1
|
Zhao X, Chen L, Huang Y, Hu J, Zhang J, Zhang B, Ma Z. Targeted metabolic engineering of key biosynthetic genes improves triptolide production in Tripterygium wilfordii hairy roots. PLANT CELL REPORTS 2025; 44:129. [PMID: 40404876 DOI: 10.1007/s00299-025-03518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025]
Abstract
KEY MESSAGE The overexpression of key biosynthetic genes involved in triptolide production through a metabolic engineering strategy significantly enhanced triptolide accumulation in Tripterygium wilfordii hairy roots. Triptolide, the representative bioactive compound in Tripterygium wilfordii, is renowned for its potent insecticidal and pharmacological properties. In order to increase the production of triptolide, this study overexpressed several key enzyme genes related to its biosynthesis in T. wilfordii hairy roots. Specifically, the content of triptolide in hairy roots overexpressing TwTPS9 and TwTPS27 individually was found to be 1.60-fold and 1.42-fold that of the control, respectively. Co-expression of both TwTPS9 and TwTPS27 resulted in significant increase in triptolide levels, reaching approximately 2.72 times that of the control. Furthermore, overexpressing TwGGPPS and TwDXS on the basis of the double gene overexpression led to the highest triptolide production, with a yield of 12.83 mg/L, increasing to 3.18-fold compared to the control. This study offers valuable examples into the efficient biosynthesis of triptolide and is expected to lay a foundation for future industrial-scale production by mitigating its resource constraints through metabolic engineering.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Huang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junjie Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Shabbir R, Javed T, Wenzhi W, Yating C, Benpeng Y, Linbo S, Tingting S, Shuzhen Z, Chen P. Insights into recent advances in secondary metabolites (SMs)-mediated defense responses in plants. Crit Rev Biotechnol 2025:1-15. [PMID: 40268520 DOI: 10.1080/07388551.2025.2484598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.
Collapse
Affiliation(s)
- Rubab Shabbir
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wang Wenzhi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chang Yating
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Benpeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shen Linbo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sun Tingting
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhang Shuzhen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Pinghua Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Jia Z, Zeng T, Gu L, Wang H, Zhu B, Ren M, Du X. TaWRKY17 Interacts With TaWRKY44 to Promote Expression of TaDHN7 for Salt Tolerance in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:1963-1976. [PMID: 39529360 DOI: 10.1111/pce.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Wheat is a crucial food crop, yet its production is continually threatened by abiotic stresses, particularly salt stress. Understanding the molecular mechanisms by which wheat responds to salt stress is essential for developing salt-tolerant varieties. In this study, we investigated the molecular pathway involving the wheat TaDHN7 in response to salt stress. The overexpression of TaDHN7 enhances salt tolerance and reactive oxygen species (ROS) scavenging in wheat, while the knockout of TaDHN7 significantly impairs salt tolerance. Furthermore, we identified that TaWRKY44 promotes the expression of TaDHN7 by binding to the W-box within the TaDHN7 promoter. Additionally, TaWRKY17 interacts with TaWRKY44, and this interaction enhances the protein stability of TaWRKY44 under salt stress, thereby enhancing its transcriptional regulatory capacity on TaDHN7. This study elucidates the TaWRKY17-TaWRKY44-TaDHN7 pathway in response to salt stress in wheat, providing valuable insights for the development of salt-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Zhenzhen Jia
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| |
Collapse
|
4
|
Zhang X, Wang J, Wang Y, Jiang C, Yang A, Li F. NtWRKY33 involved in senescence-induced nornicotine synthesis by activating NtE4 in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109391. [PMID: 39705864 DOI: 10.1016/j.plaphy.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Nornicotine is an undesirable alkaloid in tobacco due to its unpleasant taste and potential toxicity. The accumulation of nornicotine in tobacco leaves is related to the development of the leaves, with very low amounts present in green leaves and a dramatic increase after senescence. While it is known that the NtE4 is a key enzyme involved in nicotine to nornicotine conversion in tobacco leaves, the specific genes regulating the expression of NtE4 during leaf senescence remain unclear. In this study, we identified a WRKY transcription factor, NtWRKY33, as being involved in nornicotine accumulation during senescence. NtWRKY33 is a nuclear protein and its expression is induced by senescence. Knocking out NtWRKY33 significantly decreased nornicotine levels in senescent leaves, whereas overexpressing NtWRKY33 significantly increased nornicotine accumulation. RT-qPCR analysis demonstrated that NtWRKY33 positively regulates the expression of NtE4 without significantly affecting other key enzyme genes involved in nornicotine biosynthesis. Yeast one-hybrid (Y1H) and dual-luciferase analysis (DLA) revealed that NtWRKY33 directly promotes NtE4 expression by binding to its promoter. Therefore, NtWRKY33 is a transcription factor involved in senescence-induced nornicotine accumulation. This study provides novel insights into the molecular mechanisms by which senescence induces nornicotine formation and identifies a new target for regulating nornicotine levels.
Collapse
Affiliation(s)
- Xingzi Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Jin Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Yaqi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China; Graduate School of Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Caihong Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Fengxia Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
5
|
Li M, Shao Y, Pan B, Liu C, Tan H. Regulation of important natural products biosynthesis by WRKY transcription factors in plants. J Adv Res 2025:S2090-1232(25)00028-1. [PMID: 39761870 DOI: 10.1016/j.jare.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Plants produce abundant natural products, among which are species-specific and diversified secondary metabolites that are essential for growth and development, as well as adaptation to adversity and ecology. Moreover, these secondary metabolites are extensively utilized in pharmaceuticals, fragrances, industrial materials, and more. WRKY transcription factors (TFs), as a family of TFs unique to plants, have significant functions in many plant life activities. Especially in recent years, their role in the field of secondary metabolite biosynthesis regulation has received much attention. However, very little comprehensive summarization has been done to review their research progress. AIM OF REVIEW The purpose of this work is not only to provide valuable insights into the regulation of WRKY TFs over metabolic pathways through compiling the WRKY TFs involved in these processes, but also to offer research directions for WRKY TFs by summarizing the regulatory modes of WRKY TFs in the biosynthesis of secondary metabolites, thereby increasing the yield of valuable natural products in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW Secondary metabolites can be categorized into three major classes-terpenoids, phenolic compounds, and nitrogen-containing compounds-based on their structural characteristics and biosynthetic pathways, and further subdivided into numerous subclasses. We review in detail the research progressregardingthe regulatory roles of WRKY TFs in plant secondary metabolitebiosynthesis and summarize more than 40 major related species. Additionally, we have presented the concepts of action modes of WRKY TFs involved in metabolic pathways, including direct regulation, indirect regulation, co-regulation, and self-regulation. It is helpful for others to investigate the molecular mechanisms of TF-mediated regulation. Furthermore, regarding future research prospects, we believe that research in this area lays the foundation for increasing the yield of important plant-derived natural products by molecular breeding, generating significant economic and social benefits.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yiming Shao
- Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Baiwei Pan
- Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Hexin Tan
- Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China; Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, No.1279 Sanmen Road, Shanghai 200434, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No.325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Luo F, Huang Y, Sun Y, Guan J, Li M, Liu T, Qi H. Transcription Factor CmWRKY13 Regulates Cucurbitacin B Biosynthesis Leading to Bitterness in Oriental Melon Fruit ( Cucumis melo var. Makuwa Makino). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24697-24710. [PMID: 39460931 DOI: 10.1021/acs.jafc.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Bitterness, caused by cucurbitacin B (CuB), is one of the important traits that affects melon fruit quality and consumer acceptance. Therefore, the detailed mechanism behind the regulation of CuB biosynthesis on melon fruit needs to be further explored. This study investigated CuB content and transcriptomes of "YMR" melon fruit treated by 5 and 20 mg L-1 CPPU. The content of CuB reaches its peak in 5 days and then decreases. WGCNA identified the WRKY transcription factor (TF), CmWRKY13, coexpressed with CuB biosynthetic genes (Cm180, Cm170, Cm160, and CmACT). Yeast one-hybrid, dual-luciferase, and transient gene expression assays were conducted and suggested that the nucleus-localized CmWRKY13 transactivated the promoters of CuB biosynthetic genes and participated in the regulation of CuB biosynthesis. Furthermore, CmWRKY13 could interact with CmBt, the fruit bitterness-specific TF, which synergistically activated CuB biosynthetic gene expression. These findings provide a novel mechanistic insight for CuB biosynthesis and regulation in melon cultivation.
Collapse
Affiliation(s)
- Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yushan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yinhan Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - JingYue Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
7
|
Yang Y, Li Y, Jin L, Li P, Zhou Q, Sheng M, Ma X, Shoji T, Hao X, Kai G. A transcription factor of SHI family AaSHI1 activates artemisinin biosynthesis genes in Artemisia annua. BMC Genomics 2024; 25:776. [PMID: 39123103 PMCID: PMC11312704 DOI: 10.1186/s12864-024-10683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.
Collapse
Affiliation(s)
- Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Jin
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Pengyang Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Miaomiao Sheng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tsubasa Shoji
- Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Banadka A, Narasimha SW, Dandin VS, Naik PM, Vennapusa AR, Melmaiee K, Vemanna RS, Al-Khayri JM, Thiruvengadam M, Nagella P. Biotechnological approaches for the production of camptothecin. Appl Microbiol Biotechnol 2024; 108:382. [PMID: 38896329 PMCID: PMC11186875 DOI: 10.1007/s00253-024-13187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.
Collapse
Affiliation(s)
- Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India
| | - Sudheer Wudali Narasimha
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India
| | | | - Poornanand M Naik
- Department of Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA
| | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, Haryana, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al- Ahsa, 31982, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India.
| |
Collapse
|
9
|
Zhang S, Chen H, Wang S, Du K, Song L, Xu T, Xia Y, Guo R, Kang X, Li Y. Positive regulation of the Eucommia rubber biosynthesis-related gene EuFPS1 by EuWRKY30 in Eucommia ulmoides. Int J Biol Macromol 2024; 268:131751. [PMID: 38657917 DOI: 10.1016/j.ijbiomac.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Li Q, Duncan S, Li Y, Huang S, Luo M. Decoding plant specialized metabolism: new mechanistic insights. TRENDS IN PLANT SCIENCE 2024; 29:535-545. [PMID: 38072690 DOI: 10.1016/j.tplants.2023.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 05/04/2024]
Abstract
Secondary metabolite (SM) production provides biotic and abiotic stress resistance and enables plants to adapt to the environment. Biosynthesis of these metabolites involves a complex interplay between transcription factors (TFs) and regulatory elements, with emerging evidence suggesting an integral role for chromatin dynamics. Here we review key TFs and epigenetic regulators that govern SM biosynthesis in different contexts. We summarize relevant emerging technologies and results from the model species arabidopsis (Arabidopsis thaliana) and outline aspects of regulation that may also function in food, feed, fiber, oil, or industrial crop plants. Finally, we highlight how effective translation of fundamental knowledge from model to non-model species can benefit understanding of SM production in a variety of ecological, agricultural, and pharmaceutical contexts.
Collapse
Affiliation(s)
- Qianqian Li
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yuping Li
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuxian Huang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
12
|
Li Y, Yang Y, Li P, Sheng M, Li L, Ma X, Du Z, Tang K, Hao X, Kai G. AaABI5 transcription factor mediates light and abscisic acid signaling to promote anti-malarial drug artemisinin biosynthesis in Artemisia annua. Int J Biol Macromol 2023; 253:127345. [PMID: 37820909 DOI: 10.1016/j.ijbiomac.2023.127345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Artemisia annua, a member of the Asteraceae family, remains the primary source of artemisinin. However, the artemisinin content in the existing varieties of this plant is very low. In this study, we found that the environmental factors light and phytohormone abscisic acid (ABA) could synergistically promote the expression of artemisinin biosynthetic genes. Notably, the increased expression levels of those genes regulated by ABA depended on light. Gene expression analysis found that AaABI5, a transcription factor belonging to the basic leucine zipper (bZIP) family, was inducible by the light and ABA treatment. Analysis of AaABI5-overexpressing and -suppressing lines suggested that AaABI5 could enhance artemisinin biosynthesis and activate the expression of four core biosynthetic genes. In addition, the key regulator of light-induced artemisinin biosynthesis, AaHY5, could bind to the promoter of AaABI5 and activate its expression. In conclusion, our results demonstrated that AaABI5 acts as an important molecular junction for the synergistic promotion of artemisinin biosynthesis by light and ABA signals, which provides a candidate gene for developing new germplasms of high-quality A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pengyang Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Miaomiao Sheng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Joint International Research Laboratory of Metabolic & Developmental Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiyan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, United States
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Joint International Research Laboratory of Metabolic & Developmental Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
14
|
Zhang C, Zhong H, Li X, Xing Z, Liu J, Yu R, Deng X. Design, synthesis and bioactivity investigation of peptide-camptothecin conjugates as anticancer agents with a potential to overcome drug resistance. Int J Pharm 2023; 645:123402. [PMID: 37696345 DOI: 10.1016/j.ijpharm.2023.123402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Camptothecin (CPT) is a natural plant alkaloid from Camptotheca that exhibits a potent anticancer activity. However, its continued utilization is hindered by drawbacks such as low water solubility and restricted tumor selectivity. Cationic anticancer peptides (CAPs) are generally soluble in water, and exhibit favorable selectivity against malignant cells. In previous study, we have reported a CAP termed KM8-Aib present conspicuous selective anticancer effect. Thus, it is postulated conjugating KM8-Aib with CPT might be a plausible approach to improve the defects of CPT. A series of peptide-CPT conjugates were synthesized and subjected to biological evaluation. Among these compounds, Kb-CC07 displayed the highest selective activity against a set of cancer cell lines including drug-resistant cells, showing the IC50 values in the 0.11-1.01 μM range which is 1.9-22.6 times better than that of CPT, and a wide therapeutic index of 124.5 (vs 5.3 for CPT). The water solubility of Kb-CC07 was also improved by ∼ 100 fold compared with CPT. Further investigation unraveled that Kb-CC07 could effectively penetrate across plasma membranes and delivered more CPT molecules into cancer cells, overcoming the drug-resistance result from efflux drug transporters on tumor surface. In vivo experiments supported that Kb-CC07 has excellent in vivo antiproliferative activity against drug-resistant tumors over CPT (tumor growth inhibition of 98.2% and 37.5% for Kb-CC07 and CPT, respectively, at 5 μmol·kg-1), and prompts CPT accumulation in tumor tissue rather than normal organs, thus producing limited toxicities. To sum up, coupling therapeutic agents to CAPs would be a potential strategy to conquer the shortcomings of anticancer drugs. Additionally, Kb-CC07 is suggested to be a promising anticancer candidate deserving further investigation.
Collapse
Affiliation(s)
- Chenyu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Honglan Zhong
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Xiang Li
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Zhenjian Xing
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Jiaqi Liu
- Analytical Applications Center, Shimadzu (China) Co., Ltd. Guangzhou Branch, 230 Gaotang Road, Guangzhou 510656, China
| | - Rui Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xin Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
15
|
Xu W, Huang H, Li X, Yang M, Chi S, Pan Y, Li N, Paterson AH, Chai Y, Lu K. CaHMA1 promotes Cd accumulation in pepper fruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132480. [PMID: 37683343 DOI: 10.1016/j.jhazmat.2023.132480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The main planting areas for pepper (Capsicum sp.) are high in cadmium (Cd), which is the most prevalent heavy metal pollutant worldwide. Breeding pepper cultivars with low Cd levels can promote sustainable agricultural production and ensure the safety of pepper products. To identify breeding targets for reducing Cd accumulation in pepper fruits, we performed a genome-wide association study on 186 accessions. Polymorphisms were associated with fruit Cd content in a genomic region containing a homolog of Arabidopsis (Arabidopsis thaliana) Heavy metal-transporting ATPase 1 (HMA1) encoding a P-type ATPase. In two cultivars with contrasting Cd accumulation, transcriptome analysis revealed differentially expressed genes enriched for carbohydrate metabolism and photosynthesis in fruits with high Cd accumulation, and a Cd2+/Zn2+-exporting ATPase gene (HMA). Heterologous expression of CaHMA1 in yeast increases Cd sensitivity. Overexpression of CaHMA1 conferred a severe increase in Cd content in Arabidopsis plants, whereas reduced CaHMA1 expression in pepper fruits decreased Cd content. We propose that CaHMA1 expression may be an important component of the high Cd accumulation in pepper plants.
Collapse
Affiliation(s)
- Weihong Xu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - He Huang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Sunlin Chi
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nannan Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Andrew H Paterson
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA.
| | - Yourong Chai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Wang J, Li Y, Yang Y, Xiao C, Ruan Q, Li P, Zhou Q, Sheng M, Hao X, Kai G. Comprehensive analysis of OpHD-ZIP transcription factors related to the regulation of camptothecin biosynthesis in Ophiorrhiza pumila. Int J Biol Macromol 2023; 242:124910. [PMID: 37217041 DOI: 10.1016/j.ijbiomac.2023.124910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Ophiorrhiza pumila, as a folk herb belonging to the Rubiaceae family, has become a potential source of camptothecin (CPT), which is a monoterpenoid indole alkaloid with good antitumor property. However, the camptothecin content in this herb is low, and is far from meeting the increasing clinical demand. Understanding the transcriptional regulation of camptothecin biosynthesis provides an effective strategy for improvement of camptothecin yield. Previous studies have demonstrated several transcription factors that are related to camptothecin biosynthesis, while the functions of HD-ZIP members in O. pumila have not been investigated yet. In this study, 32 OpHD-ZIP transcription factor members were genome-wide identified. Phylogenetic tree showed that these OpHD-ZIP proteins are divided into four subfamilies. Based on the transcriptome data, nine OpHD-ZIP genes were shown to be predominantly expressed in O. pumila roots, which were in line with the camptothecin biosynthetic genes. Co-expression analysis showed that OpHD-ZIP7 and OpHD-ZIP20 were potentially related to the modulation of camptothecin biosynthesis. Dual-luciferase reporter assays (Dual-LUC) showed that both OpHD-ZIP7 and OpHD-ZIP20 could activate the expression of camptothecin biosynthetic genes OpIO and OpTDC. In conclusion, this study offered the promising data for exploring the roles of OpHD-ZIP transcription factors in regulating camptothecin biosynthesis.
Collapse
Affiliation(s)
- Jingyi Wang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongpeng Li
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengyu Xiao
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyan Ruan
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pengyang Li
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qin Zhou
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Miaomiao Sheng
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaolong Hao
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Xu Z, Liu Y, Fang H, Wen Y, Wang Y, Zhang J, Peng C, Long J. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Neolamarckia cadamba. Int J Mol Sci 2023; 24:ijms24087537. [PMID: 37108700 PMCID: PMC10142840 DOI: 10.3390/ijms24087537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The WRKY transcription factor family plays important regulatory roles in multiple biological processes in higher plants. They have been identified and functionally characterized in a number of plant species, but very little is known in Neolamarckia cadamba, a 'miracle tree' for its fast growth and potential medicinal resource in Southeast Asia. In this study, a total of 85 WRKY genes were identified in the genome of N. cadamba. They were divided into three groups according to their phylogenetic features, with the support of the characteristics of gene structures and conserved motifs of protein. The NcWRKY genes were unevenly distributed on 22 chromosomes, and there were two pairs of segmentally duplicated events. In addition, a number of putative cis-elements were identified in the promoter regions, of which hormone- and stress-related elements were shared in many NcWRKYs. The transcript levels of NcWRKY were analyzed using the RNA-seq data, revealing distinct expression patterns in various tissues and at different stages of vascular development. Furthermore, 16 and 12 NcWRKY genes were confirmed to respond to various hormone treatments and two different abiotic stress treatments, respectively. Moreover, the content of cadambine, the active metabolite used for the various pharmacological activities found in N. cadamba, significantly increased after Methyl jasmonate treatment. In addition, expression of NcWRKY64/74 was obviously upregulated, suggesting that they may have a potential function of regulating the biosynthesis of cadambine in response to MeJA. Taken together, this study provides clues into the regulatory roles of the WRKY gene family in N. cadamba.
Collapse
Affiliation(s)
- Zuowei Xu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yutong Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huiting Fang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanqiong Wen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ying Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changcao Peng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Jiang CX, Yu JX, Fei X, Pan XJ, Zhu NN, Lin CL, Zhou D, Zhu HR, Qi Y, Wu ZG. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. Int J Biol Macromol 2023; 226:1360-1373. [PMID: 36442554 DOI: 10.1016/j.ijbiomac.2022.11.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Plant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.
Collapse
Affiliation(s)
- Cheng-Xi Jiang
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Jia-Xing Yu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Fei
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Jun Pan
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Ning-Ning Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Chong-Liang Lin
- The 1(st) Affiliated Hospital of WMU, The 1(st) School of Medicine, Wenzhou Medical University, Wenzhou 325025, China
| | - Dan Zhou
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao-Ru Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Qi
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhi-Gang Wu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
19
|
Hao X, Wang C, Zhou W, Ruan Q, Xie C, Yang Y, Xiao C, Cai Y, Wang J, Wang Y, Zhang X, Maoz I, Kai G. OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:133-149. [PMID: 36194508 DOI: 10.1111/jipb.13377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Camptothecin (CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. Ophiorrhiza pumila, the herbaceous plant from the Rubiaceae family, has emerged as a model plant for studying camptothecin biosynthesis and regulation. In this study, a high-quality reference genome of O. pumila with estimated size of ~456.90 Mb was reported, and the accumulation level of camptothecin in roots was higher than that in stems and leaves. Based on its spatial distribution in the plant, we examined gene functions and expression by combining genomics with transcriptomic analysis. Two loganic acid O-methyltransferase (OpLAMTs) were identified in strictosidine-producing plant O. pumila, and enzyme catalysis assays showed that OpLAMT1 and not OpLAMT2 could convert loganic acid into loganin. Further knock-out of OpLAMT1 expression led to the elimination of loganin and camptothecin accumulation in O. pumila hairy roots. Four key residues were identified in OpLAMT1 protein crucial for the catalytic activity of loganic acid to loganin. By co-expression network, we identified a NAC transcription factor, OpNAC1, as a candidate gene for regulating camptothecin biosynthesis. Transgenic hairy roots and biochemical assays demonstrated that OpNAC1 suppressed OpLAMT1 expression. Here, we reported on two camptothecin metabolic engineering strategies paving the road for industrial-scale production of camptothecin in CPT-producing plants.
Collapse
Affiliation(s)
- Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingyan Ruan
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenhong Xie
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinkai Yang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengyu Xiao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Cai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
20
|
Huang X, Jia A, Huang T, Wang L, Yang G, Zhao W. Genomic profiling of WRKY transcription factors and functional analysis of CcWRKY7, CcWRKY29, and CcWRKY32 related to protoberberine alkaloids biosynthesis in Coptis chinensis Franch. Front Genet 2023; 14:1151645. [PMID: 37035743 PMCID: PMC10076542 DOI: 10.3389/fgene.2023.1151645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Coptis chinensis Franch. (Huanglian in Chinese) is an important economic crop with medicinal value. Its rhizome has been used as a traditional herbal medicine for thousands of years in Asia. Protoberberine alkaloids, as the main bioactive component of Coptis chinensis, have a series of pharmacological activities. However, the protoberberine alkaloids content of C. chinensis is relatively low. Understanding the molecular mechanisms affecting the transcriptional regulation of protoberberine alkaloids would be crucial to increase their production via metabolic engineering. WRKY, one of the largest plant-specific gene families, regulates plant defense responses via the biosynthesis of specialized metabolites such as alkaloids. Totally, 41 WRKY transcription factors (TFs) related to protoberberine alkaloid biosynthesis were identified in the C. chinensis genome and classified into three groups based on phylogenetic and conserved motif analyses. Three WRKY genes (CcWRKY7, CcWRKY29, and CcWRKY32) may regulate protoberberine alkaloid biosynthesis, as suggested by gene-specific expression patterns, metabolic pathways, phylogenetic, and dual-luciferase analysis. Furthermore, the CcWRKY7, CcWRKY29, and CcWRKY32 proteins were specifically detected in the nucleus via subcellular localization. This study provides a basis for understanding the regulatory mechanisms of protoberberine alkaloid biosynthesis and valuable information for breeding C. chinensis varieties.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - An Jia
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Tao Huang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Li Wang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Guohua Yang
- Shizuishan Hospital of Traditional Chinese Medicine, Shizuishan, China
- *Correspondence: Guohua Yang, ; Wanli Zhao,
| | - Wanli Zhao
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- *Correspondence: Guohua Yang, ; Wanli Zhao,
| |
Collapse
|
21
|
Yang M, Yao B, Lin R. Profiles of Metabolic Genes in Uncaria rhynchophylla and Characterization of the Critical Enzyme Involved in the Biosynthesis of Bioactive Compounds-(iso)Rhynchophylline. Biomolecules 2022; 12:biom12121790. [PMID: 36551218 PMCID: PMC9775700 DOI: 10.3390/biom12121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Rhynchophylline (RIN) and isorhynchophylline (IRN), two of the representative types of indole alkaloids, showed the unique spiroindole structures produced in Uncaria rhynchophylla. As the bioactive constituent of U. rhynchophylla, IRN has recently drawn extensive attention toward antihypertensive and neuroprotective activities. Despite their medicinal importance and unique chemical structure, the biosynthetic pathways of plant spiroindole alkaloids are still largely unknown. In this study, we used U. rhynchophylla, extensively used in traditional Chinese medicine (TCM), a widely cultivated plant of the Uncaria genus, to investigate the biosynthetic genes and characterize the functional enzymes in the spiroindole alkaloids. We aim to use the transcriptome platform to analyse the tissue-specific gene expression in spiroindole alkaloids-producing tissues, including root, bud, stem bark and leaf. The critical genes involved in the biosynthesis of precursors and scaffold formation of spiroindole alkaloids were discovered and characterized. The datasets from this work provide an essential resource for further investigating metabolic pathways in U. rhynchophylla and facilitate novel functional enzyme characterization and a good biopharming approach to spiroindole alkaloids.
Collapse
Affiliation(s)
- Mengquan Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
- School of Science, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Bowen Yao
- School of Science, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, China
| | - Rongmei Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
22
|
Kulshreshtha A, Sharma S, Padilla CS, Mandadi KK. Plant-based expression platforms to produce high-value metabolites and proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:1043478. [PMID: 36426139 PMCID: PMC9679013 DOI: 10.3389/fpls.2022.1043478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Plant-based heterologous expression systems can be leveraged to produce high-value therapeutics, industrially important proteins, metabolites, and bioproducts. The production can be scaled up, free from pathogen contamination, and offer post-translational modifications to synthesize complex proteins. With advancements in molecular techniques, transgenics, CRISPR/Cas9 system, plant cell, tissue, and organ culture, significant progress has been made to increase the expression of recombinant proteins and important metabolites in plants. Methods are also available to stabilize RNA transcripts, optimize protein translation, engineer proteins for their stability, and target proteins to subcellular locations best suited for their accumulation. This mini-review focuses on recent advancements to enhance the production of high-value metabolites and proteins necessary for therapeutic applications using plants as bio-factories.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Shweta Sharma
- Department of Veterinary Pathology, Dr. GCN College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
23
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
24
|
Yao L, Zhang H, Liu Y, Ji Q, Xie J, Zhang R, Huang L, Mei K, Wang J, Gao W. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg 3 accumulation in ginseng plant chassis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1739-1754. [PMID: 35731022 DOI: 10.1111/jipb.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.
Collapse
Affiliation(s)
- Lu Yao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yirong Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Xie
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ru Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
Wang X, Tang Y, Huang H, Wu D, Chen X, Li J, Zheng H, Zhan R, Chen L. Functional analysis of Pogostemon cablin farnesyl pyrophosphate synthase gene and its binding transcription factor PcWRKY44 in regulating biosynthesis of patchouli alcohol. FRONTIERS IN PLANT SCIENCE 2022; 13:946629. [PMID: 36092423 PMCID: PMC9458891 DOI: 10.3389/fpls.2022.946629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS) plays an important role in the synthesis of plant secondary metabolites, but its function and molecular regulation mechanism remain unclear in Pogostemon cablin. In this study, the full-length cDNA of the FPP synthase gene from P. cablin (PcFPPS) was cloned and characterized. The expressions of PcFPPS are different among different tissues (highly in P. cablin flowers). Subcellular localization analysis in protoplasts indicated that PcFPPS was located in the cytoplasm. PcFPPS functionally complemented the lethal FPPS deletion mutation in yeast CC25. Transient overexpression of PcFPPS in P. cablin leaves accelerated terpene biosynthesis, with an ~47% increase in patchouli alcohol. Heterologous overexpression of PcFPPS in tobacco plants was achieved, and it was found that the FPP enzyme activity was significantly up-regulated in transgenic tobacco by ELISA analysis. In addition, more terpenoid metabolites, including stigmasterol, phytol, and neophytadiene were detected compared with control by GC-MS analysis. Furthermore, with dual-LUC assay and yeast one-hybrid screening, we found 220 bp promoter of PcFPPS can be bound by the nuclear-localized transcription factor PcWRKY44. Overexpression of PcWRKY44 in P. cablin upregulated the expression levels of PcFPPS and patchoulol synthase gene (PcPTS), and then promote the biosynthesis of patchouli alcohol. Taken together, these results strongly suggest the PcFPPS and its binding transcription factor PcWRKY44 play an essential role in regulating the biosynthesis of patchouli alcohol.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Yun Tang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Huiling Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai Zheng
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|
26
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
27
|
Biotechnology for micropropagation and camptothecin production in Ophiorrhiza sp. Appl Microbiol Biotechnol 2022; 106:3851-3877. [PMID: 35596786 DOI: 10.1007/s00253-022-11941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
Camptothecin (CPT) is a monoterpenoid-alkaloid, an anticancer compound from plant. Ever since its discovery in 1996 from the bark of Camptotheca acuminata, various researches have been conducted for enhancing its production. CPT has also been reported in several other species belonging to the plant families Icacinaceae, Rubiaceae, Apocynaceae, Nyssaceae, Betulaceae, Violaceae, Meliaceae, and Gelseminaceae. Out of these, Ophiorrhiza sp. (Rubiaceae) is the next possible candidate for sustainable CPT production after C. acuminata and Nothapodytes nimoonia. Various biotechnological-studies have been conducted on Ophiorrhiza sp. for searching the elite species and the most optimal strategies for CPT production. The genus Ophiorrhiza has been used as medicines for antiviral, antifungal, antimalarial, and anticancer activities. Phytochemical analysis has revealed the presence of alkaloids, flavonoids, triterpenes, and CPT from the plant. Because of the presence of CPT and its herbaceous habit, Ophiorrhiza sp. has now become a hot topic in research area. Currently, for mass production of the elite spp., tissue culture techniques have been implemented. In the past decades, several researchers have contributed on the diversity assessment, phytochemical analysis, mass production, and in vitro production of CPT in Ophiorrhiza sp. In this paper, we review the on the biotechnological strategies, optimal culture medium, micropropagation of Ophiorrhiza sp., effect of PGR on shoot formation, rhizogenesis, callus formation, and enhanced production of CPT for commercial use. KEY POINTS: • Latest literature on in vitro propagation of Ophiorrhiza sp. • Biotechnological production of camptothecin and related compounds • Optimization, elicitation, and transgenic studies in Ophiorrhiza sp.
Collapse
|
28
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
29
|
Shi M, Huang Q, Wang Y, Wang C, Zhu R, Zhang S, Kai G. Genome-wide survey of the GATA gene family in camptothecin-producing plant Ophiorrhiza pumila. BMC Genomics 2022; 23:256. [PMID: 35366818 PMCID: PMC8977026 DOI: 10.1186/s12864-022-08484-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/15/2022] [Indexed: 06/27/2024] Open
Abstract
Background Ophiorrhiza pumila (Rubiaceae) is capable of producing camptothecin (CPT), one monoterpene indole alkaloid extensively employed in the treatment of multiple cancers. Transcription factors (TFs) GATA are a group of transcription regulators involved in plant development and metabolism, and show the feature of binding to the GATA motif within the promoters of target genes. However, GATA TFs have not been characterized in O. pumila. Result In this study, a total of 18 GATA genes classified into four subfamilies were identified, which randomly distributed on 11 chromosomes of O. pumila. Synteny analysis of GATA genes between O. pumila and other plant species such as Arabidopsis thaliana, Oryza sativa, Glycine max, Solanum lycopersicum, Vitis vinifera, and Catharanthus roseus genomes were analyzed. Tissue expression pattern revealed that OpGATA1 and OpGATA18 were found to be correlated with ASA, MK, CPR and GPPS, which were highly expressed in leaves. OpGATA7, showed high expression in roots as most of the CPT biosynthetic pathway genes did, suggesting that these OpGATAs may be potential candidates regulating CPT biosynthesis in O. pumila. Conclusions In this study, we systematically analyzed the OpGATA TFs, and provided insights into the involvement of OpGATA TFs from O. pumila in CPT biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08484-x.
Collapse
|
30
|
Li J, Li Y, Dang M, Li S, Chen S, Liu R, Zhang Z, Li G, Zhang M, Yang D, Yang M, Liu Y, Tian D, Deng X. Jasmonate-Responsive Transcription Factors NnWRKY70a and NnWRKY70b Positively Regulate Benzylisoquinoline Alkaloid Biosynthesis in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2022; 13:862915. [PMID: 35783938 PMCID: PMC9240598 DOI: 10.3389/fpls.2022.862915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Lotus (Nelumbo nucifera) is a large aquatic plant that accumulates pharmacologically significant benzylisoquinoline alkaloids (BIAs). However, little is known about their biosynthesis and regulation. Here, we show that the two group III WRKY transcription factors (TFs), NnWRKY70a and NnWRKY70b, positively regulate the BIA biosynthesis in lotus. Both NnWRKY70s are jasmonic acid (JA) responsive, with their expression profiles highly correlated to the BIA concentration and BIA pathway gene expression. A dual-luciferase assay showed that NnWRKY70a could transactivate the NnTYDC promoter, whereas NnWRKY70b could activate promoters of the three BIA structural genes, including NnTYDC, NnCYP80G, and Nn7OMT. In addition, the transient overexpression of NnWRKY70a and NnWRKY70b in lotus petals significantly elevated the BIA alkaloid concentrations. Notably, NnWRKY70b seems to be a stronger BIA biosynthesis regulator, because it dramatically induced more BIA structural gene expressions and BIA accumulation than NnWRKY70a. A yeast two-hybrid assay further revealed that NnWRKY70b physically interacted with NnJAZ1 and two other group III WRKY TFs (NnWRKY53b and NnWRKY70a), suggesting that it may cooperate with the other group III WRKYs to adjust the lotus BIA biosynthesis via the JA-signaling pathway. To illustrate the mechanism underlying NnWRKY70b-mediated BIA regulation in the lotus, a simplified model is proposed. Our study provides useful insights into the regulatory roles of WRKY TFs in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yi Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Mingjing Dang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Simeng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruizhen Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Zeyu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guoqian Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yanling Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Xianbao Deng
| |
Collapse
|
31
|
Wang C, Hao X, Wang Y, Maoz I, Zhou W, Zhou Z, Kai G. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2022; 9:uhac099. [PMID: 35795387 PMCID: PMC9250654 DOI: 10.1093/hr/uhac099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Camptothecin is a chemotherapeutic drug widely used to treat various cancers. Ophiorrhiza pumila is an ideal plant model for the study of camptothecin production, with various advantages for studying camptothecin biosynthesis and regulation. The DNA-binding WRKY transcription factors have a key regulatory role in secondary metabolite biosynthesis in plants. However, little is currently known about their involvement in camptothecin biosynthesis in O. pumila. We identified 46 OpWRKY genes unevenly distributed on the 11 chromosomes of O. pumila. Phylogenetic and multiple sequence alignment analyses divided the OpWRKY proteins into three subfamilies. Based on spatial expression and co-expression, we targeted the candidate gene OpWRKY6. Overexpression of OpWRKY6 significantly reduced the accumulation of camptothecin compared with the control. Conversely, camptothecin accumulation increased in OpWRKY6 knockout lines. Further biochemical assays showed that OpWRKY6 negatively regulates camptothecin biosynthesis from both the iridoid and shikimate pathways by directly downregulating the gene expression of OpGES, Op10HGO, Op7DLH, and OpTDC. Our data provide direct evidence for the involvement of WRKYs in the regulation of camptothecin biosynthesis and offer valuable information for enriching the production of camptothecin in plant systems.
Collapse
Affiliation(s)
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Wei Zhou
- Corresponding authors. E-mail: , ,
| | | | | |
Collapse
|
32
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
33
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
34
|
Wang C, Hao X, Wang Y, Shi M, Zhou ZG, Kai G. Genome-Wide Identification and Comparative Analysis of the Teosinte Branched 1/Cycloidea/Proliferating Cell Factors 1/2 Transcription Factors Related to Anti-cancer Drug Camptothecin Biosynthesis in Ophiorrhiza pumila. FRONTIERS IN PLANT SCIENCE 2021; 12:746648. [PMID: 34691124 PMCID: PMC8529195 DOI: 10.3389/fpls.2021.746648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/09/2021] [Indexed: 05/27/2023]
Abstract
Ophiorrhiza pumila (O. pumila; Op) is a medicinal herbaceous plant, which can accumulate camptothecin (CPT). CPT and its derivatives are widely used as chemotherapeutic drugs for treating malignant tumors. Its biosynthesis pathway has been attracted significant attention. Teosinte branched 1/cycloidea/proliferating cell factors 1/2 (TCP) transcription factors (TFs) regulate a variety of physiological processes, while TCP TFs are involved in the regulation of CPT biosynthesis remain unclear. In this study, a systematic analysis of the TCP TFs family in O. pumila was performed. A total of 16 O. pumila TCP (OpTCP) genes were identified and categorized into two subgroups based on their phylogenetic relationships with those in Arabidopsis thaliana. Tissue-specific expression patterns revealed that nine OpTCP genes showed the highest expression levels in leaves, while the other seven OpTCPs showed a higher expression level in the stems. Co-expression, phylogeny analysis, and dual-luciferase (Dual-LUC) assay revealed that OpTCP15 potentially plays important role in CPT and its precursor biosynthesis. In addition, the subcellular localization experiment of candidate OpTCP genes showed that they are all localized in the nucleus. Our study lays a foundation for further functional characterization of the candidate OpTCP genes involved in CPT biosynthesis regulation and provides new strategies for increasing CPT production.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
35
|
Wang F, Li X, Zuo X, Li M, Miao C, Zhi J, Li Y, Yang X, Liu X, Xie C. Transcriptome-Wide Identification of WRKY Transcription Factor and Functional Characterization of RgWRKY37 Involved in Acteoside Biosynthesis in Rehmannia glutinosa. FRONTIERS IN PLANT SCIENCE 2021; 12:739853. [PMID: 34659306 PMCID: PMC8511629 DOI: 10.3389/fpls.2021.739853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 06/12/2023]
Abstract
WRKYs play important roles in plant metabolism, but their regulation mechanism in Rehmannia glutinosa remains elusive. In this study, 37 putative WRKY transcription factors (TFs) with complete WRKY domain from R. glutinosa transcriptome sequence data were identified. Based on their conserved domains and zinc finger motif, the R. glutinosa WRKY TFs were divided into five groups. Structural feature analysis shows that the 37 RgWRKY proteins contain WRKYGQK/GKK domains and a C2H2/C2HC-type zinc finger structure. To identify the function of RgWRKY members involved in acteoside biosynthesis, transcriptional profiles of 37 RgWRKYs in hairy roots under salicylic acid (SA), methyl jasmonate (MeJA), and hydrogen peroxide (H2O2) treatments were systematically established using RNA-seq analysis. Based on the correlationship between the expression levels of RgWRKY genes and acteoside content, RgWRKY7, RgWRKY23, RgWRKY34, RgWRKY35, and RgWRKY37 were suggested to be involved in acteoside biosynthesis in R. glutinosa, and RgWRKY37 was selected for gene functional research. Overexpression of RgWRKY37 increased the content of acteoside and total phenylethanoid glycosides (PhGs) in hairy roots and enhanced the transcript abundance of seven enzyme genes involved in the acteoside biosynthesis pathway. These results strongly suggest the involvement of the WRKY transcription factor in the regulation of acteoside biosynthesis.
Collapse
Affiliation(s)
- Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xinrong Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingming Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jingyu Zhi
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yajing Li
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xu Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiangyang Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Caixia Xie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
36
|
Chen Y, Zhang H, Zhang M, Zhang W, Ou Z, Peng Z, Fu C, Zhao C, Yu L. Salicylic Acid-Responsive Factor TcWRKY33 Positively Regulates Taxol Biosynthesis in Taxus chinensis in Direct and Indirect Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:697476. [PMID: 34434205 PMCID: PMC8381197 DOI: 10.3389/fpls.2021.697476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 05/29/2023]
Abstract
Taxol is a rare secondary metabolite that accumulates considerably in Taxus species under salicylic acid (SA) and methyl jasmonate treatment. However, the molecular mechanism of its accumulation remains unclear. We investigated TcWRKY33, a nuclear-localized group I WRKY transcription factor, as an SA-responsive regulator of taxol biosynthesis. Overexpression and RNA interference of TcWRKY33 confirmed that TcWRKY33 regulates the expression of most taxol biosynthesis genes, especially 10-deacetylbaccatin III-10-O-acetyltransferase (DBAT) and taxadiene synthase (TASY), which were considered as key enzymes in taxol biosynthesis. Transient overexpression of TcWRKY33 in Taxus chinensis leaves resulted in increased taxol and 10-deacetylbaccatin accumulation by 1.20 and 2.16 times compared with the control, respectively. Furthermore, TcWRKY33, DBAT, and TASY were confirmed to respond positively to SA signals. These results suggested that TcWRKY33 was the missing component of taxol biosynthesis that responds to SA. The sequence analysis identified two W-box motifs in the promoter of DBAT but not in the TASY. Yeast one-hybrid and dual-luciferase activity assays confirmed that TcWRKY33 can bind to the two W-boxes in the promoter of DBAT, upregulating its expression level. Hence, DBAT is a direct target of TcWRKY33. Furthermore, TcERF15, encoding a TASY activator, also contains two W-boxes in its promoter. Yeast one-hybrid and dual-luciferase activity assays further confirmed that TcWRKY33 can upregulate TASY expression through the activation of TcERF15. In summary, TcWRKY33 transmits SA signals and positively regulates taxol biosynthesis genes in two ways: directly and through the activation of other activators. Therefore, TcWRKY33 is an excellent candidate for genetically engineering regulation of taxol biosynthesis in Taxus plants.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Hua Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Meng Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Wenli Zhang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Ziqi Ou
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Zehang Peng
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Chunfang Zhao
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, China
| |
Collapse
|
37
|
Huang Q, Kai G. Characterization and phylogenetic analysis of the complete chloroplast genome of Ophiorrhiza pumila (Rubiaceae). Mitochondrial DNA B Resour 2021; 6:1973-1975. [PMID: 34179485 PMCID: PMC8205021 DOI: 10.1080/23802359.2021.1925985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ophiorrhiza pumila (Rubiaceae) is an herbaceous plant that grows streamside in forest gullies or wetlands in the shade. Complete chloroplast genome of O. pumila was obtained and analyzed its phylogeny relationship within Rubiaceae plants. The results showed that the genome had a typical quadripartite structure of 154,385 bp, and contained a total of 112 unique genes, including 79 protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Phylogenetic analysis suggested that O. pumila is sister to a highly supported clade composed of 10 species including Morinda officinalis, Gynochthodes cochinchinensis, Saprosma merrillii, Hedyotis ovata, Foonchewia guangdongensis, Dunnia sinensis, Paederia scandens, Leptodermis scabrida, Rubia cordifolia, and Galium mollugo. The complete chloroplast genome provides valuable information for the phylogenetic analysis of O. pumila.
Collapse
Affiliation(s)
- Qikai Huang
- College of pharmacy, Laboratory of Medicinal Plant Biotechnology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Guoyin Kai
- College of pharmacy, Laboratory of Medicinal Plant Biotechnology, Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
38
|
Song X, Yang Q, Bai Y, Gong K, Wu T, Yu T, Pei Q, Duan W, Huang Z, Wang Z, Liu Z, Kang X, Zhao W, Ma X. Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants. HORTICULTURE RESEARCH 2021; 8:122. [PMID: 34059664 PMCID: PMC8167114 DOI: 10.1038/s41438-021-00562-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 03/14/2021] [Indexed: 05/05/2023]
Abstract
Simple sequence repeats (SSRs) are one of the most important genetic markers and widely exist in most species. Here, we identified 249,822 SSRs from 3,951,919 genes in 112 plants. Then, we conducted a comprehensive analysis of these SSRs and constructed a plant SSR database (PSSRD). Interestingly, more SSRs were found in lower plants than in higher plants, showing that lower plants needed to adapt to early extreme environments. Four specific enriched functional terms in the lower plant Chlamydomonas reinhardtii were detected when it was compared with seven other higher plants. In addition, Guanylate_cyc existed in more genes of lower plants than of higher plants. In our PSSRD, we constructed an interactive plotting function in the chart interface, and users can easily view the detailed information of SSRs. All SSR information, including sequences, primers, and annotations, can be downloaded from our database. Moreover, we developed Web SSR Finder and Batch SSR Finder tools, which can be easily used for identifying SSRs. Our database was developed using PHP, HTML, JavaScript, and MySQL, which are freely available at http://www.pssrd.info/ . We conducted an analysis of the Myb gene families and flowering genes as two applications of the PSSRD. Further analysis indicated that whole-genome duplication and whole-genome triplication played a major role in the expansion of the Myb gene families. These SSR markers in our database will greatly facilitate comparative genomics and functional genomics studies in the future.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Ke Gong
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Qiaoying Pei
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Weike Duan
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhinan Huang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhiyuan Wang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xi Kang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Wei Zhao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
39
|
MYC2 Transcription Factors TwMYC2a and TwMYC2b Negatively Regulate Triptolide Biosynthesis in Tripterygium wilfordii Hairy Roots. PLANTS 2021; 10:plants10040679. [PMID: 33916111 PMCID: PMC8067133 DOI: 10.3390/plants10040679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Triptolide, an important bioactive diterpenoid extracted from the plant Tripterygium wilfordii, exhibits many pharmacological activities. MYC2 transcription factor (TF) plays an important role in the regulation of various secondary metabolites in plants. However, whether MYC2 TF could regulate the biosynthesis of triptolide in T. wilfordii is still unknown. In this study, two homologous MYC2 TF genes, TwMYC2a and TwMYC2b, were isolated from T. wilfordii hairy roots and functionally characterized. The analyses of the phylogenetic tree and subcellular localization showed that they were grouped into the IIIe clade of the bHLH superfamily with other functional MYC2 proteins and localized in the nucleus. Furthermore, yeast one-hybrid and GUS transactivation assays suggested that TwMYC2a and TwMYC2b inhibited the promoter activity of the miltiradiene synthase genes, TwTPS27a and TwTPS27b, by binding to the E-box (CACATG) and T/G-box (CACGTT) motifs in their promoters. Transgenic results revealed that RNA interference of TwMYC2a/b significantly enhanced the triptolide accumulation in hairy roots and liquid medium by upregulating the expression of several key biosynthetic genes, including TwMS (TwTPS27a/b), TwCPS (TwTPS7/9), TwDXR, and TwHMGR1. In summary, our findings show that TwMYC2a and TwMYC2b act as two negative regulators of triptolide biosynthesis in T. wilfordii hairy roots and also provide new insights on metabolic engineering of triptolide in the future.
Collapse
|
40
|
Ruan Q, Patel G, Wang J, Luo E, Zhou W, Sieniawska E, Hao X, Kai G. Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem Toxicol 2021; 151:112113. [PMID: 33722602 DOI: 10.1016/j.fct.2021.112113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
Camptothecin (CPT), a well-known monoterpenoid indole alkaloid with broad-spectrum anti-cancer activity, is produced from plants and endophytes. In view of the limitations of plants as sources of camptothecin in productivity and efficiency, endophytes serve as the fast growth, high cost-effectiveness, good reproducibility, and feasible genetic manipulation, so they have the potential to meet the huge market demand of the pharmaceutical industry. In this review, we summarized the isolation, identification and fermentation of CPT-producing endophytes, as well as the biosynthesis, extraction and detection of camptothecin from endophytes. Among them, we put emphasis on increasing the production of camptothecin in endophytes through different strategies such as changing the proportion of carbon, nitrogen and phosphate source, adding the precursors, elicitors or adsorbent resin, utilizing co-culture fermentation or fermenter culture. However, cell subculture and metabolic reprogramming affect the expression of camptothecin biosynthetic genes in CPT-producing endophytes, which poses a challenge to the industrial production of camptothecin. Therefore, it will be useful to gain insights through the review of these researches and provide alternative approaches to develop economical, eco-friendly and reliable natural products.
Collapse
Affiliation(s)
- Qingyan Ruan
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jingyi Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Enhui Luo
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|