1
|
Clouthier S, Rosani U, Khan A, Ding Q, Emmenegger E, Wang Z, Nalpathamkalam T, Thiruvahindrapuram B. Genomic and Epidemiological Investigations Reveal Chromosomal Integration of the Acipenserid Herpesvirus 3 Genome in Lake Sturgeon Acipenser fulvescens. Viruses 2025; 17:534. [PMID: 40284977 PMCID: PMC12031113 DOI: 10.3390/v17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
DNA sequence from a new alloherpesvirus named acipenserid herpesvirus 3 (AciHV-3) was found in sturgeon species that are vulnerable to decline globally. A study was undertaken to develop a better understanding of the virus genome and to develop diagnostic tools to support an epidemiological investigation. A 184,426 bp genome was assembled from PacBio HiFi sequences generated with DNA from a Lake Sturgeon Acipenser fulvescens gonad cell line. The AciHV-3 genome was contiguous with host chromosomal DNA and was structured with telomere-like terminal direct repeat regions, five internal direct repeat regions and a U region that included intact open reading frames encoding alloherpesvirus core proteins. Diagnostic testing conducted with a newly developed and analytically validated qPCR assay established the ubiquitous presence and high titer of AciHV-3 DNA in somatic and germline tissues from wild Lake Sturgeon in the Hudson Bay drainage basin. Phylogenetic reconstructions confirm that the monophyletic AciHV-3 lineage shares a common ancestor with AciHV-1 and that AciHV-3 taxa cluster according to their sturgeon host. The same genotype of AciHV-3 is found in disjunctive Lake Sturgeon populations within and among drainage basins. The results support the hypotheses that AciHV-3 has established latency through germline chromosomal integration, is vertically transmitted via a Mendelian pattern of inheritance, is evolving in a manner consistent with a replication competent virus and has co-evolved with its host reaching genetic fixation in Lake Sturgeon populations in central Canada.
Collapse
Affiliation(s)
- Sharon Clouthier
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padua, Italy;
| | - Arfa Khan
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Qiuwen Ding
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Eveline Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA;
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| |
Collapse
|
2
|
Kawanishi T, Takeda H. Dorsoventral patterning beyond the gastrulation stage: Interpretation of early dorsoventral cues and modular development mediated by zic1/zic4. Cells Dev 2025:204012. [PMID: 40010691 DOI: 10.1016/j.cdev.2025.204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Dorsoventral (DV) patterning is fundamental to vertebrate development, organizing the entire body across different germ layers. Although early DV axis formation, centered on the Spemann-Mangold organizer through the BMP activity gradient, has been extensively studied, the mechanisms shaping DV traits during later development remain largely unexplored. In this review, we highlight recent findings, especially from studies involving the Double anal fin (Da) spontaneous mutant of the small teleost medaka (Oryzias latipes), focusing on the roles of zic1 and zic4 (zic1/zic4) in regulating late DV patterning. These genes establish the dorsal domain of the trunk by converting the initial BMP gradient into distinct on/off spatial compartments within somites and their derivatives, acting as selector genes that define dorsal-specific traits, including myotome structure, body shape, and dorsal fin development. We also discuss how the zic-mediated dorsal domain is established and maintained from embryogenesis through adulthood. Furthermore, we provide evidence that zic-dependent action on the dorsal characteristics is dosage-dependent. We propose that the zic1/zic4-mediated DV patterning mechanism may represent a conserved regulatory framework that has been adapted to support the diverse body plans observed across vertebrate species.
Collapse
Affiliation(s)
- Toru Kawanishi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| | - Hiroyuki Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
3
|
Nino Barreat JG, Katzourakis A. Deep mining reveals the diversity of endogenous viral elements in vertebrate genomes. Nat Microbiol 2024; 9:3013-3024. [PMID: 39438719 PMCID: PMC11521997 DOI: 10.1038/s41564-024-01825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Integration of viruses into host genomes can give rise to endogenous viral elements (EVEs), which provide insights into viral diversity, host range and evolution. A systematic search for EVEs is becoming computationally challenging given the available genomic data. We used a cloud-computing approach to perform a comprehensive search for EVEs in the kingdoms Shotokuvirae and Orthornavirae across vertebrates. We identified 2,040 EVEs in 295 vertebrate genomes and provide evidence for EVEs belonging to the families Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae. We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across murine rodents. In addition, our analyses revealed that reptarenaviruses and filoviruses probably acquired their glycoprotein ectodomains three times independently from retroviral elements. Taken together, these findings encourage the addition of 4 virus families and the Hepacivirus genus to the growing virus fossil record of vertebrates, providing key insights into their natural history and evolution.
Collapse
|
4
|
Barth ZK, Aylward FO. March of the proviruses. Proc Natl Acad Sci U S A 2024; 121:e2402541121. [PMID: 38527209 PMCID: PMC10998573 DOI: 10.1073/pnas.2402541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Affiliation(s)
- Zachary K. Barth
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
5
|
Kawato S, Nozaki R, Kondo H, Hirono I. Integrase-associated niche differentiation of endogenous large DNA viruses in crustaceans. Microbiol Spectr 2024; 12:e0055923. [PMID: 38063384 PMCID: PMC10871703 DOI: 10.1128/spectrum.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Crustacean genomes harbor sequences originating from a family of large DNA viruses called nimaviruses, but it is unclear why they are present. We show that endogenous nimaviruses selectively insert into repetitive sequences within the host genome, and this insertion specificity was correlated with different types of integrases, which are DNA recombination enzymes encoded by the nimaviruses themselves. This suggests that endogenous nimaviruses have colonized various genomic niches through the acquisition of integrases with different insertion specificities. Our results point to a novel survival strategy of endogenous large DNA viruses colonizing the host genomes. These findings may clarify the evolution and spread of nimaviruses in crustaceans and lead to measures to control and prevent the spread of pathogenic nimaviruses in aquaculture settings.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Butina TV, Zemskaya TI, Bondaryuk AN, Petrushin IS, Khanaev IV, Nebesnykh IA, Bukin YS. Viral Diversity in Samples of Freshwater Gastropods Benedictia baicalensis (Caenogastropoda: Benedictiidae) Revealed by Total RNA-Sequencing. Int J Mol Sci 2023; 24:17022. [PMID: 38069344 PMCID: PMC10707223 DOI: 10.3390/ijms242317022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates).
Collapse
Affiliation(s)
| | - Tamara I. Zemskaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (T.V.B.); (A.N.B.); (I.S.P.); (I.V.K.); (I.A.N.); (Y.S.B.)
| | | | | | | | | | | |
Collapse
|
7
|
Huang HJ, Li YY, Ye ZX, Li LL, Hu QL, He YJ, Qi YH, Zhang Y, Li T, Lu G, Mao QZ, Zhuo JC, Lu JB, Xu ZT, Sun ZT, Yan F, Chen JP, Zhang CX, Li JM. Co-option of a non-retroviral endogenous viral element in planthoppers. Nat Commun 2023; 14:7264. [PMID: 37945658 PMCID: PMC10636211 DOI: 10.1038/s41467-023-43186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-Li Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Pavulraj S, Azab W. Editorial: Herpesviruses of animals: recent advances and updates. Front Vet Sci 2023; 10:1326282. [PMID: 38026625 PMCID: PMC10660278 DOI: 10.3389/fvets.2023.1326282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Selvaraj Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Kojima KK. Daidara: A gigantic Gypsy LTR retrotransposon lineage in the springtail Allacma fusca genome. Genes Cells 2023; 28:746-752. [PMID: 37650155 DOI: 10.1111/gtc.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is Burro-1 from the planarian Schmidtea medierranea, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated Daidara, is reported from the springtail Allacma fusca genome. Their entire length (25-33 kb) rivals Burro families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages Burro and Ogre, whose LTRs are around 5 kb long. Daidara encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of Daidara from Burro or Ogre.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, California, USA
| |
Collapse
|
10
|
Clouthier S, Tomczyk M, Schroeder T, Klassen C, Dufresne A, Emmenegger E, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B. A New Sturgeon Herpesvirus from Juvenile Lake Sturgeon Acipenser fulvescens Displaying Epithelial Skin Lesions. Pathogens 2023; 12:1115. [PMID: 37764923 PMCID: PMC10537993 DOI: 10.3390/pathogens12091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Herpesvirus infections of sturgeon pose a potential threat to sturgeon culture efforts worldwide. A new epitheliotropic herpesvirus named Acipenser herpesvirus 3 (AciHV-3) was detected in hatchery-reared Lake Sturgeon Acipenser fulvescens displaying skin lesions in central Canada. The growths were discovered in the fall, reached average prevalence levels of 0.2-40% and eventually regressed. No unusual mortality was observed. The cellular changes within the lesions included epithelial hyperplasia and were reminiscent of other herpesvirus infections. The virus was not evident in lesions examined by electron microscopy. Skin tissue homogenates from symptomatic sturgeon produced atypical cytopathic effects on a primary Lake Sturgeon cell line, and next-generation sequence analysis of the DNA samples revealed the presence of an alloherpesvirus. A new genotyping PCR assay targeting the major capsid protein sequence detected AciHV-3 in symptomatic Lake Sturgeon as well as other apparently healthy sturgeon species. Bayesian inference of phylogeny reconstructed with a concatenation of five alloherpesvirus core proteins revealed a new Alloherpesviridae lineage isomorphic with a new genus. The presence of AciHV-3 homologs in cell lines and sturgeon sequence datasets, low sequence divergence among these homologs and branching patterns within the genotyping phylogeny provide preliminary evidence of an endogenous virus lifestyle established in an ancestral sturgeon.
Collapse
Affiliation(s)
- Sharon Clouthier
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Marek Tomczyk
- Manitoba Agriculture & Resource Development Veterinary Diagnostic Services, 545 University Crescent, Winnipeg, MB R3T 5S6, Canada;
| | - Tamara Schroeder
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Cheryl Klassen
- Manitoba Hydro, 360 Portage Ave, Winnipeg, MB R3C 0G8, Canada;
| | - André Dufresne
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada;
| | - Eveline Emmenegger
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| |
Collapse
|
11
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
12
|
Moniruzzaman M, Aylward FO. Endogenous DNA viruses take center stage in eukaryotic genome evolution. Proc Natl Acad Sci U S A 2023; 120:e2305212120. [PMID: 37186839 PMCID: PMC10214139 DOI: 10.1073/pnas.2305212120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, FL33149
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
13
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Oka Y, Umatani C. Zoology of Fishes. Zoolog Sci 2023; 40:79-82. [PMID: 37042687 DOI: 10.2108/zsj.40.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The Zoological Society of Japan is one of the longest-standing scientific societies in Japan, and it has been publishing a unique prestigious international journal in zoology, Zoological Science, for a long period of time since its foundation in 1984 as the continuation of Zoological Magazine (1888-1983) and Annotationes Zoologicae Japonenses (1897-1983). One of the most salient features of the Society and the Journal may be the variety of species of animals used in the studies by the members of the society and the authors of the journal. Among various animal species, fish may have contributed to almost all disciplines of presentations and publications, including behavioral biology, biochemistry, cell biology, developmental biology, diversity and evolution, ecology, endocrinology, genetics, immunology, morphology, neurobiology, phylogeny, reproductive biology, and taxonomy. Owing to the recent advancement of modern molecular genetic methods in biology, not a few fish species have contributed to various research disciplines in zoological science as model animals. The present Special Issue includes various kinds of such studies in zoological science by taking advantage of a variety of fish species, which are contributed by authors of various generations ranging from junior to senior zoologists.
Collapse
Affiliation(s)
- Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan,
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Inoue Y, Takeda H. Teratorn and Its Related Elements – a Novel Group of Herpesviruses Widespread in Teleost Genomes. Zoolog Sci 2023; 40:83-90. [PMID: 37042688 DOI: 10.2108/zs220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/12/2022] [Indexed: 03/08/2023]
Abstract
Herpesviruses are a large family of DNA viruses infecting vertebrates and invertebrates, and are important pathogens in the field of aquaculture. In general, herpesviruses do not have the ability to integrate into the host genomes since they do not have a chromosomal integration step in their life cycles. Recently, we identified a novel group of herpesviruses, "Teratorn" and its related elements, in the genomes of various teleost fish species. At least some of the Teratorn-like herpesviruses are fused with a piggyBac-like DNA transposon, suggesting that they have acquired the transposon-like intragenomic lifestyle by hijacking the transposon system. In this review, we describe the sequence characteristics of Teratorn-like herpesviruses and phylogenetic relationships with other herpesviruses. Then we discuss the process of transposon-herpesvirus fusion, their life cycle, and the generality of transposon-virus fusion. Teratorn-like herpesviruses provide a piece of concrete evidence that even non-retroviral elements can become intragenomic parasites retaining replication capacity, by acquiring transposition machinery from other sources.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Evolutionary Analysis of Placental Orthologues Reveals Two Ancient DNA Virus Integrations. J Virol 2022; 96:e0093322. [DOI: 10.1128/jvi.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of vertebrates preserve a large diversity of endogenous viral elements (remnants of ancient viruses that accumulate in host genomes over evolutionary time). Although retroviruses account for the vast majority of these elements, diverse DNA viruses have also been found and novel lineages are being described.
Collapse
|
17
|
Walker L, Subramaniam K, Viadanna PHO, Vann JA, Marcquenski S, Godard D, Kieran E, Frasca S, Popov VL, Kerr K, Davison AJ, Waltzek TB. Characterization of an alloherpesvirus from wild lake sturgeon Acipenser fulvescens in Wisconsin (USA). DISEASES OF AQUATIC ORGANISMS 2022; 149:83-96. [PMID: 35686452 DOI: 10.3354/dao03661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the spring of 2017, 2 adult lake sturgeon (LS) Acipenser fulvescens captured from the Wolf River, Wisconsin (USA), presented with multiple cutaneous plaques that, upon microscopic examination, indicated proliferative epidermitis. Ultrastructural examination of affected keratinocytes revealed particles in the nucleus having a morphology typical of herpesviruses. A degenerate PCR assay targeting the DNA polymerase catalytic subunit (pol) gene of large double-stranded DNA viruses generated amplicons of the anticipated size from skin samples, and sequences of amplicons confirmed the presence of a novel alloherpesvirus (lake sturgeon herpesvirus, LSHV) related to acipenserid herpesvirus 1 (AciHV1). The complete genome (202660 bp) of this virus was sequenced using a MiSeq System, and phylogenetic analyses substantiated the close relationship to AciHV1. A PCR assay targeting the LSHV DNA packaging terminase subunit 1 (ter1) gene demonstrated the presence of the virus in 39/42 skin lesion samples collected from wild LS captured in 2017-2019 and 2021 in 4/4 rivers in Wisconsin. Future efforts to isolate LSHV in cell culture would facilitate challenge studies to determine the disease potential of the virus.
Collapse
Affiliation(s)
- Logan Walker
- Fisheries and Aquatic Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Heilig AK, Nakamura R, Shimada A, Hashimoto Y, Nakamura Y, Wittbrodt J, Takeda H, Kawanishi T. Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis. eLife 2022; 11:71845. [PMID: 35522214 PMCID: PMC9075960 DOI: 10.7554/elife.71845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal axial muscles, or epaxial muscles, are a fundamental structure covering the spinal cord and vertebrae, as well as mobilizing the vertebrate trunk. To date, mechanisms underlying the morphogenetic process shaping the epaxial myotome are largely unknown. To address this, we used the medaka zic1/zic4-enhancer mutant Double anal fin (Da), which exhibits ventralized dorsal trunk structures resulting in impaired epaxial myotome morphology and incomplete coverage over the neural tube. In wild type, dorsal dermomyotome (DM) cells reduce their proliferative activity after somitogenesis. Subsequently, a subset of DM cells, which does not differentiate into the myotome population, begins to form unique large protrusions extending dorsally to guide the epaxial myotome dorsally. In Da, by contrast, DM cells maintain the high proliferative activity and mainly form small protrusions. By combining RNA- and ChIP-sequencing analyses, we revealed direct targets of Zic1, which are specifically expressed in dorsal somites and involved in various aspects of development, such as cell migration, extracellular matrix organization, and cell-cell communication. Among these, we identified wnt11 as a crucial factor regulating both cell proliferation and protrusive activity of DM cells. We propose that dorsal extension of the epaxial myotome is guided by a non-myogenic subpopulation of DM cells and that wnt11 empowers the DM cells to drive the coverage of the neural tube by the epaxial myotome.
Collapse
Affiliation(s)
- Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuka Hashimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuta Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA. Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes. Mol Biol Evol 2022; 39:msac109. [PMID: 35588244 PMCID: PMC9156397 DOI: 10.1093/molbev/msac109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Timothy Ralston
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Veena Devi Ganeshan
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, USA
| | - Terry L. Niblack
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Corlett W. Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Horacio D. Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
- Departamento de Producción Agrícola, Universidad San Carlos, Asunción, Paraguay
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
20
|
Leger A, Brettell I, Monahan J, Barton C, Wolf N, Kusminski N, Herder C, Aadepu N, Becker C, Gierten J, Hammouda OT, Hasel E, Lischik C, Lust K, Sokolova N, Suzuki R, Tavhelidse T, Thumberger T, Tsingos E, Watson P, Welz B, Naruse K, Loosli F, Wittbrodt J, Birney E, Fitzgerald T. Genomic variations and epigenomic landscape of the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biol 2022; 23:58. [PMID: 35189951 PMCID: PMC8862245 DOI: 10.1186/s13059-022-02602-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The teleost medaka (Oryzias latipes) is a well-established vertebrate model system, with a long history of genetic research, and multiple high-quality reference genomes available for several inbred strains. Medaka has a high tolerance to inbreeding from the wild, thus allowing one to establish inbred lines from wild founder individuals. RESULTS We exploit this feature to create an inbred panel resource: the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. This panel of 80 near-isogenic inbred lines contains a large amount of genetic variation inherited from the original wild population. We use Oxford Nanopore Technologies (ONT) long read data to further investigate the genomic and epigenomic landscapes of a subset of the MIKK panel. Nanopore sequencing allows us to identify a large variety of high-quality structural variants, and we present results and methods using a pan-genome graph representation of 12 individual medaka lines. This graph-based reference MIKK panel genome reveals novel differences between the MIKK panel lines and standard linear reference genomes. We find additional MIKK panel-specific genomic content that would be missing from linear reference alignment approaches. We are also able to identify and quantify the presence of repeat elements in each of the lines. Finally, we investigate line-specific CpG methylation and performed differential DNA methylation analysis across these 12 lines. CONCLUSIONS We present a detailed analysis of the MIKK panel genomes using long and short read sequence technologies, creating a MIKK panel-specific pan genome reference dataset allowing for investigation of novel variation types that would be elusive using standard approaches.
Collapse
Affiliation(s)
- Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Brettell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jack Monahan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carl Barton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nadeshda Wolf
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Natalja Kusminski
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Clara Becker
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Jakob Gierten
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Omar T Hammouda
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Eva Hasel
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Colin Lischik
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Katharina Lust
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Risa Suzuki
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Erika Tsingos
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Philip Watson
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Bettina Welz
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Laboratory of Bioresources, Okazaki, Japan
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, University of Heidelberg, Campus Im Neuenheimer Feld, Heidelberg, Germany
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
21
|
Fitzgerald T, Brettell I, Leger A, Wolf N, Kusminski N, Monahan J, Barton C, Herder C, Aadepu N, Gierten J, Becker C, Hammouda OT, Hasel E, Lischik C, Lust K, Sokolova N, Suzuki R, Tsingos E, Tavhelidse T, Thumberger T, Watson P, Welz B, Khouja N, Naruse K, Birney E, Wittbrodt J, Loosli F. The Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biol 2022; 23:59. [PMID: 35189950 PMCID: PMC8862526 DOI: 10.1186/s13059-022-02623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we establish a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild. RESULTS Here we present the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the first near-isogenic panel of 80 inbred lines in a vertebrate model derived from a wild founder population. Inbred lines provide fixed genomes that are a prerequisite for the replication of studies, studies which vary both the genetics and environment in a controlled manner, and functional testing. The MIKK panel will therefore enable phenotype-to-genotype association studies of complex genetic traits while allowing for careful control of interacting factors, with numerous applications in genetic research, human health, drug development, and fundamental biology. CONCLUSIONS Here we present a detailed characterization of the genetic variation across the MIKK panel, which provides a rich and unique genetic resource to the community by enabling large-scale experiments for mapping complex traits.
Collapse
Affiliation(s)
- Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Brettell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nadeshda Wolf
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Natalja Kusminski
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jack Monahan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carl Barton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Clara Becker
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Omar T Hammouda
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Eva Hasel
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Colin Lischik
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Risa Suzuki
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Erika Tsingos
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Philip Watson
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Nadia Khouja
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Laboratory of Bioresources, Okazaki, Japan
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
22
|
A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 2022; 32:937-950.e5. [PMID: 35063120 DOI: 10.1016/j.cub.2021.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Collapse
|
23
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
24
|
Barreat JGN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol 2021; 30:281-292. [PMID: 34483047 DOI: 10.1016/j.tim.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Paleovirology is the study of ancient viruses and how they have coevolved with their hosts. An increasingly detailed understanding of the diversity, origins, and evolution of the DNA viruses of eukaryotes has been obtained through the lens of paleovirology in recent years. Members of multiple viral families have been found integrated in the genomes of eukaryotes, providing a rich fossil record to study. These elements have extended our knowledge of exogenous viral diversity, host ranges, and the timing of viral evolution, and are revealing the existence of entire new families of eukaryotic integrating dsDNA viruses and transposons. Future work in paleovirology will continue to provide insights into antiviral immunity, viral diversity, and potential applications, and reveal other secrets of the viral world.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
25
|
Hannat S, Pontarotti P, Colson P, Kuhn ML, Galiana E, La Scola B, Aherfi S, Panabières F. Diverse Trajectories Drive the Expression of a Giant Virus in the Oomycete Plant Pathogen Phytophthora parasitica. Front Microbiol 2021; 12:662762. [PMID: 34140938 PMCID: PMC8204020 DOI: 10.3389/fmicb.2021.662762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Giant viruses of amoebas, recently classified in the class Megaviricetes, are a group of viruses that can infect major eukaryotic lineages. We previously identified a set of giant virus sequences in the genome of Phytophthora parasitica, an oomycete and a devastating major plant pathogen. How viral insertions shape the structure and evolution of the invaded genomes is unclear, but it is known that the unprecedented functional potential of giant viruses is the result of an intense genetic interplay with their hosts. We previously identified a set of giant virus sequences in the genome of P. parasitica, an oomycete and a devastating major plant pathogen. Here, we show that viral pieces are found in a 550-kb locus and are organized in three main clusters. Viral sequences, namely RNA polymerases I and II and a major capsid protein, were identified, along with orphan sequences, as a hallmark of giant viruses insertions. Mining of public databases and phylogenetic reconstructions suggest an ancient association of oomycetes and giant viruses of amoeba, including faustoviruses, African swine fever virus (ASFV) and pandoraviruses, and that a single viral insertion occurred early in the evolutionary history of oomycetes prior to the Phytophthora–Pythium radiation, estimated at ∼80 million years ago. Functional annotation reveals that the viral insertions are located in a gene sparse region of the Phytophthora genome, characterized by a plethora of transposable elements (TEs), effectors and other genes potentially involved in virulence. Transcription of viral genes was investigated through analysis of RNA-Seq data and qPCR experiments. We show that most viral genes are not expressed, and that a variety of mechanisms, including deletions, TEs insertions and RNA interference may contribute to transcriptional repression. However, a gene coding a truncated copy of RNA polymerase II along a set of neighboring sequences have been shown to be expressed in a wide range of physiological conditions, including responses to stress. These results, which describe for the first time the endogenization of a giant virus in an oomycete, contribute to challenge our view of Phytophthora evolution.
Collapse
Affiliation(s)
- Sihem Hannat
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,CNRS SNC5039, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Marie-Line Kuhn
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | |
Collapse
|
26
|
Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ, Suh A, Johannesson H. The Enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res 2021; 31:789-798. [PMID: 33875482 PMCID: PMC8092012 DOI: 10.1101/gr.267609.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
The genomes of eukaryotes are full of parasitic sequences known as transposable elements (TEs). Here, we report the discovery of a putative giant tyrosine-recombinase-mobilized DNA transposon, Enterprise, from the model fungus Podospora anserina Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. anserina, despite what is an otherwise highly conserved genome structure. We propose that the reason for its varying positions is that the Spok block is not only capable of meiotic drive but is also capable of transposition. More precisely, the Spok block represents a unique case where the Enterprise has captured the Spoks, thereby parasitizing a resident genomic parasite to become a genomic hyperparasite. Furthermore, we demonstrate that Enterprise (without the Spoks) is found in other fungal lineages, where it can be as large as 70 kb. Lastly, we provide experimental evidence that the Spok block is deleterious, with detrimental effects on spore production in strains which carry it. This union of meiotic drivers and a transposon has created a selfish element of impressive size in Podospora, challenging our perception of how TEs influence genome evolution and broadening the horizons in terms of what the upper limit of transposition may be.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Genetics, Wageningen University, 6703 BD, Wageningen, The Netherlands
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics; Uppsala University, 752 37 Uppsala, Sweden
| | - Sven J Saupe
- IBGC, UMR 5095, CNRS Université de Bordeaux, 33077 Bordeaux Cedex, France
| | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
27
|
Helou L, Beauclair L, Dardente H, Piégu B, Tsakou-Ngouafo L, Lecomte T, Kentsis A, Pontarotti P, Bigot Y. The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. J Mol Biol 2021; 433:166839. [PMID: 33539889 PMCID: PMC8404143 DOI: 10.1016/j.jmb.2021.166839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The vertebrate piggyBac derived transposase 5 (PGBD5) encodes a domesticated transposase, which is active and able to transpose its distantly related piggyBac-like element (pble), Ifp2. This raised the question whether PGBD5 would be more effective at mobilizing a phylogenetically closely related pble element. We aimed to identify the pble most closely related to the pgbd5 gene. We updated the landscape of vertebrate pgbd genes to develop efficient filters and identify the most closely related pble to each of these genes. We found that Tcr-pble is phylogenetically the closest pble to the pgbd5 gene. Furthermore, we evaluated the capacity of two murine and human PGBD5 isoforms, Mm523 and Hs524, to transpose both Tcr-pble and Ifp2 elements. We found that both pbles could be transposed by Mm523 with similar efficiency. However, integrations of both pbles occurred through both proper transposition and improper PGBD5-dependent recombination. This suggested that the ability of PGBD5 to bind both pbles may not be based on the primary sequence of element ends, but may involve recognition of inner DNA motifs, possibly related to palindromic repeats. In agreement with this hypothesis, we identified internal palindromic repeats near the end of 24 pble sequences, which display distinct sequences.
Collapse
Affiliation(s)
- Laura Helou
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Benoît Piégu
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Louis Tsakou-Ngouafo
- UMR MEPHI D-258, I, IRD, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; CNRS SNC 5039, 13005 Marseille, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Pontarotti
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France; CNRS SNC 5039, 13005 Marseille, France
| | - Yves Bigot
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
28
|
Nguyen DHM, Panthum T, Ponjarat J, Laopichienpong N, Kraichak E, Singchat W, Ahmad SF, Muangmai N, Peyachoknagul S, Na-Nakorn U, Srikulnath K. An Investigation of ZZ/ZW and XX/XY Sex Determination Systems in North African Catfish ( Clarias gariepinus, ). Front Genet 2021; 11:562856. [PMID: 33584785 PMCID: PMC7874028 DOI: 10.3389/fgene.2020.562856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
An investigation of sex-specific loci may provide important insights into fish sex determination strategies. This may be useful for biotechnological purposes, for example, to produce all-male or all-female fish for commercial breeding. The North African catfish species, Clarias gariepinus, has been widely adopted for aquaculture because its superior growth and disease resistance render the species suitable for hybridization with other catfish to improve the productivity and quality of fish meat. This species has either a ZZ/ZW or XX/XY sex determination system. Here, we investigate and characterize these systems using high-throughput genome complexity reduction sequencing as Diversity Arrays Technology. This approach was effective in identifying moderately sex-linked loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 30 perfectly sexed individuals of C. gariepinus. However, SNPs based markers were not found in this study. In total, 41 loci met the criteria for being moderately male-linked (with male vs. female ratios 80:20 and 70:30), while 25 loci were found to be moderately linked to female sex. No strictly male- or female-linked loci were detected. Seven moderately male-linked loci were partially homologous to some classes of transposable elements and three moderately male-linked loci were partially homologous to functional genes. Our data showed that the male heterogametic XX/XY sex determination system should co-exist with the ZZ/ZW system in C. gariepinus. Our finding of the co-existence of XX/XY and ZZ/ZW systems can be applied to benefit commercial breeding of this species in Thailand. This approach using moderately sex-linked loci provides a solid baseline for revealing sex determination mechanisms and identify potential sex determination regions in catfish, allowing further investigation of genetic improvements in breeding programs.
Collapse
Affiliation(s)
- Dung Ho My Nguyen
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Jatupong Ponjarat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand.,Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.,Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
29
|
Dezordi FZ, Vasconcelos CRDS, Rezende AM, Wallau GL. In and Outs of Chuviridae Endogenous Viral Elements: Origin of a Potentially New Retrovirus and Signature of Ancient and Ongoing Arms Race in Mosquito Genomes. Front Genet 2020; 11:542437. [PMID: 33193616 PMCID: PMC7642597 DOI: 10.3389/fgene.2020.542437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endogenous viral elements (EVEs) are sequences of viral origin integrated into the host genome. EVEs have been characterized in various insect genomes, including mosquitoes. A large EVE content has been found in Aedes aegypti and Aedes albopictus genomes among which a recently described Chuviridae viral family is of particular interest, owing to the abundance of EVEs derived from it, the discrepancy among the chuvirus endogenized gene regions and the frequent association with retrotransposons from the BEL-Pao superfamily. In order to better understand the endogenization process of chuviruses and the association between chuvirus glycoproteins and BEL-Pao retrotransposons, we performed a comparative genomics and evolutionary analysis of chuvirus-derived EVEs found in 37 mosquito genomes. RESULTS We identified 428 EVEs belonging to the Chuviridae family confirming the wide discrepancy among the chuvirus genomic regions endogenized: 409 glycoproteins, 18 RNA-dependent RNA polymerases and one nucleoprotein region. Most of the glycoproteins (263 out of 409) are associated specifically with retroelements from the Pao family. Focusing only on well-assembled Pao retroelement copies, we estimated that 263 out of 379 Pao elements are associated with chuvirus-derived glycoproteins. Seventy-three potentially active Pao copies were found to contain glycoproteins into their LTR boundaries. Thirteen out of these were classified as complete and likely autonomous copies, with a full LTR structure and protein domains. We also found 116 Pao copies with no trace of glycoproteins and 37 solo glycoproteins. All potential autonomous Pao copies, contained highly similar LTRs, suggesting a recent/current activity of these elements in the mosquito genomes. CONCLUSION Evolutionary analysis revealed that most of the glycoproteins found are likely derived from a single or few glycoprotein endogenization events associated with a recombination event with a Pao ancestral element. A potential functional Pao-chuvirus hybrid (named Anakin) emerged and the glycoprotein was further replicated through retrotransposition. However, a number of solo glycoproteins, not associated with Pao elements, can be found in some mosquito genomes suggesting that these glycoproteins were likely domesticated by the host genome and may participate in an antiviral defense mechanism against both chuvirus and Anakin retrovirus.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, Brazil
| | | | - Antonio Mauro Rezende
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, Brazil
| |
Collapse
|
30
|
Courtier‐Orgogozo V, Danchin A, Gouyon P, Boëte C. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol Appl 2020; 13:1888-1905. [PMID: 32908593 PMCID: PMC7463340 DOI: 10.1111/eva.12939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The probability D that a given clustered regularly interspaced short palindromic repeats (CRISPR)-based gene drive element contaminates another, nontarget species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = h y b + t r a n s f × e x p r e s s × c u t × f l a n k × i m m u n e × n o n e x t i n c t with hyb = probability of hybridization between the target species and a nontarget species; transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a nontarget species (with no hybridization); express = probability that the Cas9 and guide RNA genes are expressed; cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host; flank = probability that the gene drive cassette inserts at the cut site; immune = probability that the immune system does not reject Cas9-expressing cells; nonextinct = probability of invasion of the drive within the population. We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. We conclude from current data that the probability of a gene drive cassette to contaminate another species is not insignificant. We propose strategies to reduce this risk and call for more work on estimating all the parameters of the formula.
Collapse
Affiliation(s)
| | - Antoine Danchin
- Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
| | - Pierre‐Henri Gouyon
- Institut de Systématique, Évolution, BiodiversitéMuséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUAParisFrance
| | | |
Collapse
|
31
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
32
|
Abstract
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
- Corresponding author: E-mail:
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
33
|
Filée J. Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis. Curr Opin Virol 2018; 33:81-88. [DOI: 10.1016/j.coviro.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
34
|
Bayer PE, Edwards D, Batley J. Bias in resistance gene prediction due to repeat masking. NATURE PLANTS 2018; 4:762-765. [PMID: 30287950 DOI: 10.1038/s41477-018-0264-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/26/2018] [Indexed: 05/20/2023]
Abstract
Several recently published Brassicaceae genome annotations show strong differences in resistance (R)-gene content. We believe that this is caused by different approaches to repeat masking. Here we show that some of the repeats stored in public databases used for repeat masking carry pieces of predicted R-gene-related domains, and demonstrate that at least some of the variance in R-gene content in recent genome annotations is caused by using these repeats for repeat masking. We also show that other classes of genes are less affected by this phenomenon, and estimate a false positive rate of R genes (0 to 4.6%) that are in reality transposons carrying the R-gene domains. These results may partially explain why there has been a decrease in published novel R genes in recent years, which has implications for plant breeding, especially in the face of pathogens changing as a response to climate change.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Inoue Y, Kumagai M, Zhang X, Saga T, Wang D, Koga A, Takeda H. Fusion of piggyBac-like transposons and herpesviruses occurs frequently in teleosts. ZOOLOGICAL LETTERS 2018; 4:6. [PMID: 29484202 PMCID: PMC5822658 DOI: 10.1186/s40851-018-0089-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/06/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Endogenous viral elements play important roles in eukaryotic evolution by giving rise to genetic novelties. Herpesviruses are a large family of DNA viruses, most of which do not have the ability to endogenize into host genomes. Recently, we identified a novel type of endogenous herpesvirus, which we named "Teratorn", from the medaka (Oryzias latipes) genome, in which the herpesvirus is fused with a piggyBac-like DNA transposon, forming a novel mobile element. Teratorn is a unique herpesvirus that retains its viral genes intact and has acquired the endogenized lifestyle by hijacking the transposon system. However, it is unclear how this novel element evolved in the teleost lineage and whether fusion of two mobile elements is a general phenomenon in vertebrates. RESULTS Here we performed a comprehensive genomic survey searching for Teratorn-like viruses in publicly available genome data and found that they are widely distributed in teleosts, forming a clade within Alloherpesviridae. Importantly, at least half of the identified Teratorn-like viruses contain piggyBac-like transposase genes, suggesting the generality of the transposon-herpesvirus fusion in teleosts. Phylogenetic tree topologies between the piggyBac-like transposase gene and herpesvirus-like genes are nearly identical, supporting the idea of a long-term evolutionary relationship between them. CONCLUSION We propose that piggyBac-like elements and Teratorn-like viruses have co-existed for a long time, and that fusion of the two mobile genetic elements occurred frequently in teleosts.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiko Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Xianbo Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Tomonori Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506 Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
36
|
Abe K, Kawanishi T, Takeda H. Zic Genes in Teleosts: Their Roles in Dorsoventral Patterning in the Somite. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:141-156. [DOI: 10.1007/978-981-10-7311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Arkhipova IR. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob DNA 2017; 8:19. [PMID: 29225705 PMCID: PMC5718144 DOI: 10.1186/s13100-017-0103-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, much attention has been paid to comparative genomic studies of transposable elements (TEs) and the ensuing problems of their identification, classification, and annotation. Different approaches and diverse automated pipelines are being used to catalogue and categorize mobile genetic elements in the ever-increasing number of prokaryotic and eukaryotic genomes, with little or no connectivity between different domains of life. Here, an overview of the current picture of TE classification and evolutionary relationships is presented, updating the diversity of TE types uncovered in sequenced genomes. A tripartite TE classification scheme is proposed to account for their replicative, integrative, and structural components, and the need to expand in vitro and in vivo studies of their structural and biological properties is emphasized. Bioinformatic studies have now become front and center of novel TE discovery, and experimental pursuits of these discoveries hold great promise for both basic and applied science.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|