaller than that in placental tissue, and the lignin content did not change significantly. As indicated above, CcMYB24 may negatively regulate the formation of capsaicin and lignin by regulating the expression of genes from phenylpropanoid metabolism and its branch pathways.
Collapse
|
28
|
Mu H, Li Y, Yuan L, Jiang J, Wei Y, Duan W, Fan P, Li S, Liang Z, Wang L. MYB30 and MYB14 form a repressor-activator module with WRKY8 that controls stilbene biosynthesis in grapevine. THE PLANT CELL 2023; 35:552-573. [PMID: 36255259 PMCID: PMC9806661 DOI: 10.1093/plcell/koac308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/13/2022] [Indexed: 05/12/2023]
Abstract
When exposed to pathogen infection or ultraviolet (UV) radiation, grapevine (Vitis vinifera) plants rapidly accumulate the stilbenoid resveratrol (Res) with concomitant increase of stilbene synthase (STS), the key enzyme in stilbene biosynthesis. Although a few transcription factors have been shown to regulate STSs, the molecular mechanism governing the regulation of STSs is not well elucidated. Our previous work showed that a VvMYB14-VvWRKY8 regulatory loop fine-tunes stilbene biosynthesis in grapevine through protein-protein interaction; overexpression of VvWRKY8 down-regulates VvMYB14 and VvSTS15/21; and application of exogenous Res up-regulates WRKY8 expression. Here, we identified an R2R3-MYB repressor, VvMYB30, which competes with the activator VvMYB14 for binding to the common binding sites in the VvSTS15/21 promoter. Similar to VvMYB14, VvMYB30 physically interacts with VvWRKY8 through their N-termini, forming a complex that does not bind DNA. Exposure to UV-B/C stress induces VvMYB14, VvWRKY8, and VvSTS15/21, but represses VvMYB30 in grapevine leaves. In addition, MYB30 expression is up-regulated by VvWRKY8-overexpression or exogenous Res. These findings suggest that the VvMYB14-VvWRKY8-VvMYB30 regulatory circuit allows grapevine to respond to UV stress by producing Res and prevents over-accumulation of Res to balance metabolic costs. Our work highlights the stress-mediated induction and feedback inhibition of stilbene biosynthesis through a complex regulatory network involving multiple positive and negative transcriptional regulators.
Collapse
Affiliation(s)
- Huayuan Mu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jinzhu Jiang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongzan Wei
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Lijun Wang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| |
Collapse
|
29
|
Zhang W, Wu D, Zhang L, Zhao C, Shu H, Cheng S, Wang Z, Zhu J, Liu P. Identification and expression analysis of capsaicin biosynthesis pathway genes at genome level in Capsicum chinense. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2071633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Wei Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Dan Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Chengzhi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Pingwu Liu
- Fang Zhiyuan Academician Team Innovation Center of Hainan Province, Haikou, Hainan, PR China
| |
Collapse
|
30
|
Ren S, Yuan Y, Wang H, Zhang Y. G2-LIKE CAROTENOID REGULATOR (SlGCR) is a positive regulator of lutein biosynthesis in tomato. ABIOTECH 2022; 3:267-280. [PMID: 36533268 PMCID: PMC9755792 DOI: 10.1007/s42994-022-00088-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Lutein is an oxygen-containing carotenoid synthesized in plant chloroplasts and chromoplasts. It plays an indispensable role in promoting plant growth and maintaining eye health in humans. The rate-limiting step of lutein biosynthesis is catalyzed by the lycopene ε-cyclase enzyme (LCYE). Although great progress has been made in the identification of transcription factors involved in the lutein biosynthetic pathway, many systematic molecular mechanisms remain to be elucidated. Here, using co-expression analysis, we identified a gene, G2-LIKE CAROTENOID REGULATOR (SlGCR), encoding a GARP G2-like transcription factor, as the potential regulator of SlLCYE in tomato. Silencing of SlGCR reduced the expression of carotenoid biosynthetic genes and the accumulation of carotenoids in tomato leaves. By contrast, overexpression of SlGCR in tomato fruit significantly increased the expression of relevant genes and enhanced the accumulation of carotenoids. SlGCR can directly bind to the SlLCYE promoter and activate its expression. In addition, we also discovered that expression of SlGCR was negatively regulated by the master regulator SlRIN, thereby inhibiting lutein synthesis during tomato fruit ripening. Taken together, we identified SlGCR as a novel regulator involved in tomato lutein biosynthesis, elucidated the regulatory mechanism, and provided a potential tool for tomato lutein metabolic engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00088-z.
Collapse
Affiliation(s)
- Siyan Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025 China.,Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Hsihua Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
31
|
Ge S, Qin K, Ding S, Yang J, Jiang L, Qin Y, Wang R. Gas Chromatography-Mass Spectrometry Metabolite Analysis Combined with Transcriptomic and Proteomic Provide New Insights into Revealing Cuticle Formation during Pepper Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12383-12397. [PMID: 36148491 DOI: 10.1021/acs.jafc.2c04522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cuticle plays an important role for the quality of pepper fruit. However, the molecular mechanism of cuticle formation in pepper fruit remains unclear. Our results showed that the wax was continuously accumulated during pepper development, while the cutin monomer first increased and then decreased. Hexadecanoic acid and 10,16-hydroxyhexadecanoic acid were the main components of wax and cutin, respectively. Combined with transcriptome and proteome, the formation patterns of wax and cutin polyester network for pepper cuticle was proposed. The 18 pairs of consistent expression genes and proteins involved in cuticle formation were revealed. Meanwhile, 12 key genes were screened from fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid elongation, cutin, suberine, and wax biosynthesis, glycerolipid metabolism, and transport pathway. This study would provide important candidate genes and theoretical basis for the molecular mechanism of cuticle formation, which is essential for the breeding of peppers.
Collapse
Affiliation(s)
- Shuai Ge
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianfeng Yang
- Liuyang Hongxiu Agricultural Technology Co., Ltd., Liuyang 410300, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yeyou Qin
- Hunan Tantanxiang Food Biotechnology Co., Ltd., Changsha 410128, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
32
|
Liu Y, Zhang Z, Fang K, Shan Q, He L, Dai X, Zou X, Liu F. Genome-Wide Analysis of the MYB-Related Transcription Factor Family in Pepper and Functional Studies of CaMYB37 Involvement in Capsaicin Biosynthesis. Int J Mol Sci 2022; 23:ijms231911667. [PMID: 36232967 PMCID: PMC9569548 DOI: 10.3390/ijms231911667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Chili pepper is an important economic vegetable worldwide. MYB family gene members play an important role in the metabolic processes in plant growth and development. In this study, 103 pepper MYB-related members were identified and grouped into nine subfamilies according to phylogenetic relationships. Additionally, a total of 80, 20, and 37 collinear gene pairs were identified between pepper and tomato, pepper and Arabidopsis, and tomato and Arabidopsis, respectively. We performed promoter cis-element analysis and showed that CaMYB-related members may be involved in multiple biological processes such as growth and development, secondary metabolism, and circadian rhythm regulation. Expression pattern analysis indicated that CaMYB37 is significantly more enriched in fruit placenta, suggesting that this gene may be involved in capsaicin biosynthesis. Through VIGS, we confirmed that CaMYB37 is critical for the biosynthesis of capsaicin in placenta. Our subcellular localization studies revealed that CaMYB37 localized in the nucleus. On the basis of yeast one-hybrid and dual-luciferase reporter assays, we found that CaMYB37 directly binds to the promoter of capsaicin biosynthesis gene AT3 and activates its transcription, thereby regulating capsaicin biosynthesis. In summary, we systematically identified members of the CaMYB-related family, predicted their possible biological functions, and revealed that CaMYB37 is critical for the transcriptional regulation of capsaicin biosynthesis. This work provides a foundation for further studies of the CaMYB-related family in pepper growth and development.
Collapse
Affiliation(s)
- Yi Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhishuo Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Ke Fang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Qingyun Shan
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lun He
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Correspondence: (X.Z.); (F.L.)
| | - Feng Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Correspondence: (X.Z.); (F.L.)
| |
Collapse
|
33
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Kim GW, Hong JP, Lee HY, Kwon JK, Kim DA, Kang BC. Genomic selection with fixed-effect markers improves the prediction accuracy for Capsaicinoid contents in Capsicum annuum. HORTICULTURE RESEARCH 2022; 9:uhac204. [PMID: 36467271 PMCID: PMC9714256 DOI: 10.1093/hr/uhac204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 06/17/2023]
Abstract
Capsaicinoids provide chili peppers (Capsicum spp.) with their characteristic pungency. Several structural and transcription factor genes are known to control capsaicinoid contents in pepper. However, many other genes also regulating capsaicinoid contents remain unknown, making it difficult to develop pepper cultivars with different levels of capsaicinoids. Genomic selection (GS) uses genome-wide random markers (including many in undiscovered genes) for a trait to improve selection efficiency. In this study, we predicted the capsaicinoid contents of pepper breeding lines using several GS models trained with genotypic and phenotypic data from a training population. We used a core collection of 351 Capsicum accessions and 96 breeding lines as training and testing populations, respectively. To obtain the optimal number of single nucleotide polymorphism (SNP) markers for GS, we tested various numbers of genome-wide SNP markers based on linkage disequilibrium. We obtained the highest mean prediction accuracy (0.550) for different models using 3294 SNP markers. Using this marker set, we conducted GWAS and selected 25 markers that were associated with capsaicinoid biosynthesis genes and quantitative trait loci for capsaicinoid contents. Finally, to develop more accurate prediction models, we obtained SNP markers from GWAS as fixed-effect markers for GS, where 3294 genome-wide SNPs were employed. When four to five fixed-effect markers from GWAS were used as fixed effects, the RKHS and RR-BLUP models showed accuracies of 0.696 and 0.689, respectively. Our results lay the foundation for developing pepper cultivars with various capsaicinoid levels using GS for capsaicinoid contents.
Collapse
Affiliation(s)
- Geon Woo Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Pyo Hong
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Am Kim
- R&D Center, Hana Seed Co., Ltd., Anseong 17601, Republic of Korea
| | | |
Collapse
|
35
|
Yang L, Gu Y, Zhou J, Yuan P, Jiang N, Wu Z, Tan X. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in Camellia oleifera. Int J Mol Sci 2022; 23:ijms23126393. [PMID: 35742835 PMCID: PMC9223445 DOI: 10.3390/ijms23126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/27/2023] Open
Abstract
Camellia oleifera is an economically important oilseed tree. Seed meals of C. oleifera have a long history of use as biocontrol agents in shrimp farming and as cleaning agents in peoples’ daily lives due to the presence of theasaponins, the triterpene saponins from the genus Camellia. To characterize the biosynthetic pathway of theasaponins in C. oleifera, members of gene families involved in triterpenoid biosynthetic pathways were identified and subjected to phylogenetic analysis with corresponding members in Arabidopsis thaliana, Camellia sinensis, Actinidia chinensis, Panax ginseng, and Medicago truncatula. In total, 143 triterpenoid backbone biosynthetic genes, 1169 CYP450s, and 1019 UGTs were identified in C. oleifera. The expression profiles of triterpenoid backbone biosynthetic genes were analyzed in different tissue and seed developmental stages of C. oleifera. The results suggested that MVA is the main pathway for triterpenoid backbone biosynthesis. Moreover, the candidate genes for theasaponin biosynthesis were identified by WGCNA and qRT-PCR analysis; these included 11 CYP450s, 14 UGTs, and eight transcription factors. Our results provide valuable information for further research investigating the biosynthetic and regulatory network of theasaponins.
Collapse
Affiliation(s)
- Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| | - Ping Yuan
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Nan Jiang
- School of Packing and Material Engineering, Hunan University of Technology, Zhuzhou 412000, China;
| | - Zelong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| |
Collapse
|
36
|
Kang WH, Lee J, Koo N, Kwon JS, Park B, Kim YM, Yeom SI. Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). HORTICULTURE RESEARCH 2022; 9:uhab003. [PMID: 35043174 PMCID: PMC8968494 DOI: 10.1093/hr/uhab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Boseul Park
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Genome Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| |
Collapse
|
37
|
Wen J, Lv J, Zhao K, Zhang X, Li Z, Zhang H, Huo J, Wan H, Wang Z, Zhu H, Deng M. Ethylene-Inducible AP2/ERF Transcription Factor Involved in the Capsaicinoid Biosynthesis in Capsicum. FRONTIERS IN PLANT SCIENCE 2022; 13:832669. [PMID: 35310674 PMCID: PMC8928445 DOI: 10.3389/fpls.2022.832669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 05/17/2023]
Abstract
Ethylene is very important in the process of plant development and regulates the biosynthesis of many secondary metabolites. In these regulatory mechanisms, transcription factors (TFs) that mediate ethylene signals play a very important role. Capsaicinoids (CAPs) are only synthesized and accumulated in Capsicum species, causing their fruit to have a special pungent taste, which can protect against attack from herbivores and pathogens. In this study, we identified the TF CcERF2, which is induced by ethylene, and demonstrated its regulatory effect on CAPs biosynthesis. Transcriptome sequencing analysis revealed that the expression patterns of CcERF2 and multiple genes associated with CAPs biosynthesis were basically the same. The spatiotemporal expression results showed CcERF2 was preferentially expressed in the placenta of the spicy fruit. Ethylene can induce the expression of CcERF2 and CAPs biosynthesis genes (CBGs). CcERF2 gene silencing and 1-methylcyclopropene (1-MCP) and pyrazinamide (PZA) treatments caused a decrease in expression of CBGs and a sharp decrease in content of CAPs. The results indicated that CcERF2 was indeed involved in the regulation of structural genes of the CAPs biosynthetic pathway.
Collapse
Affiliation(s)
- Jinfen Wen
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, China
| | - Junheng Lv
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Xiang Zhang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Zuosen Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Hong Zhang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jinlong Huo
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Hongjian Wan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziran Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Haishan Zhu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
- *Correspondence: Minghua Deng, , orcid.org/0000-0001-8293-9035
| |
Collapse
|
38
|
He Q, Zhou T, Sun J, Wang P, Yang C, Bai L, Liu Z. Transcriptome Profiles of Leaves and Roots of Goldenrain Tree ( Koelreuteria paniculata Laxm.) in Response to Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12046. [PMID: 34831798 PMCID: PMC8621797 DOI: 10.3390/ijerph182212046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) pollution is a widespread environmental problem. In this study, we explored the transcriptome and biochemical responses of goldenrain tree (Koelreuteria paniculata Laxm.) leaves and roots to Cd stress. Leaf and root growth decreased substantially under Cd stress (50 mg/L CdCl2), but leaf and root antioxidant mechanisms were significantly activated. In RNA-seq analysis, roots treated with 25 mg/L CdCl2 featured enriched GO terms in cellular components related to intracellular ribonucleoprotein complex, ribonucleoprotein complex, and macromolecular complex. In leaves under Cd stress, most differentially expressed genes were enriched in the cellular component terms intrinsic component of membrane and membrane part. Weighted gene co-expression network analysis and analysis of module-trait relations revealed candidate genes associated with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA). Ten transcription factors responded to Cd stress expression, including those in C2H2, MYB, WRKY, and bZIP families. Transcriptomic analysis of goldenrain tree revealed that Cd stress rapidly induced the intracellular ribonucleoprotein complex in the roots and the intrinsic component of membrane in the leaves. The results also indicate directions for further analyses of molecular mechanisms of Cd tolerance and accumulation in goldenrain tree.
Collapse
Affiliation(s)
- Qihao He
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemcial Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lei Bai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| |
Collapse
|
39
|
Villa-Rivera MG, Ochoa-Alejo N. Transcriptional Regulation of Ripening in Chili Pepper Fruits ( Capsicum spp.). Int J Mol Sci 2021; 22:12151. [PMID: 34830031 PMCID: PMC8624906 DOI: 10.3390/ijms222212151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Chili peppers represent a very important horticultural crop that is cultivated and commercialized worldwide. The ripening process makes the fruit palatable, desirable, and attractive, thus increasing its quality and nutritional value. This process includes visual changes, such as fruit coloration, flavor, aroma, and texture. Fruit ripening involves a sequence of physiological, biochemical, and molecular changes that must be finely regulated at the transcriptional level. In this review, we integrate current knowledge about the transcription factors involved in the regulation of different stages of the chili pepper ripening process.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico;
| |
Collapse
|
40
|
Islam K, Rawoof A, Ahmad I, Dubey M, Momo J, Ramchiary N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:721265. [PMID: 34721453 PMCID: PMC8548648 DOI: 10.3389/fpls.2021.721265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Liu R, Song J, Liu S, Chen C, Zhang S, Wang J, Xiao Y, Cao B, Lei J, Zhu Z. Genome-wide identification of the Capsicum bHLH transcription factor family: discovery of a candidate regulator involved in the regulation of species-specific bioactive metabolites. BMC PLANT BIOLOGY 2021; 21:262. [PMID: 34098881 PMCID: PMC8183072 DOI: 10.1186/s12870-021-03004-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/04/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs) serve crucial roles in regulating plant growth and development and typically participate in biological processes by interacting with other TFs. Capsorubin and capsaicinoids are found only in Capsicum, which has high nutritional and economic value. However, whether bHLH family genes regulate capsorubin and capsaicinoid biosynthesis and participate in these processes by interacting with other TFs remains unknown. RESULTS In this study, a total of 107 CabHLHs were identified from the Capsicum annuum genome. Phylogenetic tree analysis revealed that these CabHLH proteins were classified into 15 groups by comparing the CabHLH proteins with Arabidopsis thaliana bHLH proteins. The analysis showed that the expression profiles of CabHLH009, CabHLH032, CabHLH048, CabHLH095 and CabHLH100 found in clusters C1, C2, and C3 were similar to the profile of carotenoid biosynthesis in pericarp, including zeaxanthin, lutein and capsorubin, whereas the expression profiles of CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 found in clusters L5, L6 and L9 were consistent with the profile of capsaicinoid accumulation in the placenta. Moreover, CabHLH007, CabHLH009, CabHLH026 and CabHLH086 also might be involved in temperature-mediated capsaicinoid biosynthesis. Yeast two-hybrid (Y2H) assays demonstrated that CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 could interact with MYB31, a master regulator of capsaicinoid biosynthesis. CONCLUSIONS The comprehensive and systematic analysis of CabHLH TFs provides useful information that contributes to further investigation of CabHLHs in carotenoid and capsaicinoid biosynthesis.
Collapse
Affiliation(s)
- Renjian Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Jiali Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Shaoqun Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Shuanglin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Juntao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Yanhui Xiao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
- Department of Biology, Peking University-Southern University of Science and Technology Joint Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
42
|
Fu H, Zeng T, Zhao Y, Luo T, Deng H, Meng C, Luo J, Wang C. Identification of Chlorophyll Metabolism- and Photosynthesis-Related Genes Regulating Green Flower Color in Chrysanthemum by Integrative Transcriptome and Weighted Correlation Network Analyses. Genes (Basel) 2021; 12:genes12030449. [PMID: 33801035 PMCID: PMC8004015 DOI: 10.3390/genes12030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Green chrysanthemums are difficult to breed but have high commercial value. The molecular basis for the green petal color in chrysanthemum is not fully understood. This was investigated in the present study by RNA sequencing analysis of white and green ray florets collected at three stages of flower development from the F1 progeny of the cross between Chrysanthemum × morifolium “Lüdingdang” with green-petaled flowers and Chrysanthemum vistitum with white-petaled flowers. The chlorophyll content was higher and chloroplast degradation was slower in green pools than in white pools at each developmental stage. Transcriptome analysis revealed that genes that were differentially expressed between the two pools were enriched in pathways related to chlorophyll metabolism and photosynthesis. We identified the transcription factor genes CmCOLa, CmCOLb, CmERF, and CmbHLH as regulators of the green flower color in chrysanthemum by differential expression analysis and weighted gene co-expression network analysis. These findings can guide future efforts to improve the color palette of chrysanthemum flowers through genetic engineering.
Collapse
|
43
|
Genome-Wide Identification and Analysis of the MYB Transcription Factor Gene Family in Chili Pepper ( Capsicum spp.). Int J Mol Sci 2021; 22:ijms22052229. [PMID: 33668082 PMCID: PMC7956556 DOI: 10.3390/ijms22052229] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
The MYB transcription factor family is very large and functionally diverse in plants, however, only a few members of this family have been reported and characterized in chili pepper (Capsicum spp.). In the present study, we performed genome-wide analyses of the MYB family in Capsicum annuum, including phylogenetic relationships, conserved domain, gene structure organization, motif protein arrangement, chromosome distribution, chemical properties predictions, RNA-seq expression, and RT-qPCR expression assays. A total of 235 non-redundant MYB proteins were identified from C. annuum, including R2R3-MYB, 3R-MYB, atypical MYB, and MYB-related subclasses. The sequence analysis of CaMYBs compared with other plant MYB proteins revealed gene conservation, but also potential specialized genes. Tissue-specific expression profiles showed that CaMYB genes were differentially expressed, suggesting that they are functionally divergent. Furthermore, the integration of our data allowed us to propose strong CaMYBs candidates to be regulating phenylpropanoid, lignin, capsaicinoid, carotenoid, and vitamin C biosynthesis, providing new insights into the role of MYB transcription factors in secondary metabolism. This study adds valuable knowledge about the functions of CaMYB genes in various processes in the Capsicum genus.
Collapse
|